CSE543 - Introduction to Computer and Network Security

Module: Public Key Infrastructure

Professor Trent Jaeger
Fall 2010
Meeting Someone New

• Anywhere in the Internet
What is a certificate?

• A certificate …
 ‣ … makes an association between a user identity/job/attribute and a private key
 ‣ … contains public key information \(\{e, n\} \)
 ‣ … has a validity period
 ‣ … is signed by some certificate authority (CA)
 ‣ … identity may have been vetted by a registration authority (RA)

• Issued by CA for some purpose
 ‣ Verisign is in the business of issuing certificates
 ‣ People trust Verisign to vet identity
Why do I trust the certificate?

- A collections of “root” CA certificates
 - … baked into your browser
 - … vetted by the browser manufacturer
 - … supposedly closely guarded (yeah, right)
- Root certificates used to validate certificate
 - Vouches for certificate’s authenticity

CA \(\text{(signs)}\) Certificate
Signature
Public Key Infrastructure

• System to “securely distribute public keys (certificates)”
 ‣ Q: Why is that hard?

• Terminology:
 ‣ Alice signs a certificate for Bob’s name and key
 • Alice is issuer, and Bob is subject
 ‣ Alice wants to find a path to Bob’s key
 • Alice is verifier, and Bob is target
 ‣ Anything that has a public key is a principal
 ‣ Anything trusted to sign certificates is a trust anchor
 • Its certificate is a root certificate
What is a PKI?

- Rooted tree of CAs
- Cascading issuance
 - Any CA can issue cert
 - CAs issue certs for children
Certificate Validation

Certificate
Signature,

Cert11a Cert11b Cert11c... CA11 CA12 CA1n CA21 CA22... CA1 CA2 CA3...
PKI and Revocation

• Certificate may be revoked before expiration
 ‣ Lost private key
 ‣ Compromised
 ‣ Owner no longer authorized

• Revocation is hard …
 ‣ The “anti-matter” problem
 ‣ Verifiers need to check revocation state
 • Loses the advantage of off-line verification
 ‣ Revocation state must be authenticated
PKI (Circa 2009)

Verisign

Web.com

Google.com

Amazon.com

... x.com
10 Risks of PKI

• This is an overview of one of many perspectives of PKI technologies
 ‣ PKI was, like many security technologies, claimed to be a panacea
 ‣ It was intended to solve a very hard problem: build trust on a global level
 ‣ Running a CA -- “license to print money”

• Basic premise:
 ‣ Assertion #1 - e-commerce does not need PKI
 ‣ Assertion #2 - PKI needs e-commerce

• Really talking about a full PKI (everyone has certs.)
Risk 1 - Who do we trust, and for what?

• Argument: CA is not inherently trustworthy
 ‣ Why do/should you trust a CA?
 ‣ In reality, they defer all legal liability for running a bad CA
 ‣ Risk in the hands of the certificate holder

• Counter-Argument: Incentives
 ‣ Any CA caught misbehaving is going to be out of business tomorrow
 ‣ This scenario is much worse than getting sued
 ‣ Risk held by everybody, which is what you want
Risk 2 - Who is using my key?

• Argument: key is basically insecure
 ‣ Your key is vulnerable, deal with it
 ‣ In some places, you are being held responsible after a compromise

• Counter-Argument: this is the price of technology
 ‣ You have to accept some responsibility in order to get benefit
 ‣ Will encourage people to use only safe technology

• Q: what would happen if the same law were applied to VISA?
Aside: TEMPEST

- Transient Electromagnetic Pulse Surveillance Technology
 - Monitor EMF emanations to reconstruct signal
 - For example, a video monitor normally exist at around 55-245 MHz, and can be picked up as far as one kilometer away.
 - ... or by a guy in a van across the street, e.g., steal private key.
- Generally, this is the domain of spy/national security issues
- Much classified work on signal eavesdropping and prevention
Risk 3 - How secure is the verifier?

• Argument: the computer that verifies your credential is fundamentally vulnerable
 ‣ Everything is based on the legitimacy of the verifier root public key (integrity of certificate files)
 ‣ Browsers transparently use certificates

• Counter-Argument: this is the price of technology
 ‣ You have to accept some risk in order to get benefit
 ‣ Will encourage people to use only safe technology

• Q: What’s in your browser?
Risk 4 - Which John Robinson is he?

- **Argument:** identity in PKI is really too loosely defined
 - No standards for getting credential
 - No publicly known unique identifiers for people
 - So, how do you tell people apart
 - Think about Microsoft certificate

- **Counter-Argument:** due diligence
 - Only use certificates in well known circumstances
 - When in doubt, use other channels to help

- **Q:** Is this true of other valued items (checks?)
Risk 5 - Is the CA an authority?

• Argument: there are things in certificates that claim authenticity and authorization of which they have no dominion
 ‣ “rights” (such as the right to perform SSL) - this confuses authorization authority with authentication authority
 ‣ DNS, attributes -- the CA is not the arbiter of these things

• Counter-Argument: this is OK, because it is part of the implicit charge we give our CA -- we implicitly accept the CA as authority in several domains
Risks 6 and 7

6: Is the user part of the design?
 - Argument: too many things hidden in use, user has no ability to affect or see what is going on
 - Ex.: Hosted website has cert. of host(er), not page
 - Counter-Argument: too sophisticated for user to understand

7: Was it one CA or CA+RA?
 - Argument: separation of registration from issuance allows forgery
 - e.g., RA handles vetting, CA makes certificates, so, you better have good binding between these entities or bad things can happen
 - Counter-Argument: this is an artifact of organization, only a problem when CA is bad (you are doomed anyway)
Risks 8 and 9

• 8 : How was the user authenticated?
 ‣ Argument: CAs do not have good information to work with, so real identification is poor (as VISA)
 ‣ Counter-Argument: It has worked well in the physical work, why not here?

• 9 : How secure are the certificate practices?
 ‣ Argument: people don’t use them correctly, and don’t know the implications of what they do use
 • Point in fact: revocation and expiration are largely ignored in real system deployments
 ‣ Counter-Argument: most are pretty good now, probably won’t burn us anytime soon
Risk 9 - How secure cert. practices?

• Argument: certificates have to be used properly to be secure
 ‣ Everything is based on the legitimacy of the verifier root public key, protection of its key
 ‣ Lifetime & revocation have to be done

• Counter-Argument: this is the price of technology
 ‣ You have to accept some risk in order to get benefit
 ‣ Will encourage people to use only safe technology
Risk 10 - Why are we using PKI?

• Argument: We are trying to solve a painful problem: authenticating users.
 ‣ However, certificates don’t really solve the problem, just give you another tool to implement it
 ‣ Hence, it is not a panacea
 ‣ No delivered on it promises

• Counter-argument?
Burning question ...

• Can we solve the PKI problem with better crypto?
Identity Based Cryptography

• What if your email address was your public key?
 ‣ E.g., \(E(\text{mcdaniel@gmail.com}, \text{data}) = \text{ciphertext?}\)
 ‣ E.g., \(\text{Verify(signature, mcdaniel@gmail.com)}\)

• 1984 - Shamir asked for such a system, but it (largely) remained out of reach until Boneh/Franklin 2001
 ‣ The public key is any arbitrary key
 ‣ Based on “Weil pairings” -- a new cryptographic device with lots and lots of uses (IBE among them)

• Advances from theory community, few systems
IBE System

• Functionally, you receive your privacy key from a trusted third party who is responsible for generating all keys in the system.

• Thereafter you (and others) can use the system as if you generated the private key yourself.

• Advantages
 ‣ No public key distribution
 ‣ No name binding problems (?)
 ‣ Key space flexibility
 ‣ Others?

1) user@gmail.com

2) key(user@gmail.com)

3) E(user@gmail.com,data)
Basic IBE Construction

- **Setup** (generate by TTP)

 $\text{Global Parameters} = G$

 $\text{Master Key} = K_G$

- **Extract** (by TTP for user, sting “str”)

 $\text{Extract}(G, K_G, \text{Str}) = K^-_{\text{Str}}$

- **Encrypt** (by user)

 $E(G, \text{Str}, \text{data}) = \text{ciphertext}$

- **Decrypt** (by user)

 $D(G, K^-_{\text{Str}}, \text{ciphertext}) = \text{data}$
IBE Reality

• Many thought that IBE would lead to a revolution in public key system (solve PKI problems), it didn’t.

• Why - IBE moves the problems around
 ‣ Is there any TTP that everyone trusts?
 ‣ String ambiguity is still a problem? (John Robinson?)
 ‣ Revocation is still a problem (potentially worse)
 ‣ ... (see 10 reasons above)

• Fundamentally
 ‣ IBE really does not solve the CA problem, as the TTP is fulfilling that role.
 ‣ Having strings instead of obscure numbers does not get at the problems with PKI ...
 ‣ Existence of certificates is not really the problem ...