CSE543 - Introduction to Computer and Network Security

Module: Security Research Methods

Professor Trent Jaeger
Fall 2010
Reading papers …

• What is the purpose of reading papers?
• How do you read papers?
Understanding what you read

- Things you should be getting out of a paper
 - What is the central idea proposed/explored in the paper?
 - Abstract
 - Introduction
 - Conclusions
 - These are the best areas to find an overview of the contribution
 - How does this work fit into others in the area?
 - Related work - often a separate section, sometimes not, every paper should detail the relevant literature. Papers that do not do this or do a superficial job are almost sure to be bad ones.
 - An informed reader should be able to read the related work and understand the basic approaches in the area, and how they differ from the present work.
• What scientific devices are the authors using to communicate their point?
 ▶ Methodology - this is how they evaluate their solution.
 • Theoretical papers typically validate a model using mathematical arguments (e.g., proofs)
 • Experimental papers evaluate results based on test apparatus (e.g., measurements, data mining, synthetic workload simulation, trace-based simulation).
 ▶ Empirical research evaluates by measurement.
 • Some papers have no evaluation at all, but argue the merits of the solution in prose (e.g., paper design papers)
Understanding what you read (cont.)

• What do the authors claim?
 ‣ **Results** - statement of new scientific discovery.
 • Typically some abbreviated form of the results will be present in the abstract, introduction, and/or conclusions.
 • **Note:** just because a result was accepted into a conference or journal does necessarily not mean that it is true. Always be circumspect.

• What should you remember about this paper?
 ‣ **Take away** - what general lesson or fact should you take away from the paper.
 ‣ Note that really good papers will have take-aways that are more general than the paper topic.
Summarize Thompson Article

- Contribution
- Motivation
- Related work
- Methodology
- Results
- Take away
A Sample Summary

- **Contribution**: Ken Thompson shows how hard it is to trust the security of software in this paper. He describes an approach whereby he can embed a Trojan horse in a compiler that can insert malicious code on a trigger (e.g., recognizing a login program).

- **Motivation**: People need to recognize the security limitations of programming.

- **Related Work**: This approach is an example of a Trojan horse program. A Trojan horse is a program that serves a legitimate purpose on the surface, but includes malicious code that will be executed with it. Examples include the Sony/BMG rootkit: the program provided music legitimately, but also installed spyware.

- **Methodology**: The approach works by generating a malicious binary that is used to compile compilers. Since the compiler code looks OK and the malice is in the binary compiler compiler, it is difficult to detect.

- **Results**: The system identifies construction of login programs and miscompiles the command to accept a particular password known to the attacker.

- **Take away**: What is the transcendent truth????? (see next slide)
Turtles all the way down ...

- **Take away**: Thompson states the “obvious” moral that “you cannot trust code that you did not totally create yourself.” We all depend on code, but constructing a basis for trusting it is very hard, even today.

- **... or** “trust in security is an infinite regression ...”

“A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?" "You're very clever, young man, very clever", said the old lady. "But it's turtles all the way down!"

Reading a paper

• Everyone has a different way of reading a paper.
• Here are some guidelines I use:
 ‣ Always have a copy to mark-up. Your margin notes will serve as invaluable sign-posts when you come back to the paper (e.g., “here is the experimental setup” or “main result described here”)
 ‣ After reading, write a summary of the paper containing answers to the questions in the preceding slides. If you can’t answer (at least at a high level) these questions without referring to the paper, it may be worth scanning again.

• Over the semester, try different strategies for reading papers (e.g., Honeyman approach) and see which one is the most effective for you.
Reading a systems security paper

- What is the security model?
 - Who are the participants and adversaries
 - What are the assumptions of trust (trust model)
 - What are the relevant risks/threats

- What are the constraints?
 - What are the practical limitations of the environment
 - To what degree are the participants available

- What is the solution?
 - How are the threats reasonably addressed
 - How do they evaluate the solution

- What is the take away?
 - key idea/design, e.g., generalization (not solely engineering)

- **Hint**: I will ask these questions when evaluating course project.
Course Projects

• The course project requires the students execute some limited research in security.
 ‣ Demonstrate applied knowledge
 ‣ Don’t try to learn some new non-security field
 ‣ Be realistic about what is possible in a one semester.
 ‣ However, the work should reflect real thought and effort.

• The grade will be based on: novelty, depth, correctness, clarity of presentation, and effort.

• Structure
 ‣ 3 students per group
Deliverables

• The chief product of the project will be a 15 page conference style paper. There will be several milestones:
 ‣ Project Team (10/28/10)
 ‣ Threat Model Project (10/28/10)
 ‣ Abstract, Background and Related Work (11/18/10)
 ‣ Project Status Slides (12/2/10)
 ‣ Final Project Write-up (12/17/10)

• This is a very important factor in your grade (30%) so you better take it seriously
 ‣ E.g., an exceptionally good (or poor) project may help (kill) grade
Project Choice

• Due on Oct 28, 5:00pm
• Order list of projects
 ‣ Choose three projects in order of interest
• Choose up to 3 collaborators
 ‣ Cover relevant skills
• I will choose your project and group
 ‣ Hopefully, I can resolve the constraints implied
 ‣ One group per project
 ‣ A functional group
Possible Choices

• Project Goal is to build a comprehensive threat model for a cloud instance (IaaS)
 ‣ For the Eucalyptus cloud (we have one running)
 ‣ Open-source system, compatible with the Amazon EC2 cloud

• Choices of instances
 ‣ OS Distribution
 ‣ Service

• Project Tasks
 ‣ Determine the threat model relative to the main service process
 ‣ Automate threat model development in one way
 ‣ Leverage research to address threats
Project Choices

• OS Distro
 ‣ Ubuntu or Fedora

• Services
 ‣ PHP Wiki
 ‣ Python Wiki
 ‣ Web Forum
 ‣ Social Network
 ‣ Distributed Compilation
 ‣ Hadoop (MapReduce)
 ‣ Other?
Threat Model

• What is a Threat Model?
Threat Model

- What is a Threat Model?
- Accessibility of Target to Attacker
- Operations that Attacker can perform on the Target
Basis for Threat Model

• Common Weakness Enumeration Document
 ‣ http://cse.mitre.org/data/published/cwe_v1.10.pdf
• Enumerations hundreds of threats
 ‣ But arranged hierarchically
 ‣ Relevant classes include various environment, types of input validation (many types), programming errors
 • Make an argument for how much of CWE hierarchy you have covered and the impact
• We will discuss this further over the rest of the semester
Why write a paper?

• There are many reasons to write a paper:
 ‣ Articulate a new idea, thought, or observation ...
 ‣ Document your research ...
 ‣ Talk about new (observed) phenomenon
 ‣ Advance your career ...
 ‣ Because you have to ...

• *Reality*: publication is the coin of the realm in science, failure to do this successfully will lead to failure. You have to be effective at this to be a good (a) graduate student, (b) faculty member, or [sometimes] (c) researcher in professional research laboratory (IBM/AT&T/MS)
Where to publish?

• Venues for publication:
 ‣ Tech report
 ‣ Workshop
 ‣ Conference
 ‣ Journal

• Often your work will work through these from preliminary to archival versions of the work, sometimes branching or joining.

• Book: less frequent, more work.
Publication Tiers

• Not all publication venues are valued the same. Publication “tiers” tell the story

• 1st tier - IEEE S&P, USENIX Sec, CCS, TISSEC, JCS
 ‣ 1.5 NDSS

• 2nd tier - ACSAC, ACNS, ESORICS, CSF, RAID, TOIT

• 3rd tier - SecureComm, ICISS

• 4th tier - HICS
 ‣ SClgen (WMSCI 2005)
The editor-in-chief (EIC) receives the papers as they are submitted.

The papers are assigned to associate editors for handling.

Anonymous reviewers rate the paper:
- Accept without changes
- Minor revision
- Major revision
- Reject
The **PC Chair** is the person who marshals the reviewing and decisions of a conference. This is different than the general chair.

PC members review, rate and discuss, the paper, then vote on which ones are accepted.

The **acceptance rate** is the ratio of accepted to submitted papers.
Paper evaluation

• A paper is evaluated on
 ‣ Novelty
 ‣ Correctness
 ‣ Impact
 ‣ Presentation
 ‣ Relevance
 ‣ “hotness”
Parts of a paper

- Parts of paper (vast generalization)

1. Abstract
2. Introduction
3. Related Work/Background
4. Solution/Problem
5. Evaluation/Analysis/Experiment
6. Discussion (often, but not always)
7. Conclusions
Abstract

• One sentence each for:
 ‣ Area
 • Topic of work
 ‣ Problem
 • What’s the issue?
 ‣ Solution
 • How do you propose to address the problem?
 ‣ Methodology
 • What’s the experiment?
 ‣ Results
 • What did you find?
 ‣ Take Away: Lesson
Introduction

• One paragraph each on:
 • Area
 ‣ More elaborate
 • Problem
 ‣ Scenario
• Why is problem not solved
 ‣ Brief of related work or the challenge
• Proposed insight (“In this paper, …”)
 ‣ What is the experiment?
• Contributions -- What will the reader learn?
• Boilerplate outline (?)
Related work/Background

• This is a statement of the work that led to this one.
 ‣ who this work relies on
 ‣ who has done work in the area
 ‣ areas that inspired this work (not just technology)

• There are several reasons for related work section:
 ‣ Motivate the current work
 ‣ Differentiate from past work
 ‣ Establish “bona fides”

• Background
 ‣ Outline the Problem
 • May use an example scenario
 ‣ Material Related to the Solution
 • Why hasn’t it been solved
Background and Experiment

• Experiment
 ‣ Means of showing truth
 ‣ Big Insight -- Hypothesis -- Claim
 • Show why it is interesting
 ‣ Expected Results
 • Informal proof/argument that is true

• Experiment types
 ‣ *Empirical* - measure some aspect of the solution
 ‣ *Analytical* - prove something about solution
 ‣ *Observational* - show something about solution
Implementation and Results

• Implementation: Experimental Platform
 ‣ Exact specification of platform
 ‣ Design may have more than implementation -- what did you implement?
 ‣ How are key design features/mechanisms implemented?

• Results
 ‣ Summarize -- what do the results mean?
 ‣ Specific experiments
 • We did X, saw Y
 ‣ What do the experiments prove
 ‣ What other experiments would you want to do based on these results?
Conclusion

• Like the abstract in past tense
• Problem
 ‣ What was the problem?
• Solution
 ‣ What was the insight and why was it expected to work?
• Method and Results
 ‣ What did you find?
• Take away: Lesson
• Future work
Hint

• Intro: tell them what you are going to tell them
• Body: tell them
• Conclusion: tell them what you told them.
Writing a paper

• Break into groups of about 6. You are going to create an outline for a paper to turn in.
 ‣ Read the paper I sent
 ‣ Each person take a section of the paper to outline.
 ‣ Coordinate the results into a single paper (online).
 ‣ Do the 2 minute abstract.
 ‣ ... email to mcdaniel@cse.psu.edu.