CSE543 Computer and Network Security
Module: Network Security

Professor Trent Jaeger
Networking

- Fundamentally about transmitting information between two devices
- Direct communication is now possible between any two devices anywhere (just about)
 - Lots of abstraction involved
 - Lots of network components
 - Standard protocols
 - Wired and wireless
 - Works in protection environment
- What about ensuring security?
The network ...

Internet

LAN

(remot hosts/servers) (hosts/desktops)

(edge)

(perimeter)

(server)
The big picture

- Internet Protocol (IP)
 - Really refers to a whole collection of protocols making up the vast majority of the Internet

- Routing
 - How these packets move from place to place

- Network management
 - Administrators have to maintain the services and infrastructure supporting everyone’s daily activities
Network Security

• Every machine is connected
 ‣ What is trust model of the network?

• Not just limited to dogs as users
 ‣ What other ‘dogs’ are out there?
Network security: the high bits

• The network is …
 ‣ … a collection of interconnected computers
 ‣ … with resources that must be protected
 ‣ … from unwanted inspection or modification
 ‣ … while maintaining adequate quality of service.

• Another way of seeing network security is ...
 ‣ ... securing the network infrastructure such that the integrity, confidentiality, and availability of the resources is maintained.
The End-to-End Argument

• Clark et al. discussed a property of good systems that says features should be placed as close to resources as possible
 ‣ In communication, this means that we want the middle of the network to be simple, and the end-points to be smart (e.g., do everything you can at the end-points)
 • “Dumb, minimal network”
 ‣ This is the guiding principle of IP (Internet)
 ‣ Q: Does this have an effect on security?

• **Note:** this is a departure from the early networks which smart network, dumb terminals
Exploiting the network ...

• The Internet is extremely vulnerable to attack
 ‣ it is a huge open system ...
 ‣ which adheres to the *end-to-end* principle
 • smart end-points, dumb network

• Can you think of any *large-scale attacks* that would be enabled by this setup?
• Bellovin’s observations about security problems in IP
 ‣ Not really a study of how IP is misused, e.g., IP addresses for authentication, but really what is inherently bad about the way in which IP is setup

• A really, really nice overview of the basic ways in which security and the IP design is at odds
TCP/IP uses a three-way handshake to establish a connection

1. C \rightarrow S: Q$_C$
2. S \rightarrow C: Q$_S$, ack(Q$_C$) where sequence number Q$_S$ is nonce
3. C \rightarrow S: ack(Q$_S$) ... then send data

2. However assume the bad guy does not hear msg 2, if he can guess Q$_S$, then he can get S to accept whatever data it wants (useful if doing IP authentication, e.g., “rsh”)
• The only way you really fix this problem to stop making the sequence numbers predictable:
 ‣ Randomize them -- you can use DES or some other mechanism to generate them randomly
 ‣ There is an entire sub-field devoted to the creation and management of randomness in OSes

• Also, you could look for inconsistencies in timing information
 ‣ Assumption: the adversary has different timing
 ‣ OK, may be helpful, but far from definitive
Routing Manipulation

- **RIP** - routing information protocol
 - Distance vector routing protocol used for local network
 - Routers exchange reachability and “distance” vectors for all the sub-networks within (a typically small) domain
 - Use vectors to decide which route is best. Notification of changes is propagated quickly
- So, the big problem is that you receive vast amounts of data that a router uses to form the routing table
 - So, *just forge that*, and the game is up
 - Manipulate paths, DOS, hijack connections, etc.
- **Solutions:**
 - Authenticate data, but this is less than obvious how to do this efficiently (a whole lot of people are trying)
ICMP is used as a control plane for IP messages

- Ping (connectivity probe)
- Destination Unreachable (error notification)
- Time-to-live exceeded (error notification)

These are largely indispensable tools for network management and control

- Error notification codes can be used to reset connections without any authentication

Solution: verify/sanity check sources and content

- ICMP “returned packets”

Real solution: filter most of ICMP, ignore it
The “ping of death” …

• In 1996, someone discovered that many operating systems, routers, etc. could be crashed/rebooted by sending a single malformed packet
 ‣ It turns out that you can send a IP packet larger than 65,535 (2\(^{16}\)), it would crash the system
 ‣ The real reason lies in the way fragmentation works
 • It allows somebody to send a packet bigger than IP allows
 • Which blows up most fixed buffer size implementations
 • … and dumps core, blue screen of death, etc.
 ‣ Note: this is not really ICMP specific, but easy (try it)
 % ping –l 65555 your.host.ip.address
• This was a popular pastime of early hackers
Address Resolution Protocol (ARP)

• Protocol used to map IP address onto the physical layer addresses (MAC)
 1) ARP request: who has x.x.x.x?
 2) ARP response: me!
• Policy: **last one in wins**
• Used to forward packets on the appropriate interfaces by network devices (e.g., bridges)

• **Q:** Why would you want to spoof an IP address?
ARP poisoning

• Attack: replace good entries with your own
• Leads to
 ‣ Session hijacking
 ‣ Man-in-the-middle attacks
 ‣ Denial of service, etc.

• Lots of other ways to abuse ARP.
• Nobody has really come up with a good solution
 ‣ Except smart bridges, routers that keep track of MACs
• However, some not worried
 ‣ If adversary is in your perimeter, you are in big trouble
 ‣ You should validate the source of each packet independently
Legacy flawed protocols/services

• Finger user identity (my advisor hated this)
 ‣ host gives up who is logged in, existence of identities

 PSU.local Presentations > finger megan
 Login: megan Name: Megan Smith
 Directory: /Users/megan Shell: /bin/bash
 Last login Mon 23 Aug 13:19 (EDT) on console
 No Mail.
 No Plan.
 PSU.local Presentations >

• This is horrible in a distributed environment
 ‣ Privacy, privacy, privacy …
 ‣ Lots of information to start a compromise of the user.
• Post office protocol - mail retrieval
 ‣ Passwords passed in the clear (duh)
 ‣ Solution: SSL, SSH, Kerberos

• Simple mail transport protocol (SMTP) - email
 ‣ Nothing authenticated: SPAM
 ‣ Nothing hidden: eavesdropping
 ‣ Solution: your guess is as good as mine

• File Transfer protocol - file retrieval
 ‣ Passwords passed in the clear (duh)
 ‣ Solution: SSL, SSH, Kerberos
DNS maps between IP address (12.1.1.3) and domain and host names (ada.cse.psu.edu)

- How it works: the “root” servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively

- Note: there are 13 “root” servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)
A DNS query

2. ISP Nameserver queries a-root-servers.net.

4. ISP Nameserver queries a.gtld-servers.org.

5. Redirect from a.gtld-servers.org to ns-patrickmcdaniel.org.

6. ISP Nameserver queries ns-patrickmcdaniel.org.

7. ns-patrickmcdaniel.org returns 207.140.168.131.

A DNS query

ISP Nameserver

1. www.patrickmcdaniel.org?
2. a-root-servers.net
3. redirect
4. www.patrickmcdaniel.org?
5. redirect
6. www.patrickmcdaniel.org?
7. 207.140.168.131
8. 207.140.168.131

DNS Cache
www.patrickmcdaniel.org = 207.140.168.131

User PC
“Glue” information

• Suppose you ask a name server for a record and it redirects you to another name server (NS record)
 ‣ e.g., if you ask a root for a NS (name server) record for NET, it returns NS records for the authoritative servers for .net

• It will also give you the A (resource) record for the authoritative servers you were directed to
 ‣ avoid looking them up
 ‣ This is known as the “glue” records
DNS Vulnerabilities

- **Nothing is authenticated**, so really the game is over
 - You can not really trust what you hear …
 - But, many applications are doing just that.
 - Spoofing of DNS is really dangerous
- **Moreover, DNS is a catalog of resources**
 - Zone-transfers allow bulk acquisition of DNS data
 - … and hence provide a map for attacking the network
- **Lots of opportunity to abuse the system**
 - Relies heavily on caching for efficiency -- cache pollution
 - Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
 - Data may be corrupted before it gets to authoritative server
A Cache Poisoning Attack

• All requests have a unique query ID
• The nameserver/resolver uses this information to match up requests and responses
• If an adversary can guess the query ID, then it can forge the responses and pollute the DNS cache
 ‣ 16-bit query IDs (not hard)
 ‣ Some servers increment IDs (or use other bad algo.)
 ‣ First one in wins!!!
• Note: If you can observe the traffic going to a name server, you can pretty much arbitrarily own the Internet for the clients it serves.
Kaminsky DNS Vulnerability

1. Query a random host in a victim zone, e.g., 1234.cse.psu.edu

2. Spoof responses* as before, but delegate authority to some server which you own.

 1. The glue records you give make you authoritative

3. You now own the domain.

*The original attack exploited poor ID selection
Kaminski Fixes

• Make the ID harder to guess (randomized ports)
 ‣ Amplified ID space from 2^{16} to 2^{27}

• Prevent foreign requests from being processed
 ‣ E.g., filter requests from outside domain

• Observe and filter conflicting requests
 ‣ E.g., if you see a lot of bogus looking requests, be careful

• All of this treats the symptoms, not the disease.
 ‣ Lack of authenticated values
 ‣ Thus, if you can observe request traffic, prevent legitimate responses, or are just plain patient, you can mount these attacks.
DNSSEC

• A standard-based (IETF) solution to security in DNS
 ‣ Prevents data spoofing and corruption
 ‣ Public key based solution to verifying DNS data
 ‣ Authenticates
 • Communication between servers
 • DNS data
 ‣ content
 ‣ existence
 ‣ non-existence
 • Public keys (a bootstrap for PKI?)
• Securing the DNS records
 ‣ Each domain signs their “zone” with a private key
 ‣ Public keys published via DNS
 ‣ *Indirectly* signed by parent zones
 ‣ Ideally, you only need a self-signed root, and follow keys down the hierarchy
DNSsec Mechanisms

- **TSIG**: transaction signatures protect DNS operations
 - Zone loads, some server to server requests (master -> slave), etc.
 - Time-stamped signed responses for dynamic requests
 - A misnomer -- it currently uses shared secrets for TSIG (HMAC) or do real signatures using public key cryptography

- **SIG0**: a public key equivalent of TSIG
 - Works similarly, but with public keys
 - Not as popular as TSIG

- Note: these mechanisms assume clock sync. (NTP)