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Lecture 25:
Structure from Motion
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Given a set of flow fields or displacement vectors from
a moving camera over time, determine:

e the sequence of camera poses

e the 3D structure of the scene

Scene structure
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Match Move

Track a set of feature points through a movie sequence

Deduce where the cameras are and the 3D
locations of the points that were tracked

Render synthetic objects with respect to the
deduced 3D geometry of the scene / cameras
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“Harts’ War” and “Graham Kimpton” examples from www.realviz.com
MatchMover Professional gallery. Copyrighted.
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Tomasi and Kanade, “Shape and Motion from Image
Streams under Orthographyriternational Journal
of Computer Vision (IJCV)ol 9, pp.137-154, 1992.

Goal: combine point correspondence information from
multiple points over multiple frames to solve for scene
structure and camera motion (structure from motion)

Approach: numerically stable approach based on using
SVD to “factor” matrix of observed point positions.

Historical significance: until that time, most SFM work
dealt with minimal configurations, and noise-free data.
Factorization was one of the first “practical SFM algorithms”
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~Recall : World to Camera Transform
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*Non-linear equations
*Any point on the ray OP has image p !!
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Perspective Projection : parallel lines appear to meet
at a vanishing point; farther objects seem smaller

O.Camps, PSU



Robert Collins

cseeremsGimplification: Weak Perspective

Weak perspective = Parallel projection (parallel
lines remain parallel) + Scaling to simulate change
In size due to object distance.
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cseeeremsGimpler: Orthographic Projection

X X

y Y

Pure parallel projection. Highly simplified case
where we even ignore the scaling due to distance.
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Perspective Matrix Equation

(Camera Coordinates)

Using homogeneous coordinates:
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" Weak Perspective Approximation

f Using homogeneous coordinates:
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Let's Consider Orthographic

Using homogeneous coordinates:

a.X (0)
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csease. Pemn saq— ymbine with External Params

)
17 Mo M3
51 oo I3

31 I35 I33

r

17 12 I13

\r21 20 I3

000 1,

\

\

J

oo O O BB

o O O BB

o O +— O

o O +— O

o rr O O

o r O O

o 00

o 0 0
HN%‘<LE><L§

Y

— N%*<Ls X

\

\




Robert Collins

csease. Pemn saq— ymbine with External Params
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e rm@rthographic: Algebraic Equation
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csreerensfultiple Points, Multiple Frames
Notation (attack of the killer subscripts)

N points

P, P, ... P ... P

X =iT(P-T)

y =j"(P-T)

10y e N X = iT(P-T))
Jida e i oo IE

Vi = Ji' (B-T;)
w T,T,..T;..T¢

frames

Eq 8.31-8.32
T&V book
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Xj = iiT(Pj'Ti) N points
. P, P,...P, ... P
yi =15i' (B-T) o2 J \

(We want to recover these)

Note that absolute position of the set of points is
something that cannot be uniquely recovered, so...

First Trick : set the origin of the world coordinate
system to be the center of pass of the N points!

1 N
N =1
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. Centroid at O:

X; = 1" (P-T;)
| 1O

Vi =1i" (P -T;) QZ:lPZ-:O

71—
Implication:
1 u 7 1L . 1N g T
Tpy=—) 44 (P-Ty)==> 4 P—— ) 4T3 =0—4 Ty
N =1 N =1 N ;=1

Note: this Is the center of mass of X coordinates Iin frame t
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_ 1 2

Ty =— > it (P, —T}) = —il Ty
nz=1

_ 13 5

yti:gzjt(Pi_Tt)—_JtTt
1=1

Second Trick subtract off the center of mass of the
2D points in each frame. (Centering)

Xij:iiT(Pj-Ti) Ty = Tj — CCm—ZtP
i = Ji' (B-T;) j i = i — Gei = Ji P,
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What have we accomplished so far?

1) Removed unknown camera locations from equations.

2) More importantly, we can now write everything
As a big matrix equation...
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Form a matrix of centered

Image points. SEXN
[~ = = ~
/{ X11 X912 X913 0 XN
All N points s
In one frame Xe1 Xpo Xego wvn Xen

\{ S}ll 912 )713 ---3’1N

\yFly’FzY’Fs "'yFNJ
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Form a matrix of centered
Image points. SEXN

£ )

X11|X12 X913 -+ XN

Tracking one - |~ =
point through Xp1 Xr2 Xe3 -+ %N

Il F fram ~ = =
& ames Y11|Y12 Y13 -+ Yin

\ES}FZS}FS "'yFNJ
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s getorization Approach | &y =a; -z =i B,

matrix of centered image points: | Jii=¥ — ¥ it = Ji b

2FXN 2FX3
(s 5 3 ~ .
X11 X12 %13 -+ KN A I
; : 3XN

Xe1 V\J XN

Y11 Y12 Y13 -+ YiN 1!
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2F X N

W

Centered
measurement
matrix

Factorization Approach

2Fx3 3XxN
“Motion” Structure
(3D scene
(camera oints)
rotation) P

| =4
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2F X N 2Fx3 3XxN
W =M S

Rank Theorem:

The 2FxN centered observation matrix has
at most rank 3.

Proof:
Trivial, using the properties:
e rank of mxn matrix is at most min(m,n)
e rank of A*B is at most min(rank(A),rank(B))
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What is rank of a matrix, anyways?

Number of columns (rows) that are linearly independent.

If matrix A Is treated as a linear map, it is the_intrinsic
dimension of the space that is mapped into.

. . MxN matrix _ _
M-dimensional N-dimensional
- space A space
[N e
A ® °
- This matrix would o

have rank 1
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csease. pemsate [ storization Rank Theorem

Importance of rank theorem:

*Shows that video data is highly redundant

*Precisely quantifies the redundancy

eSuggests an algorithm for solving SFM
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Form SVD of measurement matrix W

2FXN 2Fx2F  2FxN NXN
W = U /D Y

Diagonal matrix with eigenvalues
sorted in decreasing order:
Ay >= Oy >= U3z >= ...
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Form SVD of measurement matrix W

2FXN 2Fx2F  2FxN NXN
W = U D V

Another useful rank property:

Rank of a matrix is equal to the number of
nonzero eigenvalues.

j> d,,, d,,, 35 are only nonzero eigenvalues (the rest are O
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2FxN 2Fx2F 2FxN NXN

¥
>*

Eigenvalues in
decreasing order
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2FxN 2FXx2F 2FxN NXN
CE
— * 1 |*
N\
Rank theorem says: These should be zerp

These 3 are nonzerb

In practice, due to noise, there may be more than
3 nonzero eigenvalues, but rank theorem tells us
to ignore all but the largest three.
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2FXN

N

W=UDV"

Factorization Approach

2FX2F

2Fx3

*

2FXN

I 3x3

[]

NXN
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Observed image points

W=UDVT
W — U’ D’1/2 D’1/2 V’T

2FxN 2Fx3 3XN
/T
W =M S

Camera Scene
motion structure
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W = (U’ D’1/2)(D’1/2 \’ T)
2FXN 2Fx3  3xN

W=MS

Problems:
1) This is not a unique decomposition.

eg: MQ)(Q@'S) = MQQ'S=MS
2) 1", |7 pairs (rows of M) are not necessarily orthogonal
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cssse pemsiae Golying the Annoying Details

Solution to both problems:

Solve for Q such that appropriate rows of M satisfy

THOT3

- =1 .
leQQle - unit vectors
i@ )i =1

J

E;;FQQTZ; — (0  orthogonal

3N equations in 9 unknowns

But these are nonlinear equations
linearize and iterate

(see Exercise 8.8 in book for Newton’s method)

(alternative approach is to use Cholesky decomposition — outside our scope)
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Assumptions
- orthographic camera
- N non-coplanar points tracking in F>=3 frames

Form the centered measurement matrix W=[X; Y]
- where X; = x; —mXx
- where y; = y; —my
- mx; and my, are mean of points in frame |
- ] ranges over set of points

Rank theorem: The centered measurement matrix
has a rank of at most 3
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1) Form the centered measurement matrix W from N points
tracked over F frames.
2) Compute SVDof W=UDV
- Uis 2Fx2F
- Dis 2FxN
- VTis NxN
3) Take largest 3 eigenvalues, and form
- D’ = 3x3 diagonal matrix of largest eigenvalues
- U’ = 2Fx3 matrix of corresponding column vectors from U
- V' T = 3xN matrix of corresponding row vectors from
4) Define
M=UD Y2 and S=D¥2Vv'T
5) Solve for Q that makes appropriate rows of M orthogonal
6) Final solution is
M*=MQ and S*=Q'S
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QuickTime™ and a
Cinepak decompressor
are needed to see this picture.
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