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Abstract

VAX/SVS was a high assurance virtual machine monitor (VMM) project, documented in
several published papers from the 1990’s. We take a look back, extracting the most perti-
nent lessons from that work for today. These lessons cover reference monitor architectur-
al principles, approaches to verifiable and tamperproof access control, the benefits of lay-
ering, the impacts of minimization and verification, and the business reasons behind its
cancellation as a product.
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Introduction

In May of 1990, “A VMM Security Kernel for the VAX Architecture” [1] was lead paper
at the IEEE Symposium on Security and Privacy, and was awarded Best Paper. “The Au-
diting Facility for a VMM Security Kernel” [2] was also presented that year, and the year
after, two papers on covert channels, “An Analysis of Covert Timing Channels” [3] and
“Storage Channels in Disk Arm Optimization” [4] were presented. The project the team
members had called VAX/SVS (for Secure Virtual System) represented a technical mile-
stone in high assurance operating systems in a number of ways. However, the project was
officially cancelled as a product in February of 1990, for business reasons.

More than 20 years later, we are taking this opportunity to highlight what we consider to
be the most important results from [1], with an eye toward how they can inform how high
assurance systems are considered and built today.

Background

By 1981, several government-sponsored research projects had attempted to build high-
assurance operating systems [5, 6, 7]. Some had been cancelled while others continued
to subsist on government research funding. None had been deployed operationally or
made its way into a vendor’s commercial product line.

Paul Karger and author Lipner had been associated with the Multics Guardian [5] and
SCOMP [7] projects as well as early and successful security penetration test projects.
Thus they were aware of both the need for high security and the challenges of achieving
it. Some of the challenges they found of particular concern were actually achieving a
high level of security, application compatibility, and performance. Interestingly, they felt



that the market for high assurance was not a concern, taking an “if we build it, they will
come” perspective. Working in Digital Equipment’s Corporate Research Group, Karger
had led an effort to prototype the integration of mandatory security into VAX/VVMS. This
project was successful enough that Digital developed an appetite for additional work on
security and hired Lipner to lead the effort.

After the 1981 IEEE Symposium on Security and Privacy in Oakland, Lipner and Karger
talked over dinner and “brainstormed” alternatives for achieving high assurance. Lipner
observed that if a project sought to make a high-assurance system compatible with an ex-
isting operating system (for Digital, VAX/VMS), it would always be a release behind the
standard product since development of the standard product would not stop to allow the
new high-assurance version to achieve parity. If the high-assurance version “went its
own way” and ignored compatibility, it would have no applications and fail in the mar-
ketplace. The solution to this problem was to build a high-assurance virtual machine
monitor (VMM) that would layer underneath the standard product: updates to the stand-
ard product would run on the high-assurance version at once.

The notion of a high-assurance VMM was not new. A team at UCLA under Gerry Popek
prototyped a “VMM Security Kernel” for the PDP-11/45 in the early 1970s, and a team at
System Development Corporation (SDC) under Clark Weissman and Marvin Schaeffer
had built a “kernelized” version of IBM’s VM/370. Neither of these systems became a
commercial product — but the UCLA project was never intended to do so and the SDC
project lacked commercial vendor support. With optimism born of naiveté (or naiveté
born of optimism), Lipner and Karger took their idea to the management of Digital’s re-
search group and VAX/SVS was born.

As they considered the idea of building a high-assurance VMM, the Digital team focused
on the reference monitor requirements articulated in the Anderson Report [8]. The sys-
tem that implements the reference monitor requirements must:

e Mediate all accesses by subjects to objects.

e Protect itself and its databases from attack.

e Be small enough to be subject to analysis and tests to assure that it is correct.
A VMM appeared to have significant advantages in simplicity as well as application
compatibility. It seemed to Karger and Lipner that a high-assurance system could mimic
the well-specified VAX hardware interface with far less mechanism than it could the
VAX/VMS APIs.

A second fundamental choice of the VAX/SVS project was the commitment to a layered
implementation. By 1981, Dijkstra’s THE Multiprogramming System [9] and MITRE’s
Venus system had applied layering as a way to build a reliable system. The PSOS project
at SRI [6] had proposed (but not implemented) a layered architecture that would support
formal verification of the end system, and the USAF Multics Guardian project had in-
tended to build a layered system before its cancellation. Several projects under Roger
Schell (the leader of Project Guardian) at the Naval Postgraduate School (NPS) had suc-
cessfully implemented layered security kernel prototypes.



Given their Project Guardian experience, Lipner and Karger believed that a layered im-
plementation would help VAX/SVS to achieve quality, reliability, and security. They
also believed, referring back to the PSOS project, that layering would facilitate formal
verification of the resulting system. Thus VAX/SVS made an early commitment to layer-
ing. The initial design study proposed a layered design based heavily on the NPS work,
and that design survived with relatively few changes until the eventual cancellation of the
system.

VAX/SVS Lessons

Building a high assurance system means addressing how the security controls in the sys-
tem, and the system as a whole, will achieve a particular level or likelihood of correctness
or right functioning. As a high assurance system, the VAX/SVS project addressed archi-
tectural, design, implementation, and other process aspects. VAX/SVS was designed to
meet the requirements for class Al of the US government’s Trusted Computer Systems
Evaluation Criteria — the TCSEC or the Orange Book. In addition, we find that the refer-
ence monitor concept runs through all of the lessons here from VAX/SVS. Security con-
trols are gathered in a single place, which is always invoked, made tamperproof, and is
small enough to validate. A security policy was required, and targeting a multilevel oper-
ating system meant choosing Bell and LaPadula as the core policy. Other aspects of as-
surance covered by the Orange Book included auditing, design process, testing, docu-
mentation, and operational concerns. The highest level of Orange Book assurance re-
quired formal methods to be applied to covert channel analysis, design, and test plans, as
well as trusted distribution (which the team fondly called “Trusted Trucks”). A compre-
hensive approach to assurance includes who evaluates the assurance, which in the case of
the DoD’s Orange Book, was an appropriately accredited third party.

In this paper we concentrate on four areas of lessons: access control, layering, minimiza-
tion, and verification of assurance.

Verifiable and Tamperproof Access Control

A major consideration of many systems’ security controls is access control. At the time
of VAX/SVS, nearly all commercial operating systems provided only discretionary ac-
cess controls, where the access rights to an object are determined by the owner of the ob-
ject. It was well known that some security problems could not be solved using discre-
tionary access control. For example, the presence of Trojan horses in application soft-
ware could leak an object to unauthorized users by changing the access rights to that ob-
ject or writing a copy of that object to another object accessible to the unauthorized users.

An alternative approach to access control is called mandatory access control, where the
access rights to an object may be constrained by a system administrator. A major goal
for high-assurance systems design is to develop an approach by which lattice security
models (such as Bell and La Padula [10]) could be enforced verifiably, satisfying the ref-



erence monitor concept [8]. By the late 1980s, no commercial operating systems met
these requirements rigorously. While several prototypes of high assurance systems that
targeted the reference monitor concept were built in the 1970s and 1980s, poor design
choices in these prototypes led to large size or poor performance. For example, the
KSOS kernel and the KSOS Unix emulator were each larger than contemporary Unix
systems.

The VAX/SVS project aimed to overcome these prior limitations by integrating lattice
security model enforcement into a VMM security kernel. However, unlike prior attempts
to build VMM security kernels, the VAX/SVS system was designed “from scratch,”
which significantly facilitated implementation of the reference monitor concept.

Key to developing a simple, clean design for the VAX/SVS access control system is the
small number of the types of subjects and objects. First, the VAX/SVS system provided
only two types of subjects: users and virtual machines (VMs). Users access the security
kernel via a trusted path mechanism, and the security kernel performs operations on be-
half of particular users given their access rights as discussed below. Second, the
VAX/SVS system provides only four types of objects: devices, volumes, virtualized re-
sources, and security kernel files. VAX/SVS exported dedicated volumes and virtual disk
volumes to VMs. VAX/SVS had its own files upon which it controlled access, so only
privileged processing could use them.

Subjects and objects are both assigned access classes consisting of an integrity class and
secrecy class. This approach combines the work of Bell and La Padula [10] for secrecy
and Biba [11] for integrity to prevent information flows that may leak objects to unau-
thorized subjects or may allow modification by unauthorized subjects, respectively. The
requirements for Al evaluation were closely tied to the Bell and LaPadula model for
mandatory access control: it was forbidden for lower cleared users (or processes) to gain
access to higher classification information, either by direct access or by exploiting covert
channels.

The decision to include the Biba integrity model in VAX/SVS was driven more by theo-
retical interest than real need. Lipner had published a paper on application of the Biba
model to problems of commercial data security, so it seemed that there might be real-
world requirements. And the cost of incorporating mandatory integrity controls in a sys-
tem that implemented the Bell and LaPadula model was minimal. In theory, common
programs and read-only databases would be created at high integrity and thus protected
from modification — but in reality VAX/SVS did not use the Biba model for its own pro-
tection and the authors are not aware that any field test user took advantage of the Biba
model.

In addition to access classes, subjects may also be given special privileges. Such privi-
leges allowed system users (e.g., administrators) to perform security-critical actions, such
as managing the assignment of access classes and allowing the modification of security

policy.



Using this model, SVS provided single-level virtual machines. If a user needed to do
processing at a higher level while reading lower level information, she would connect to
a higher level VM and that VM could attach a lower level virtual disk as a read-only de-
vice.

The VAX/SVS security kernel is the reference monitor that enforces this lattice policy
model (extended with privileges), so a key question is how well VAX/SVS achieves the
aims of the reference monitor concept. Providing complete mediation benefits from the
small, fixed number of object types in the VMM security kernel, making it much easier to
ensure that all the relevant security-sensitive operations are mediated. A challenge that
resulted from the choice of a small, simple VMM system was that the granularity of ac-
cess control and sharing was the virtual machine and virtual disk drive. The VAX/SVS
development team felt it had plausible approaches to implementing a usable system de-
spite the coarse granularity of objects.

The VAX/SVS security kernel provided tamperproof execution by making a clean sepa-
ration between the security kernel and the subjects (users and VMs). All the trusted code
in the VAX/SVS system runs in the security kernel, so the designers could focus on pro-
tecting the entry points. The only trusted entities in the VAX/SVS system are devices
and subjects with privileges. Devices are privileged because several have the ability to
perform Direct Memory Access (DMA), which permits them to write to any physical
memory address. As a result, devices and their drivers are part of the trusted computing
base, although their design was not specifically under the control of the VAX/SVS sys-
tem designers. Subjects with privileges may modify the lattice security policy and other
configurations, which obviously can have profound implications. To prevent vulnerabili-
ties, most privileges are only accessible via a trusted path, so the security kernel can au-
thenticate that a real user is behind the action. Two privileges are reserved for VMs, re-
sulting in the need for these VMs to be privileged. The SVS designers were primarily
concerned about ensuring that mandatory security could be enforced. As doing these
privileged operations outside the kernel did not violate that goal, the designers preferred
offering these minimal abilities over making the kernel larger and more complex.

In addition to mandatory access controls and user privileges, VAX/SVS implemented
discretionary access controls (access control lists) on objects. The effectiveness of the
discretionary access controls proved to be the only major area of disagreement between
the development team and the TCSEC evaluators. The design was optimized around
“multiuser virtual machines” — if each user required their own virtual machine, the physi-
cal memory requirement for a commercially viable VAX/SVS system would have grown
beyond what was available and the design would have had to be modified to demand
page virtual machines’ memories. In the design chosen, a VM would operate at a specif-
ic mandatory access class (level and category set) with read-write access to objects at that
access class, and read access to objects at lower (confidentiality) access classes. All users
who needed to access objects at that virtual machine’s access class would share the ma-
chine.



As a result of the choice of multiuser virtual machines, it was not possible for SVS to de-
termine with high assurance which individual user took a specific action for purposes of
enforcing discretionary access control or collecting an audit trail. The SVS team argued
that, given the reality of Trojan Horses, the security gain was not worth the impact on the
system. The evaluators argued that the TCSEC required “A1 discretionary access con-
trols.” In the end, the team documented a way of configuring an SVS system for single-
user virtual machines, with the expectation that user organizations would configure their
SVS systems for (more efficient and adequately secure) multiuser virtual machines. We
note that the tradition of documenting an evaluated configuration with specific security
attributes, knowing full well it will be largely impractical, continues today.

Layered Design

The VAX/SVS layered design approach proved to be key to a number of areas. Signifi-
cant use of layering, abstraction and data hiding was called for at B3 and above of the
Orange Book. A levels of abstraction approach in security kernel design was recom-
mended as a means to reduce complexity and an aid to precise and understandable speci-
fications. Reduced complexity was a core principle of SVS; the team lived by Keep It
Simple, Stupid (KISS). Other classical layered design principles the team followed in-
cluded a separation of concerns between the layers, low coupling between layers and high
cohesion within them, and limited exposure to layer internals.

Each level of abstraction was a layer that can call any of the lower layers. Lower layers
are never allowed to call higher layers. The total number of (potential) interactions in the
system is conceptually bounded and restricted; a layer may only call a lower layer, and
since each layer defined its external API, only through one of the defined entry points.
For performance reasons we did not enforce “no op” calls through intervening layers
(though we did briefly consider it). Today, discussions of layered design tend to intro-
duce additional complexity by allowing a richer tree of objects. SVS was an almost pure
sequence of single layers (see Figure 1, from [1]). The absolute simplicity of the layering
of the system is what gave the layered design some of its power as a structure for both
call flow and overall system organization. The cohesion of a layer was based on func-
tionality that naturally needed a great deal of shared code or concepts.



Figure 1 — VAX/SVS Layers

Another benefit of layering is the ability to more easily test a layer in isolation, since the
entry points are well defined, and a test environment need only stub out all (lower) layer



entry points (at most). Layering damps the overall effect of code changes in the system,
and enhances the stability of the interfaces. The grouping and structure that aids under-
standability can therefore help maintainability (a potential benefit we did not get a chance
to see). Reuse, another potential benefit of layering, was not a concern. The layers were
designed for the single system.

Testing emphasized layer entry points; what they would do, and what assumptions they
made. Part of the layered design rigor was to define the assumptions an APl made, and to
explicitly check those assumptions “first thing” (assuming they were security relevant).
This meant the design of each layer’s surface required an understanding of both function-
ality and security requirements. The defensive posture at each layer created classic “de-
fense in depth” at specific points in the architecture and call paths. The developers’ test
environment was such that a layering violation would cause the basic “smoke test” for a
new build of the system to fail. The team agonized over ways to make a rigorously lay-
ered system perform well, but they stuck to the layering paradigm.

The full system structure and rigor imposed by the choice of a layered design and its sub-
sequent benefits can be contrasted with the Agile [12] approach to software development,
which is getting a good deal of current attention and exercise. While Agile’s emphasis on
test driven design is consonant with the testability of the boundaries of each layer, there
seems to be no aspect of Agile that addresses overall system structure and simplicity. The
layered design of SVS allowed the team to share a common understanding of the struc-
ture, functionality, and goals of the code base, providing a foundation for the discussions
around code placement and call paths.

Conway’s Law [13] states “... organizations which design systems ... are constrained to
produce designs which are copies of the communication structures of these organiza-
tions.” This is read to indicate that the interface structure of a software system will reflect
the social structure of the organization that produced it. In VAX/SVS, each layer had an
owner, and design conversations often involved layer owners. Team members were parti-
tioned throughout the layers, and would move between them as the functionality was
built up over time. Potential stakeholders (and reviewers) for design and code changes
were the layers above the one changing (or team members within the layer changing if
the change did not affect the interface). This seemed unremarkable at the time. If Con-
way’s Law runs true, the communication structure of a system produced through the agile
methodology is likely to be diverse and unstructured, and thus more complex and harder
to understand, reason about, and predict.

The counter arguments to a layered design include lack of engineering flexibility, per-
formance impact, the difficult requirement of defining the layers up front, time to market
and the ability to make rapid changes. Within the limited experience of a version 0 pro-
ject, we did not experience any severe constraints on engineering flexibility. Performance
and time to market in general are touched on below.



Minimization

Of the three reference monitor requirements, the requirement that the system be small
enough to be subject to analysis and tests to assure that it is correct is probably the most
challenging for the developers of a secure system. VAX/VMS purported to mediate eve-
ry access by a subject (process or user) to an object (file, device, or interprocess commu-
nication channel) but its size and complexity were great enough so that the presence of
exploitable vulnerabilities was a certainty. The choice of a VMM architecture was in-
tended to support minimization of the trusted code base.

Choosing to build a VMM, however, was only the beginning of the quest for minimiza-
tion. From the development project’s beginning, there was a conscious intent to mini-
mize the amount of trusted mechanism in the system. Three examples cited below illus-
trate this point; The first two date back to the summer 1981 design study that set the
overall direction of the project, and the third was a result of the quest to provide the sys-
tem with a degree of usability.

Memory Management

Karger, Lipner, and Andrew Mason were three key participants in the initial design study
for SVS, and all were veterans of the USAF Multics Guardian project [5]. Multics re-
quired both segmentation and demand paging to provide each process with a rich applica-
tion environment, while operating on hardware with limited physical memory. The
planned Guardian architecture included kernel support for demand paging with (fully
trusted) kernel processes (virtual processors) moving page frames between disk and main
memory. The resulting system would have been relatively complex.

The Guardian veterans’ initial memory management design for SVS included support for
demand paging of virtual machines’ physical memory spaces. This choice was similar to
that of IBM’s VM/370. Peter Conklin, one of the original architects of VAX/VMS, par-
ticipated in the initial design study as a “guest.” When he saw the plan to include paging
in the SVS kernel, he pointed out that VAX/VMS (which would be running in each virtu-
al machine) implemented paging, that having two independent paging systems was likely
to result in poor performance, and that an SVS design that did away with paging would
be much simpler. He also observed that providing communication between VAX/VVMS
and VAX/SVS to optimize performance would result in an even more complicated kernel
design. Finally, he pointed out that physical memories were getting larger as hardware
costs dropped, and that it would be feasible to just give each virtual machine a static allo-
cation of physical memory.

The SVS design adopted Conklin’s recommendation, which was referred to internally as
“memory is cheap.” As a result, the VM Physical Memory Management layer was great-
ly simplified, and the VM Virtual Memory Management layer significantly simplified.
As Conklin predicted, physical memory sizes continued to increase and prices to decrease



during the life of the project, and the project team never regretted the decision to abandon
demand paging in the kernel.

Input-Output

From the earliest days of virtual machine monitors (IBM’s CP-67), I/O management has
presented challenging problems. 1/0 is a “sensitive” function on any VMM system, so
the VMM must be able to intercept and interpret each 1/0 operation. While IBM main-
frames implement discrete privileged 1/O instructions (that can be made to trap to the
VMM), on Digital Equipment computers (PDP-11’s and VAXes) 1/O is controlled by us-
ing ordinary (unprivileged) instructions to read and write specific physical addresses that
correspond to 1/O control registers rather than memory. Thus, the developer of a VMM
for a Digital computer is faced with the need to intercept every read or write to an 1/0
register location and to interpret the intended operation. The resulting code is both slow
and complex.

The initial design of SVS anticipated virtualizing 1/0 operations that VAX/VMS would
direct toward standard VAX devices. Karger sketched an adaptor that would map virtual
machines’ I/O operations and minimize software intervention. When Conklin saw that
design and considered the problem of I/O from a virtual machine, his reaction was “Don’t
do that — just create a special call from the virtual machine to the VMM that will request
an 1/0O operation and provide the necessary parameters. The VMM can interpret the re-
quest in one operation and it will be much more efficient.” In today’s jargon of virtual
machines, this would be referred to as “enlightening” the virtual machine’s operating sys-
tem to rely explicitly on the VMM for 1/0.

Since VAX/VMS was designed to be highly adaptable to new kinds of 1/0 devices,
Conklin’s suggestion was both feasible and easy to implement. The resulting 1/0 archi-
tecture was vastly simpler and performed better than an alternative that would have re-
quired interpretation of individual I/O register operations. When Ultrix (Digital’s version
of Unix) was eventually ported to SVS, the wisdom of this design choice was demon-
strated again — the entire port required only a few weeks’ effort by a small subset of the
Ultrix development team.

User Interface

As the VAX/SVS team made the transition from demonstrating that it was possible to
make VAX/VMS run in a prototype virtual machine monitor to building a usable Al sys-
tem, they realized that a large number of system administration operations would be re-
quired, and that the path from administrator to system state would need to be trusted. It
seemed likely that the resulting command parsers would be large and complex: command
parsing might require as much code as the rest of the security kernel even with a relative-
ly primitive user interface (the technology of the day was a command line rather than a
graphical user interface).

10



After some discussion, the team came up with the idea of parsing administrator com-
mands in an untrusted application running on a virtual machine, and having that applica-
tion pass the parsed commands (in a simple and standardized format) to the kernel. The
kernel would then display the command to the administrator for confirmation, and the
only administrator command the kernel would have to parse would be a “confirm” or
“cancel.” A “secure server attention key” and associated protocol enabled the adminis-
trator to be certain that he or she was interacting with the kernel rather than an untrusted
program spoofing the kernel.

The VAX/SVS team was aware that the system needed to be usable, so the actual user
interface included kernel parsing (no need for confirmation) of commands that would be
used frequently by ordinary users such as “connect me to another VM” and “logout.”
The system presented ordinary users with a very natural interface — as though they were
using a terminal concentrator and switching from a machine at one security level to one
at another.

Verification of Assurance

Evaluation at Class Al of the TCSEC was only completed by one or two systems, provid-
ing few success stories to emulate. The design of VAX/SVS was extremely simple, even
for its day. The team was inculcated with the importance of adhering to the Bell and
LaPadula model [10] and a layered system architecture, both seen as key to verification.
Layering played an important part in the required system specifications. The formal mod-
el required a descriptive top-level specification (DTLS), a complete natural language de-
scription of the system. The per layer design (and API) descriptions formed a substantial
part of the required DTLS.

Originally, the VAX/SVS team anticipated that the layered design would support formal
verification. The assumption, based on the concepts articulated in the PSOS research [6],
was that each layer would be verified to correctly implement a specification using code in
its own layer that invoked services provided by lower layers. Verification of each layer
would lead to verification of the entire system. Unfortunately, the verification technolo-
gy of the 1980s did not follow up on the promises of the 1970s, and the formal verifica-
tion was confined to analysis of the system’s external interfaces against the requirements
of the Bell and LaPadula model. This level of formal verification was typical for high
assurance systems of the era.

The VAX/SVS security kernel was designed and implemented with the goal of compre-
hensive verification in mind. Extensive testing was deployed for regression and various
use cases, The system was formally specified as part of the A1 assurance process using

InaJo. The VAX/SVS security kernel implementation consisted of approximately 48K

SLOC, which were written in PL/1, PASCAL, and MACRO-32 assembly language. As
there was over 11K SLOC of assembly code, evaluating assurance was a significant un-
dertaking. The recent formal assurance of the seL4 system [14] shows that the expense
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per line of code is still high for formal assurance (9,300 SLOC at a cost $10K per LOC).
The seL4 system is a microkernel rather than a VMM, so it provides less functionality.

The formal assurance process was further complicated by the need to evaluate new code
when a new device was added to the system. The availability of support for devices has
been a critical factor for the adoption of operating systems over the years, so this would
have been a major challenge for maintaining assurance of the VAX/SVS security kernel.
Now, the introduction of IOMMU hardware to commercial processors means that device
drivers and their inherent challenges (e.g., controlling DMA) can be moved to user-space
(even to unprivileged VMs). However, if a device is needed by trusted code, it will still
need to be in the trusted computing base.

The TCSEC required that an Al system limit the bandwidth of covert channels, so a sig-
nificant effort was undertaken for the VAX/SVS to eliminate all covert storage channels
and mitigate covert timing channels [3]. The simplicity of the VAX/SVS interface and
the strict attention paid to adhering to the Bell and LaPadula model resulted in a system
that was relatively free from classic storage channels. (Many of the resource allocation
mechanisms in VAX/SVS were either static or implemented by human administrators, a
set of choices that aided both simplicity and freedom from storage channels.) While stor-
age channels were only a limited problem, timing channels proved to be a source of sur-
prises, frustration, performance challenges, and project delays. The formal verification
work, led by consultant Richard Kemmerer of UCSB, applied the Shared Resource Ma-
trix method of identifying covert channels, and this work gave the team a rough sense of
what channels might be present. The project team collaborated with Robert Morris of
NSA to identify an approach to mitigating timing channels — referred to as “fuzzing
clocks” or “fuzzy time.” Implementing this approach required significant changes late in
the development cycle, and the changes degraded the system’s (already marginal) per-
formance. Worse, a year after the team published the “fuzzy time” approach, a research-
er published an approach to defeating it.

While the VAX/SVS team met the formal verification requirements for Class Al of the
TCSEC, the project team believed that actual assurance came from adherence to the lay-
ered design principle, thorough documentation, and careful coding. Designs were docu-
mented before they were implemented (unlike the practice at lower levels of the TCSEC
or Common Criteria). All the security kernel design decisions and code was reviewed at
all stages of the project, the code undergoing review before it was checked in. The cod-
ing languages for the system precluded buffer overruns, and the style guides adhered to
by the team constrained implementation to conservative and safe practices.

Cancellation

The VAX/SVS development project was intended to produce a commercially viable sys-

tem that could complete evaluation at Class Al of the TCSEC and be sold to customers in
sufficient quantity to recover its development costs. By 1989, the system was on track to
completing evaluation and sufficiently polished to enter field test with customers. The
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field test was reasonably successful: customers were able to use the system, and there
was even a rumor that one of the test customers had deployed VAX/SVS in a “multilevel
secure” operational configuration.

Despite this level of accomplishment, VAX/SVS was cancelled because the business case
for the system was not sufficient [15]. Even though a great deal of money had been spent
bringing the system to the point where customers could use it, sales projections were not
encouraging. Some customers were willing to buy some copies of the system, but neither
the number of customers nor the number of copies was sufficient to make a profitable
business case. United States export restrictions on high assurance products received
much of the blame for cancellation at the time, but the reality was that US and other cus-
tomers who were eligible to buy VAX/SVS were not all that interested. Had a decision
been made to release the system commercially, that decision would have implied a com-
mitment to maintain and enhance it over period of years. With inadequate sales, the sys-
tem would have been a continuous money-loser.

To understand the reasons why customers didn’t want to buy VAX/SVS, it is only neces-
sary to consider the time in which the system would have come to market. In the late
1980s, customers were beginning to demand personal computers or workstations, net-
working, and graphical user interfaces (GUI). VAX/SVS was designed as an isolated
time-sharing system that supported users at alphanumeric terminals. A “hack” allowed
networking of individual virtual machines through dedicated asynchronous terminal lines,
but the system itself was not networked.

Modifying VAX/SVS to support workstations, networks, or graphical user interfaces
would have been a significant development task. Workstation support would have been
the simplest task though it would have required development and manufacturing of a
VAX microprocessor with the SVS-specific virtualization features (which were not in-
cluded in the standard VAX architecture). And workstation support would not have been
viable without adding GUI support. The experience building and evaluating VAX/SVS
made it clear that adding networking and GUI support would have been significant re-
search projects — the team would have had to develop concepts, implement them, and
“sell” them to the evaluators. It seemed probable that the process would have taken long
enough so that by the time the features could be shipped, user expectations would have
moved beyond what VAX/SVS could provide. This, of course, was the trap that the deci-
sion to build a VMM was intended to avoid, but in the end it seemed unavoidable. We
leave it to the reader to judge whether this trap is a fundamental flaw of high assurance
systems.

Future Challenges

Should We Build Virtualization Kernels Today?
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VAX/SVS served two roles in a system: (1) a host security kernel and (2) virtualization
management. One question we should consider in hindsight is whether it is practical to
require both roles in a security kernel. The VAX/SVS design resulted in a code base of
less than 50K lines of code in total. Modern, fully-functional virtualization kernels are
much larger still. For example, the Xen hypervisor had about 300K lines of code in 2008.
Given the greater size and functionality of modern virtualization kernels and the current
cost and complexity of formal assurance, it would seem unlikely that a fully-assured se-
curity kernel with fully-functional virtualization could be built today.

Recent hardware advances for security and virtualization may significantly aid the task of
separating kernel and virtualization functionality. In adding virtualization support, hard-
ware architects ensure that all sensitive instructions are now privileged, removing the
need for 1/0 emulation. Also, many processors are now self-virtualizable. Finally, and
perhaps most importantly, IOMMUs enable DMA devices to be removed from the trusted
computing base securely, as mentioned above. With the broadly-available support for
trusted computing mechanisms, it is now possible to measure each software layer inde-
pendently, enabling remote parties to verify the system boot process consisting of multi-
ple layers.

Thus, a question is whether such advances make it practical to separate the kernel and
virtualization functionalities into two distinct software layers. In the 1990s, second-
generation microkernel designs, such as L4 (predecessor of seL4) and Exokernel, focused
explicitly on minimization of kernel code. In such kernels, physical resources were parti-
tioned among isolated domains that could communicate through fast IPC primitives. Re-
searchers found such systems to be effective for constructing optimized mechanisms for
hardware use, particularly for network devices. On the other hand, deploying general-
purpose systems on such kernels introduced additional performance overhead and devel-
opment complexity that did not seem to warrant the benefits, particularly because these
kernels were still prone to DMA attacks. However, hosted operating environments, such
as L4Linux, showed that the performance overhead of systems with a single physical re-
source manager was modest (< 10% in 1997). Further hardware advances have amelio-
rated the effect of these performance costs, removed vulnerability to DMA attacks, and
made it easier to layer software. As a result, it is still an open question when security
kernel and virtualization functionality should be combined into a single VMM security
kernel.

How Do We Obtain System-Wide Access Control?

VAX/SVS provides a rich access control model that is enforced by a reference validation
mechanism to implement the reference monitor concept within the security kernel. Mod-
ern systems are not designed with a rich access control model at inception, but instead
access control is incrementally added to systems as they mature (and adversaries show
developers where authorization is necessary). A question is whether it is practical to add
a reference validation mechanism at a later time in the system development lifecycle, yet
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still approach or achieve the reference monitor concept. The emergence of program
analysis for security may hold some opportunities for answering this question.

Once a proper reference validation mechanism is in place, a challenge is how to manage
the delegation of privilege from the security kernel up to VMs. In the VAX/SVS design,
efforts were taken to limit the trust in user-space code, but modern systems often have a
privileged VM, which is tantamount to a complete operating environment running with
privilege outside the VMM. While we have mechanisms to enforce security decisions in
privileged VMs, we do not know which software is capable and worthy of being entrust-
ed with those decisions. Further, this software is far too complex for formal assurance.
Finally, while reference validation mechanisms are being added to a variety of software
in VMMs, operating systems, middleware, and applications, these individual access con-
trol mechanisms are not yet integrated into a system-wide mechanism for managing privi-
lege.

How Do We Assure the Security of Systems?

Fundamental to the VAX/SVS development process was the task of formal assurance.
Unfortunately, the task of formal assurance is not much different than it was in the early
1990s. A great deal of manual effort is necessary to convert a system into a format suita-
ble for assurance. In practice, systems cannot be formally-assured unless they are built
with that in mind from the outset. The result is a slow, laborious process whose results
may be obsolete on delivery.

In developing secure systems, not all software is equal, however, and that may make a
difference. Gernot Heiser of the seL4 project [14] conjectured that much of the user-
space software would be efficient enough if it was developed in the language used for
formal analysis in the seL4 evaluation (Haskell) and then compiled into C. However, the
performance-critical software, such as the microkernel, would have to be hand-crafted
code. The implication is that formal assurance of the labor-intensive type may only be
necessary to a small subset of code that is performance-critical. The remaining code
could be developed using compilation tools that would check for security properties.
This optimistic view is missing at least two key limitations. First, someone still has to
articulate the security properties that must be achieved for the software and for the data
that it processes. Second, people tend to prefer programming in languages that are less
constrained, but this leads to more security problems. Researchers have long advocated
using more structured programming language to improve the security of code or at least
enable automated verification without success. Some recent research focuses on making
low-level languages amenable to various analyses for security, such as CIL and LLVM.
Hopefully, such techniques will be further extended to improve our ability to limit the
amount of code that requires manual formal verification.

Conclusions and Summary
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We find several lessons from VAX/SVS worth emphasizing and sharing with the broader
community today. The Reference Monitor concept from the Anderson report provides
useful guiding architectural principles for high assurance systems. Verifiable and tam-
perproof access control was and remains challenging, in part because of the diversity of
operational requirements. Layering provides many critical benefits that seem to be other-
wise lost, and raises critical issues as well. Minimization requires whole system thinking,
as well as accurate powers of prognostication. Verification of assurance remains a com-
plex (ironically) and multi-faceted challenge. And business realities interact with all of it.
The authors believe there are many useful lessons from the VAX/SVS work. We hope
and expect they can inform future successful efforts.
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