CSE543 - Introduction to Computer and Network Security

Module: Introduction

Professor Trent Jaeger
Some bedtime stories ...
Some bedtime stories ...
Some bedtime stories ...
Some bedtime stories ...
to nightmares ...

Figure 5: Items purchased separated into product category and customer age. The left half of each graph show orders from women, and the right half shows orders from men. Customers restricted to those who self-report age and sex.
This course

- We are going to explore why these events are not *isolated*, *infrequent*, or even *unexpected*.
- Why are we doing so poorly in computing systems at protecting our users and data from inadvertent or intentional harm?
This course

• We are going to explore why these events are not *isolated*, *infrequent*, or even *unexpected*.

• Why are we doing so poorly in computing systems at protecting our users and data from inadvertent or intentional harm?

The answer: stay tuned!
This course ...

• This course is a **systems** course covering general topics in computer and network security, including:
 ‣ network security, authentication, security protocol design and analysis, social engineering, key management, program safety, intrusion detection, DDOS detection and mitigation, architecture/operating systems security, security policy, group systems, biometrics, web security, language-based security, and other emerging topics (as time permits)
You need to understand ...

• IP Networks
• Modern Operating Systems
• Discrete Mathematics
• Basics of systems theory and implementation
 ‣ E.g., File systems, distributed systems, networking, operating systems,
Goals

‣ My goal: *to provide you with the tools to understand and evaluate research in computer security.*
 ‣ Basic technologies
 ‣ Engineering/research trade-offs
 ‣ How to read/write/present security research papers

• **This is going to be a hard course.** The key to success is sustained effort. Failure to keep up with readings and project will likely result in poor grades, and ultimately little understanding of the course material.

• **Pay-off:** security competence is a rare, valuable skill
Course Materials

• Website - I am maintaining the course website at
 ‣ http://www.cse.psu.edu/~tjaeger/cse543-f12/

• Course assignments, slides, and other artifacts will be made available on the course website.

• Course textbooks
Course Calendar

- The course calendar as all the relevant readings, assignments and test dates
- The calendar page contains electronic links to online papers assigned for course readings.
- **Please check the website frequently for announcements and changes to the schedule.** Students are responsible for any change on the schedule.
Grading

- The course will be graded on exams, projects, paper reviews and class participation in the following proportions:

 - 30% Projects
 - 20% Mid-term Exam
 - 30% Final Exam
 - 10% Paper Reviews
 - 10% Class Participation
Assignments and Reviews

- **Exams**
 - Conceptual Questions (Basic and Complex)
 - Constructions
 - Precise Answers

- **Review of Papers**
 - Define Concepts
 - Comparison with Other Approaches
 - Details of Approach

- **Written and Oral Reviewing Are Important**
Readings

• There are a large amount of readings in this course covering various topics. These assignments are intended to:
 ‣ Support the lectures in the course (provide clarity)
 ‣ Augment the lectures and provide a broader exposure to security topics.

• Students are required to do the reading!

• *About 10-20% of questions on the tests will be off the reading on topics that were not covered in class.* You better do the reading or you are going to be in deep trouble when it comes to grades.
Course Project

• End Result: Research Paper
 ‣ Motivation for an Experiment
 ‣ Background
 ‣ Related Work
 ‣ Experimental Approach
 ‣ Experimental Evaluation

• I will provide sample topic areas
• Start with an Existing System/Approach
 • Break It
 • Improve It
• Aim for a Research-Quality Result
Ethics Statement

• This course considers topics involving personal and public privacy and security. As part of this investigation we will cover technologies whose abuse may infringe on the rights of others. As an instructor, I rely on the ethical use of these technologies. Unethical use may include circumvention of existing security or privacy measurements for any purpose, or the dissemination, promotion, or exploitation of vulnerabilities of these services. Exceptions to these guidelines may occur in the process of reporting vulnerabilities through public and authoritative channels. Any activity outside the letter or spirit of these guidelines will be reported to the proper authorities and may result in dismissal from the class and/or institution.

• When in doubt, please contact the instructor for advice. Do not undertake any action which could be perceived as technology misuse anywhere and/or under any circumstances unless you have received explicit permission from Professor Jaeger.
What is security?

• Garfinkel and Spafford (1991)
 ‣ “A computer is secure if you can depend on it and its software to behave as expected.”

• Harrison, Ruzzo, Ullman (1978)
 ‣ “Prevent access by unauthorized users”

• Not really satisfactory – does not truly capture that security speaks to the behavior of others
 ‣ Expected by whom?
 ‣ Under what circumstances?
Risk

• **At-risk** valued resources that can be misused
 ‣ Monetary
 ‣ Data (loss or integrity)
 ‣ Time
 ‣ Confidence
 ‣ Trust

• What does being misused mean?
 ‣ Privacy (personal)
 ‣ Confidentiality (communication)
 ‣ Integrity (personal or communication)
 ‣ Availability (existential or fidelity)

• Q: What is at stake in your life?
Threats

• A **threat** is a specific means by which an attacker can put a system at risk
 ‣ An ability/goal of an attacker (e.g., eavesdrop, fraud, access denial)
 ‣ Independent of what can be compromised

• A **threat model** is a collection of threats that deemed important for a particular environment
 ‣ A collection of attacker(s) abilities
 ‣ E.g., A powerful attacker can read and modify all communications and generate messages on a communication channel

• Q: What were risks/threats in the introductory examples?
 ‣ Slammer
 ‣ Yale/Princeton
 ‣ Estonia
Vulnerabilities (attack vectors)

• A vulnerability is a flaw that is accessible to an adversary who can exploit that flaw
• E.g., buffer-overflow, WEP key leakage
• What is the source of a vulnerability?
 ‣ Bad software (or hardware)
 ‣ Bad design, requirements
 ‣ Bad policy/configuration
 ‣ System Misuse
 ‣ Unintended purpose or environment
 • E.g., student IDs for liquor store
Adversary

• An adversary is any entity trying to circumvent the security infrastructure
 ‣ The curious and otherwise generally clueless (e.g., script-kiddies)
 ‣ Casual attackers seeking to understand systems
 ‣ Venal people with an ax to grind
 ‣ Malicious groups of largely sophisticated users (e.g., chaos clubs)
 ‣ Competitors (industrial espionage)
 ‣ Governments (seeking to monitor activities)
Are users adversaries?

• Have you ever tried to circumvent the security of a system you were authorized to access?
• Have you ever violated a security policy (knowingly or through carelessness)?
Are users adversaries?

• Have you ever tried to circumvent the security of a system you were authorized to access?
• Have you ever violated a security policy (knowingly or through carelessness)?

This is known as the insider adversary!
Attacks

• An **attack** occurs when someone attempts to **exploit** a vulnerability

• Kinds of attacks
 ‣ Passive (e.g., eavesdropping)
 ‣ Active (e.g., password guessing)
 ‣ Denial of Service (DOS)
 • Distributed DOS – using many endpoints

• A **compromise** occurs when an attack is successful
 ‣ Typically associated with taking over/altering resources
Participants

- **Participants** are expected system entities
 - Computers, agents, people, enterprises, …
 - Depending on context referred to as: servers, clients, users, entities, hosts, routers, …
 - Security is defined with respect to these entities
 - Implication: every party may have unique view

- A **trusted third party**
 - Trusted by all participants for some set of actions
 - Often used as introducer or arbiter
Trust

- **Trust** refers to the degree to which an entity is expected to behave
- What the entity not expected to do?
 - E.g., not expose password
- What the entity is expected to do (obligations)?
 - E.g., obtain permission, refresh
- A **trust model** describes, for a particular environment, who is trusted to do what?
- Note: you make trust decisions every day
 - Q: What are they?
 - Q: Whom do you trust?
Security Model

• A security model is the combination of a trust and threat models that address the set of perceived risks
 ‣ The “security requirements” used to develop some cogent and comprehensive design
 ‣ Every design must have security model
 • LAN network or global information system
 • Java applet or operating system
• This class is going to talk a lot about security models
 ‣ What are the security concerns (risks)?
 ‣ Who are our adversaries?
 ‣ What are the threats?
 ‣ Who do we trust and to do what?
• Systems must be explicit to be secure.
A Security Model Example

• Assume we have a University website that hosts courses through the web (e.g., Angel)
 ‣ Syllabus, other course information
 ‣ Assignments submissions
 ‣ Online grading

• In class: elements of the security model
 ‣ Participants (Trusted)
 ‣ Adversaries
 ‣ Risks
 ‣ Threats