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Abstract—In this paper, we argue the need for effective resource management mechanisms for sharing resources in commodity

clusters. To address this issue, we present the design of Sharc—a system that enables resource sharing among applications in such

clusters. Sharc depends on single node resource management mechanisms such as reservations or shares, and extends the benefits

of such mechanisms to clustered environments. We present techniques for managing two important resources—CPU and network

interface bandwidth—on a cluster-wide basis. Our techniques allow Sharc to 1) support reservation of CPU and network interface

bandwidth for distributed applications, 2) dynamically allocate resources based on past usage, and 3) provide performance isolation to

applications. Our experimental evaluation has shown that Sharc can scale to 256 node clusters running 100,000 applications. These

results demonstrate that Sharc can be an effective approach for sharing resources among competing applications in moderate size

clusters.

Index Terms—Shared clusters, dedicated clusters, Sharc, capsule, nucleus, control plane, CPU and network bandwidth, Linux,

hosting platforms.
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1 INTRODUCTION

1.1 Motivation

DUEto the rapid advances in computing and networking
technologies and falling hardware prices, server

clusters built using commodity hardware have become an
attractive alternative to the traditional large multiprocessor
servers. Commodity clusters are being increasingly used in
a variety of environments such as third-party hosting
platforms and as workgroup servers. For instance, hosting
platforms are using commodity clusters to provide compu-
tational resources to third-party applications—application
owners pay for resources on the platform and the platform
provider in turn guarantees resource availability to applica-
tions [25]. Workgroups (e.g., a research group in a
university department) are using commodity clusters as
compute servers to run scientific applications, large-scale
simulations, and batch jobs such as application builds.

In this paper, we focus on the design, implementation,
and evaluation of resource management mechanisms in a
shared cluster—a commodity cluster where the number of
applications is significantly larger than the number of
nodes, necessitating resource sharing among applications.
Shared clusters are different from dedicated clusters, where a
single application runs on a cluster of nodes (e.g., clustered
mail servers [26], or each application runs on a dedicated
node in the cluster (e.g., dedicated hosting platforms such
as those used by application service providers). Due to
economic reasons of space, power, cooling, and cost, shared
clusters are more attractive for many application environ-
ments than dedicated clusters. Whereas dedicated clusters
are widely used for many niche applications that warrant

their additional cost, the widespread deployment and use
of shared clusters has been hampered by the lack of
effective mechanisms to share cluster resources among
applications.

1.2 Research Contributions of this Paper

In this paper, we present Sharc: a system for managing
resources in shared clusters.1 Sharc extends the benefits of
single node resource management mechanisms to clustered
environments.

The primary advantage of Sharc is its simplicity. Sharc
typically requires no changes to the operating system—so
long as the operating supports resource management
mechanisms such as reservations or shares, Sharc can be
built on top of commodity hardware and commodity
operating systems. Sharc is not a cluster middleware;
rather, it operates in conjunction with the operating system
to facilitate resource allocation on a cluster-wide basis.
Applications continue to interact with the operating system
and with one another using standard OS interfaces and
libraries, while benefiting from the resource allocation
features provided by Sharc. Sharc supports resource
reservation both within a node and across nodes; the latter
functionality enables aggregate reservations for distributed
applications that span multiple nodes of the cluster (e.g.,
replicated Web servers). The resource management me-
chanisms employed by Sharc provide performance isolation
to applications and, when desirable, allow distributed
applications to dynamically share resources among re-
source principals based on their instantaneous needs.
Finally, Sharc provides high availability of cluster resources
by detecting and recovering from many types of failures.

In this paper, we discuss the design requirements for
resource management mechanisms in shared clusters and
present techniques for managing two important cluster
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resources, namely, CPU and network interface bandwidth.
Wediscuss the implementation of our techniques on a cluster
of Linux PCs and demonstrate its efficacy using an experi-
mental evaluation.Our results show that Sharc can1) provide
predictable allocation of CPU and network interface band-
width, 2) isolate applications fromone another, and 3) handle
a variety of failure scenarios. A key advantage of our
approach is its efficiency—unlike previous approaches [2]
that have polynomial time complexity, our techniques have
complexity that is linear in the number of applications in the
cluster. Our experiments show that this efficiency allows
Sharc to easily scale to moderate size-clusters with 256 nodes
running 100,000 applications.

The rest of this paper is structured as follows: Section 2
lists the design requirements for resource management
mechanisms in shared clusters. Section 3 presents an
overview of the Sharc architecture, while Section 4 dis-
cusses the mechanisms and policies employed by Sharc.
Section 5 describes our prototype implementation, while
Section 6 presents our experimental results. We present
related work in Section 7. Finally, Section 8 presents our
conclusions.

2 RESOURCE MANAGEMENT IN SHARED CLUSTERS:
REQUIREMENTS

Consider a shared cluster built using commodity hardware
and software. Applications running on such a cluster could
be centralized or distributed and could span multiple nodes
in the cluster. We refer to that component of an application
that runs on an individual node as a capsule. Each
application has at least one capsule and more if the
application is distributed. The component of the cluster
that manages resources (and capsules) on each individual
node is referred to as the nucleus. The component of the
cluster that coordinates various nuclei and manages
resources on a cluster-wide basis is referred to as the control
plane. Together, the control plane and the nuclei enable the
cluster to share resources among multiple applications. In
such a scenario, the control plane and the nuclei should
address the following requirements.

2.1 Application Heterogeneity

Applications running on a shared cluster will have diverse
performance requirements. To illustrate, a third-party
hosting platform can be expected to run a mix of
applications such as game servers (e.g., Quake), vanilla
Web servers, streaming media servers, e-commerce, and
peer-to-peer applications. Similarly, shared clusters in
workgroup environments will run a mix of scientific
applications, simulations, and batch jobs. In addition to
heterogeneity across applications, there could be hetero-
geneity within each application. For instance, an e-com-
merce application might consist of capsules to service HTTP
requests, to handle electronic payments, and to manage
product catalogs. Each such capsule imposes a different
performance requirement. Consequently, the resource
management mechanisms in a shared cluster will need to
handle the diverse performance requirements of capsules
within and across applications.

2.2 Resource Reservation

Since the number of applications exceeds the number of
nodes in a shared cluster, applications in this environment
compete for resources. In such a scenario, soft real-time
applications such as streaming media servers need to be
guaranteed a certain level of service in order to meet
timeliness requirements of streaming media. Resource
guarantees may be necessary even for non-real-time
applications, especially in environments where applications
owners are paying for resources. Consequently, a shared
cluster should provide the ability to reserve resources for
each application and enforce these allocations on a
sufficiently fine timescale.

Resources could be reserved either based on the
aggregate needs of the application (e.g., for a replicated
Web server where the total throughput is of greater concern
than the throughput of any individual replica) or based on
the needs of individual capsules (e.g., an e-commerce
application consisting of capsules performing different
tasks and having diverse requirements). Finally, the ability
of a capsule to trade resources with other peer capsules is
also important. For instance, application capsules that are
not utilizing their allocations should be able to temporarily
lend resources, such as CPU cycles, to other needy capsules
of that application. Since resource trading is not suitable for
all applications, the cluster should allow applications to
refrain from trading resources when undesirable.

2.3 Capsule Placement and Admission Control

A shared cluster that supports resource reservation for
applications should ensure that sufficient resources exist on
the cluster before admitting each new application. In
addition to determining resource availability, the cluster
also needs to determine where to place each application
capsule—due to the large number of application capsules in
shared environments, manual mapping of capsules to
nodes may be infeasible. Admission control and capsule
placement are interrelated tasks—both need to identify
cluster nodes with sufficient unused resources to achieve
their goals. Consequently, a shared cluster can employ a
unified technique that integrates both tasks.

2.4 Application Isolation

Third party applications running on a shared cluster could
be untrusted or mutually antagonistic. Even in workgroup
environments where there is more trust between users (and
applications), applications could misbehave or get over-
loaded and affect the performance of other applications.
Consequently, a shared cluster should isolate applications
from one another and prevent untrusted or misbehaving
applications from affecting the performance of other
applications.

2.5 Scalability and Availability

Most commonly used clusters have sizes ranging from a
few nodes to a few hundred nodes; each such node runs
tens or hundreds of application capsules. Consequently,
resource management mechanisms employed by a shared
cluster should scale to several hundred nodes running tens
of thousands of applications (techniques that scale to very
large clusters consisting of thousands or tens of thousands
of nodes are beyond the scope of our current work). A
typical cluster with several hundred nodes will experience a
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number of hardware and software failures. Consequently,
to ensure high availability, such a cluster should detect
common types of failures and recover from them with
minimal or no human intervention.

2.6 Compatibility with Existing OS Interfaces

Whereas the use of a middleware is one approach for
managing resources in clustered environments [7], [8], this
approach typically requires applications to use the interface
exported by the middleware to realize its benefits. Sharc
employs a different design philosophy. We are interested in
exploring techniques that allow applications to use stan-
dard operating system interfaces and yet benefit from
cluster-wide resource allocation mechanisms. Compatibility
with existing OS interfaces and libraries is especially
important in commercial environments such as hosting
platforms, where it is infeasible to require third-party
applications to use proprietary or nonstandard APIs. Such
an approach also allows existing and legacy applications to
benefit from these resource allocation mechanisms without
any modifications. Our goal is to use commodity PCs
running commodity operating systems as the building
block for designing shared clusters. The only requirement
we impose on the underlying operating system is that it
supports some notion of quality of service such as
reservations [16], [17], or shares [12]. Many commercial
and open-source operating systems such as Solaris [28],
IRIX [23], and FreeBSD [5] already support such features.

Next, we present the architecture, mechanisms, and
policies employed by Sharc to address these requirements.

3 SHARC ARCHITECTURE OVERVIEW

Sharc consists of twomain components—the control plane and
the nucleus—that are responsible for managing resources in
the cluster (see Fig. 1). Whereas the control plane manages
resources on a cluster-wide basis, the nucleus is responsible
for doing so on each individual node. Architecturally, the
nucleus is distinct from the operating system kernel on a
node. Moreover, unlike a middleware, the nucleus does not
sit between applications and the kernel; rather, it comple-
ments the functionality of the operating system kernel (see
Fig. 1a). In general, applications are oblivious of the nucleus
and the control plane, except at application startup time
where they interact with these components to reserve

resources. Once resources are reserved, applications interact
solely with the OS kernel and with one another, with no
further interactions with Sharc.2 The control plane and the
nucleus act transparently on the behalf of applications to
determine allocations for individual capsules. To ensure
compatibility with different OS platforms, these allocations
are determined using OS-independent QoS parameters that
are then mapped to OS-specific QoS parameters on each
node. The task of enforcing these QoS requirements is left to
the operating system kernel. This provides a clean separation
of functionality between resource reservation and resource
scheduling, with Sharc responsible for the former and the
OS kernel for the latter.

In this paper, we show how Sharc manages two
important cluster resources, namely, CPU and network
interface bandwidth. Techniques for managing other
resources such as memory and disk bandwidth are beyond
the scope of this paper.

3.1 The Control Plane

As shown in Fig. 1a, the Sharc control plane consists of a
resource manager, an admission control and capsule
placement module, and a fault-tolerance module. The
admission control and capsule placement module performs
two tasks: 1) it ensures that sufficient resources exist for
each new application, and 2) it determines the placement of
capsules onto nodes in the cluster. Capsule placement is
necessary not only at application startup time, but also to
recover from failures or resource exhaustion on a node since
this involves moving affected capsules to other nodes. Once
an application is admitted into the system, the resource
manager is responsible for ensuring that the aggregate
allocation of each application and those of individual
capsules are met. For those applications where trading of
resources across capsules is permitted, the resource
manager periodically determines how to reallocate re-
sources unused by under-utilized capsules to other needy
capsules of that application. The fault-tolerance module is
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Fig. 1. Sharc architecture and abstractions. (a) shows the overall Sharc architecture. (b) shows a sample cluster-wide virtual hierarchy, a physical

hierarchy on a node and the relationship between the two.

2. Note that it is not mandatory for applications to reserve resources with
Sharc before they are started on the cluster. An application may choose not
to reserve any resources. Different policies are possible for allocating
resources to such applications. In our Sharc protoype, resources on each
node are first assigned to the capsules that explicitly reserved them; the
remaining resources are distributed equally among capsules that did not
reserve any resources.



responsible for detecting and recovering from node and
nucleus failures.

The key abstraction employed by the control plane to
achieve these tasks is that of a cluster-wide virtual hierarchy
(see Fig. 1b). The virtual hierarchy maintains information
about what resources are currently in use in the cluster and
by whom. This information is represented hierarchically in
the form of a tree. The root of the tree represents all the
resources in the cluster. Each child represents an applica-
tion in the cluster. Information about the number of
capsules and the aggregate reservation for that application
is maintained in each application node. Each child of an
application node represents a capsule. A capsule node
maintains information about the location of that capsule
(i.e., the node on which the capsule resides), its reservation
on that node, its current CPU and network usage, and the
current allocation (the terms reservation and allocation are
used interchangeably in this paper). Note that the current
allocation may be different from the initial reservation if the
capsule borrows (or lends) resources from another capsule.

3.2 The Nucleus

As shown in Fig. 1a, the nucleus on each node consists of a
resource manager and a fault-tolerance module. The
resource manager is responsible for reserving resources
for capsules as directed by the control plane. The resource
manager also translates OS-independent QoS parameters
employed by the control plane into node-specific QoS
parameters and conveys them to the CPU and network
interface schedulers. In addition, the resource manager
tracks resource usage for each capsule and periodically
reports these statistics to the control plane; this usage
information is then used to adjust the instantaneous
allocation of capsules if necessary. As indicated earlier,
the resource manager does not depend on a particular CPU
or network scheduling algorithm to achieve these goals; any
scheduler suffices so long as it supports some form of
resource reservation (see Section 4.2). The fault tolerance
module is responsible for detecting and recovering from
control plane failures and is described in Section 4.4.

The nucleus uses the abstraction of a physical hierarchy to
achieve these goals (see Fig. 1b). The physical hierarchy
maintains information about what resources are in use on a
node and by whom. Like the virtual hierarchy, the physical
hierarchy is a tree with the root representing all the
resources on that node. Each child represents a capsule on
that node; information about the initial reservation for the
capsule, the current usage, and the current allocation is
maintained with each capsule node. As shown in Fig. 1b,
there exists a one to one mapping between the virtual
hierarchy and the physical hierarchy; this mapping and the
resulting replication of state information in the two
hierarchies is exploited by Sharc to recover from failures.

4 SHARC MECHANISMS AND POLICIES

In this section, we describe resource specification, admis-
sion control, and capsule placement policies employed by
Sharc. We also describe how Sharc enables capsules to trade
resources with one another based on their current usage.

4.1 Resource Specification, Admission Control, and
Capsule Placement

Each application in Sharc specifies its resource requirement
to the control plane at application startup time. The control
plane then determines whether sufficient resources exist in
the cluster to service the new application and the placement
of capsules onto nodes.

Sharc provides applications with an OS-independent
mechanism called a reservation to specify their resource
requirements. Formally, a reservation is a pair ðx; yÞ that
requests x units of the resource every y units of time. In the
case of theCPU, an application that needsxunits ofCPU time
everyy timeunits specifies a reservationof ðx; yÞ. In the caseof
network bandwidth, an application that transmits b bits of
data every y time units needs to specify a reservation of
ðb=c; yÞ, where c is the bandwidth capacity of the network
interface. Throughout this paper, we use R to abbreviate the
term x

y, 0 < R � 1. Intuitively,R is the fraction of the resource
requested by the application. Let Rij denote the fraction of a
resource requested by the jth capsule of application i, and let
Ri denote the aggregate resource requirement of that
application. Assuming that application i has Ci capsules,
we have Ri ¼

PCi

j¼1 Rij. Observe that 0 < Ri � Ci, since
0 < Rij � 1.

Applications specify their requirements to Sharc using a
simple resource specification language (see Fig. 2). The
specification language allows applications the flexibility of
either specifying the reservation of each individual capsule,
or specifying an aggregate reservation for the application
without specifying how this aggregate is to be partitioned
among individual capsules. The language also allows
control over the placement of capsules onto nodes—the
application can either specify the precise mapping of
capsules onto nodes, or leave the mapping to the control
plane if any such mapping is acceptable (the latter is
specified using a do not care option for the mapping). An
application is also allowed to specify if resource trading is
permitted for its capsules. Resource trading allows un-
utilized resources to be temporarily lent to other peer
capsules under the condition that they are returned when
needed—Sharc adjusts the instantaneous allocations of
capsules based on usages when resource trading is
permitted. Applications are also allowed to specify lower
bounds on the CPU and network bandwidth allocations for
their capsules. Finally, applications may specify a para-
meter � (labeled “Epsilon” in Fig. 2) in the RSL for every
capsule; this parameter is used by the resource trading
algorithm described in Section 4.3.

Given such a resource specification, the admission
control algorithm proceeds as follows: First, it ensures that
admitting the new application will not exceed the capacity
of the cluster. Assuming n nodes and m existing applica-
tion, the following condition should hold for both the CPU
and network bandwidth:

Xm
i¼1

Rcpu
i þRcpu

mþ1 � n and
Xm
i¼1

Rnet
i þRnet

mþ1 � n: ð1Þ

Next, the admission controller invokes the capsule place-
ment algorithm. The capsule placement algorithm deter-
mines a mapping of capsules onto nodes such that there is
sufficient spare capacity on each node for the corresponding
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capsule. That is, the algorithm determines a mapping
capsule j ! node k such that Rcpu

ij � Scpu
k and Rnet

ij � Snet
k ,

where Scpu
k and Snet

k are the spare CPU and network
capacity on node k. One heuristic to find such a mapping is
to create a linear ordering of capsules in approximately
decreasing order of their CPU and network bandwidth
requirements, and then place capsules onto nodes using a
best-fit strategy. Since there may be no correlation between
the CPU and network requirements of a capsule, such a
heuristic may not always find a feasible mapping if one
exists. We have studied the capsule placement problem in
detail in separate pieces of work. In [30], we present an
experimental comparison of some online capsule placement
strategies. In [31], we describe some theoretical properties
of both the online and the offline versions of the capsule
placement problem.

The application is admitted into the system if the capsule
placement algorithm can compute a feasible mapping. The
control plane then creates a new application node in the
virtual hierarchy and notifies all affected nuclei, which then
update their physical hierarchies. Each nucleus, in turn,
maps capsule reservations onto the OS-specific QoS para-
meters (as discussed in the next section) and conveys these
parameters to the CPU and network interface schedulers.

Sharc allows resources to be traded among the capsules
of an application, but not among the applications them-
selves. The reason for prohibiting interapplication resource
trading is that Sharc has been developed primarily for
environments such as commercial hosting platforms where
applications negotiate contracts with the cluster seeking
guarantees on resource availability. The application provi-
ders pay the cluster in return for these resource guarantees.
Failure to meet these resource guarantees may imply loss in
revenue for the cluster. By not allowing interapplication
resource trading, we ensure that when an application needs
to utilize all the resources that it had reserved (e.g., when a
high number of requests arrive at a news site), it gets them.
Systems that allow interapplication resource trading may
fail to ensure this. We will see in Section 6 that, although we
do not allow interapplication resource trading explicitly, the
use of work conserving resource schedulers on the nodes in
the Sharc cluster ensures that any idle resources are
automatically given to applications that need them in
addition to their own shares (from this perspective,
interapplication trading is “automatic” and implicit in
Sharc).

4.2 Mapping Capsule Requirements to Node-
Specific QoS Requirements

As explained earlier, Sharc employs an OS-independent
representation of the application resource requirements to
enable interoperability with different OS platforms, as well

as to manage heterogeneous clusters consisting of nodes
with different operating systems. Due to space constraints,
we only show how the nucleus maps capsule requirements
to OS-specific QoS parameters for proportional-share and
lottery schedulers. Techniques for reservation-based sche-
dulers and leaky-bucket regulators are described in an
extended version of this paper [29].

Proportional-share and lottery schedulers allow resource
requirements to be specified in relative terms. In such
schedulers, each application is assigned a weight and is
allocated resources in proportion to its weight. Thus,
applications with weights w1 and w2 are allocated resources
in ratio w1 : w2. Whereas proportional-share schedulers
achieve such allocations in a deterministic manner, lot-
tery-schedulers use probabilistic techniques (via the notion
of a lottery). Since the Sharc control plane employs
admission control, it can guarantee (lower) bounds on the
resources allocated to each application when such schedu-
lers are used [22]. In such a scenario, the nucleus maps
capsule reservation to weights by setting wij ¼ Rij. Since the
pair ðx; yÞ is specified as a single parameter x=y to the
operating system, the underlying scheduler will only
approximate the desired reservation. The nature of approx-
imation depends on the exact scheduling algorithm—the
finer the time-scale of the allocation supported by the
scheduler, the better will the actual allocation approximate
the desired reservation.

Next, we describe how the Sharc control plane adjusts
the resources allocated to capsules based on their usages.

4.3 Trading Resources Based on Capsule Needs

Consider a shared cluster with n nodes that runs
m applications. Let Aij and Uij denote the current
allocation and current resource usage of the jth capsule
of application i. Aij, and Uij are defined to be the fraction
of resource allocated and used, respectively, over a given
time interval 0 � Uij � 1 and 0 < Aij � 1. Recall also that
Rij is the fraction of the resource requested by the
capsule at application startup time. The techniques
presented in this section apply to both CPU and network
bandwidth—the same technique can be used to adjust
CPU and network bandwidth allocations of capsules
based on their usages.

The nucleus on each node tracks the resource usage of all
capsules over an interval I and periodically reports the
corresponding usage vector < Ui1j1 ; Ui2j2 ; . . . > to the con-
trol plane. Nuclei on different nodes are assumed to be
unsynchronized and, hence, usage statistics from nodes
arrive at the control plane at arbitrary instants (but,
approximately every I time units). Resource trading is the
problem of temporarily increasing or decreasing the
reservation of a capsule to match its usage, subject to
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aggregate reservation constraints for that application.
Intuitively, the allocation of a capsule is increased if its
past usage indicates it could use additional resources; the
allocation of the capsule is decreased if it is not utilizing its
reserved share and this unused allocation is then lent to
other needy capsules.

To enable such resource trading, the control plane
recomputes the instantaneous allocation of all capsules
every I time units. To do so, it first computes the resource
usage of a capsule using an exponential smoothing
function.

Uij ¼ � � Unew
ij þ ð1� �Þ � Uij; ð2Þ

where Unew
ij is the usage reported by the nuclei and � is a

tunable smoothing parameter; 0 � � � 1. Use of an ex-
ponentially smoothed moving average ensures that small
transient changes in usages do not result in corresponding
fluctuations in allocations, yielding a more stable system
behavior. In the event a nucleus fails to report its usage
vector (due to clock drift, failures, or overload problems, all
of which delay updates from the node), the control plane
conservatively sets the usages on that node to the initial
reservations (i.e., Unew

ij ¼ Rij for all capsules on that node).
As explained in Section 4.4, this assumption also helps deal
with possible failures on that node.

Our algorithm to recompute capsule allocations is based
on three key principles:

1. Trading of resources among capsules should never
violate the invariant

P
j Aij ¼

P
j Rij ¼ Ri. That is,

redistribution of resources among capsules should
never cause the aggregate reservation of the applica-
tion to be exceeded.

2. A capsule can borrow resources only if there is
another capsule of that application that is under-
utilizing its allocation (i.e., there exists a capsule j
such that Uij < Aij). Further, there should be
sufficient spare capacity on the node to permit
borrowing of resources.

3. A capsule that lends its resources to a peer capsule is
guaranteed to get it back at any time; moreover, the
capsule does not accumulate credit for the period of
time it lends these resources.3

Resource trading is only permitted between capsules of the
same application, never across applications.

Our recomputation algorithm proceeds in three steps.
First, capsules that lent resources to other peer capsules, but
need them back, reclaim their allocations. Second, alloca-
tions of underutilized capsules are reduced appropriately.
Third, any unutilized bandwidth is distributed (lent) to any
capsules that could benefit from additional resources. Thus,
the algorithm proceeds as follows:

Step 0: Determine capsule allocations when resource trading
is prohibited. If resource trading is prohibited, then the
allocations of all capsules of that application are simply set
to their reservations (8j;Aij ¼ Rij) and the algorithm moves
on to the next application.

Step 1: Needy capsules reclaim lent resources. A capsule is

said to have lent bandwidth if its current allocation is

smaller than its reservation (i.e., allocation Aij < reserva-

tion Rij). Each such capsule signals its desire to reclaim its

due share if its resource usage equals or exceeds its

allocation (i.e., usage Uij � allocation Aij). In Fig. 3, Case 1

pictorially depicts this scenario.
For each such capsule, the resource manager returns lent

bandwidth by setting

Aij ¼ minðRij; ð1þ �ijÞ � UijÞ; ð3Þ

where �ij, 0 < �ij < 1 is a per-capsule positive constant that
may be specified in the RSL and takes a default value if
unspecified. In our experiments, we use a value of 0:1 for
this parameter.

Rather than resetting the allocation of the capsule to its
reservation, the capsule is allocated the smaller of its
reservation and the current usage. This ensures that the
capsule is returned only as much bandwidth as it needs (see
Fig. 3). The parameter �ij ensures that the new allocation is
slightly larger than the current usage, enabling the capsule
to (gradually) reclaim lent resources.

Step 2:Underutilized capsules give up resources. A capsule is
said to be underutilizing resources if its current usage is
strictly smaller than its allocation (i.e., usageUij < allocation
Aij). In Fig. 3, Case 2 depicts this scenario.

Since the allocated resources are underutilized, the
resource manager should reduce the new allocation of the
capsule. The exact reduction in allocation depends on the
relationship of the current allocation and the reservation. If
the current allocation is greater than the reservation (Case2(a)
in Fig. 3), then the new allocation is set to the usage (i.e., the
allocation of a capsule that borrowed bandwidth, but did not
use it is reduced to its actual usage). On the other hand, if the
current allocation is smaller the reservation (implying that the
capsule is lending bandwidth), then any further reductions in
the allocations aremade gradually (Case 2(b) in Fig. 3). Thus,

Aij ¼
Uij if Aij � Rij

ð1� �ijÞ �Aij if Aij < Rij;

�
ð4Þ

where �ij is a small positive constant, 0 < �ij < 1.
After examining capsules of all applications in Steps 1

and 2, the resource manager can then determine the unused
resources for each application and the spare capacity on
each node; the unused resources can then be lent to the
remaining (needy) capsules of these applications.

It is possible to have two different values for the
parameter �ij in Steps 2 and 3. Also, capsules that need to
reclaim lent resources fast may be assigned a large �ij value.
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3. Accumulating credit for unused resources can cause starvation. For
example, a capsule could sleep for an extended duration of time and use its
accumulated credit to continuously run on the CPU, thereby starving other
applications. Resource schedulers that allow accumulation of credit need to
employ techniques to explicitly avoid this problem [3].

Fig. 3. Various scenarios that occur while trading resources among

capsules.



In this paper, we report results from experiments in which
all the capsules had the same �ij value of 0:1.

Step 3: Needy capsules are lent additional (unused)
bandwidth. A capsule signals its need to borrow additional
bandwidth if its usage exceeds its allocation (i.e., usage
Uij � allocation Aij). An additional requirement is that the
capsule should not already be lending bandwidth to other
capsules (Aij � Rij), else it would have been considered in
Step 1. In Fig. 3, Case 3 depicts this scenario.

The resource manager lends additional bandwidth to
such a capsule. The additional bandwidth allocated to the
capsule is smaller than the spare capacity on that node and
the unallocated bandwidth for that application. That is,

Aij ¼ Aij þmin
1�

P
j2node Aij

N 1
;
Ri �

PCj

j¼1 Aij

N 2

 !
; ð5Þ

where 1�
P

Aij is the spare capacity on a node, Ri �PCj

j¼1 Aij is the unallocated bandwidth for the application,
and N 1 and N 2 are the number of needy capsules on the
node and for the application, respectively, all of whom
desire additional bandwidth. Thus, the resource manager
distributes unused bandwidth equally among all needy
capsules.

An important point to note is that the spare capacity on a
node or the unallocated bandwidth for the application
could be negative quantities. This scenario occurs when the
amount of resource reclaimed in Step 1 is greater than the
unutilized bandwidth recouped in Step 2. In such a
scenario, the net effect of (5) is to reduce the total allocation
of the capsule; this is permissible since the capsule was
already borrowing bandwidth which is returned back.4

Thus, (5) accounts for both positive and negative spare
bandwidth in one unified step.

Step 4: Ensure the invariant for the application. After
performing the above steps for all capsules of the application,
the resource manager checks to ensure that the invariantP

j Aij ¼
P

j Rij ¼ Ri holds. Additionally,
P

j2node Aij � 1
should hold for each node. Under certain circumstances, it
is possible that the total allocation may be slightly larger or
smaller than the aggregate reservation for the application
after the above three steps, or an increase in capsule allocation
in Step 1 may cause the capacity of the node to be exceeded.
These scenarios occur when capacity constraints on a node
prevent redistribution of all unused bandwidth or the total
reclaimed bandwidth is larger than the total unutilized
bandwidth. In either case, the resource manager needs to
adjust the new allocations to ensure these invariants. It can be
shown that the bin-packing problem, which is NP-hard [10],
reduces to the resource allocation problem that the resource
manager solves using Steps 3 and 4. Consequently, the
resource manager has to resort to the following heuristic: It
performs a small, constant number of additional scans of all
capsules to increase or decrease their allocations slightly. This
heuristic has been found to performwell in practice, yielding

total allocations within 5 percent of the aggregate reserva-
tions for applications throughout our experimental study.

The newly computed allocations are then conveyed as an
allocation vector < Ai1j1 ; Ai2j2 ; . . . > to each nucleus. The
nucleus then maps the new reservations ðAij � yij; yijÞ to OS-
specific QoS parameters as discussed in Section 4.2, and
conveys them to the OS scheduler.

A salient feature of the above algorithm is that it has two
tunable parameters—the interval length I and the smooth-
ing parameter �. As will be shown experimentally in
Section 6, use of a small recomputation interval I enables
fine-grain resource trading based on small changes in
resource usage, whereas a large interval focuses the
algorithm on long-term changes in resource usage of
capsules. Similarly, a large � causes the resource manager
to focus on immediate past usages while computing
allocations, while a small � smooths out the contribution
of recent usage measurements. Thus, I and � can be chosen
appropriately to control the sensitivity of the algorithm to
small, short-term changes in resource usage.

4.4 Failure Handling in Sharc

Sharc can handle three types of failures—nucleus failure,
control plane failure, and node and link failures. In this
section, we provide a brief overview of the mechanisms
Sharc employs for recovering from nucleus failures and
control plane failures. The details of these mechanisms can
be found in the extended version of this paper [29]. The key
principle employed by Sharc to recover from these failures
is replication of state information—information replicated
in the virtual and physical hierarchies enables Sharc to
reconstruct state lost due to a failure. Sharc deals with
failures as follows.

Nucleus failure. A nucleus failure occurs when the
nucleus on a node fails, but the node itself remains
operational. The control plane uses heartbeat messages to
monitor the health of each nucleus. Upon detecting a
failure, the control plane starts up a new nucleus on the
node, reconstructs the state of its physical hierarchy (using
the virtual hierarchy), and synchronizes its state with the
nucleus. The allocations of capsules is also reset to their
initial startup values (i.e., Rij).

Control plane failure. A control plane failure is caused
by the failure of the node running the control plane or the
failure of the control plane itself. In either case, the control
plane becomes unreachable from the nuclei. In such an
event, the nuclei run a distributed leader election algorithm
to elect a new node, subject to the constraint that this node
should have sufficient free resources to run control plane
tasks. A new control plane is started on this node, which
then reconstructs the virtual hierarchy by fetching the
physical hierarchies from all nuclei.

5 IMPLEMENTATION CONSIDERATIONS AND

COMPLEXITY

The complexity of the mechanisms employed by the control
plane and the nuclei is as follows:

Admission Control and Capsule Placement. For each
new application, the control plane first sorts capsules in
order of their CPU and network requirements, which
requires two Oðk � logkÞ operations for k capsules. Capsules
are then linearly ordered in approximately decreasing order
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4. For simplicity of exposition, we have omitted a couple of details in (3),
(4), and (5). First, these steps also involve ensuring that any lower bounds
specified by the application on the capsules’ CPU and network bandwidth
allocations are maintained. Second, after computing Aij in (5), the allocation
is constrained as Aij ¼ maxðAij; RijÞ to prevent it from becoming smaller
than Rij when the spare capacity is negative.



of their CPU and network requirements. Assuming a best-
fit placement strategy, a linear scan of all nodes is needed in
order to determine the “best” node to house each capsule.
This is an Oðn � kÞ operation for a cluster of n nodes. Thus,
the overall complexity of admission control and capsule
placement is Oðn � kþ k � logkÞ.

Resource trading. The resource trading algorithm
described in Section 4.3 proceeds one application at a time;
capsules of an application need to be scanned a constant
number of times to determine their new allocations (once
for the first three steps, and a constant number of times in
Step 4). Thus, the overall complexity is linear in the number
of capsules and takes OðmkÞ time in a system with
m applications, each with k capsules (total of mk capsules).
Each nucleus on a node participates in this process by
determining resource usages of capsules and setting new
allocations; the overhead of these tasks is two system calls
every I time units. Thus, the overall complexity of resource
trading is linear in the number of capsules, which is more
efficient than the polynomial time complexity of prior
approaches [2].

Communication overheads. The number of bytes ex-
changed between the control plane and the various nuclei is
a function of the total number of capsules in the system and
the number of nodes. Although the precise overhead is
� � nþ �0 �mk, it reduces to OðmkÞ bytes in practice since
mk >> n in shared clusters (�, �0 are constants).

Implementation details. We have implemented a pro-
totype of Sharc on a cluster on Linux PCs. We chose Linux
as the underlying operating system since implementations
of several commonly used QoS scheduling algorithms are
available for Linux, allowing us to experiment with how
capsule reservations in Sharc map onto different QoS
parameters supported by these schedulers. Briefly, our
Sharc prototype consists of two components—the control
plane and the nucleus—that run as privileged processes in
user space and communicate with one another on well-
known port numbers. The implementation is multithreaded
and is based on Posix threads. The control plane consists of
threads for 1) admission control and capsule placement,
2) resource management and trading, 3) communication
with the nuclei on various nodes, and 4) for handling
nucleus and node failures. The resource specification
language described in Section 4 is used to allocate resources
to new applications, to modify resources allocated to
existing applications, or to terminate applications and free
up allocated resources. Each nucleus consists of threads that
track resource usage, communicate with the control plane,
and handle control plane failures. For the purposes of this
paper, we chose a Linux kernel that implements the H-SFQ
proportional-share scheduler [21] and the leaky bucket rate
regulator for allocating CPU and network interface band-
width, respectively. This allows us to demonstrate that
Sharc can indeed interoperate with different kinds of kernel
resource management mechanisms.

Next, we discuss our experimental results.

6 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate our Sharc
prototype using two types of workloads—a commercial
third-party hosting platform workload and a research

workgroup environment workload. Using these workloads
and microbenchmarks, we demonstrate that Sharc:

1. provides predictable allocation of CPU based on the
specified resource requirements,

2. can isolate applications from one another,
3. can scale to clusters with a few hundred nodes

running 100,000 capsules, and
4. can handle a variety of failure scenarios.

In what follows, we first describe the test-bed for our
experiments and then describe our experimental results.

6.1 Experimental Setup

The testbed for our experiments consists of a cluster of
Linux-based workstations interconnected by a 100 Mb/s
switched ethernet. Our experiments assume that all
machines are lightly loaded and so is the network. Unless
specified otherwise, the Sharc control plane is assumed to
run on a dedicated cluster node, as would be typical on a
third-party hosting platform.

Our experiments involved two types of workloads. Our
first workload is representative of a third-party hosting
platform and consists of the following applications:

1. an e-commerce application consisting of a front-end
Web server and a back-end relational database,

2. a replicatedWebserver thatusesApacheversion1.3.9,
3. a file download server that supports download of

large audio files, and
4. a home-grown streaming media server that steams

1.5 Mb/s MPEG-1 files.

Our second workload is representative of a research
workgroup environment and consists of

1. Scientific, a compute-intensive scientific application
that involved matrix manipulations,

2. Summarize, an information retrieval application,
3. Disksim, a publicly-available compute-intensive disk

simulator, and
4. Make, an application build job that compiles the

Linux 2.2.0 kernel using GNU make.

In all the experiments, the best-fit-based placement
algorithm described in Section 4.1 was used for placing
the applications. A value of 0:1was used for the parameter �
in all the experiments.

Next, we present the results of our experimental
evaluation using these applications.

6.2 Predictable Resource Allocation and
Application Isolation

Our first experiment demonstrates the efficacy of CPU and
network interface bandwidth allocation in Sharc.We emulate
a shared hosting platform environmentwith six applications.
The placement of various application capsules and their CPU
and network reservations are depicted in Table 1. Our first
two applications are e-commerce applications with two
capsules each—a front-end Web server and a back-end
database server. For both applications, a fraction of requests
received by the front-end Web server are assumed to trigger
(compute-intensive) transactions in the database server (to
simulate customer purchases on the e-commerce site). Our
file download application emulates a music download site

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003



that supports audio file downloads; its workload is pre-
dominantly I/O intensive. Each streaming server application
streams 1.5 Mb/s MPEG-1 files to multiple clients, while the
Web server application services dynamic HTTP requests
(which involves dynamic HTML generation via Apache’s
PHP3 scripting). For the purposes of this experiment, we
focus on the behavior of the first three applications, namely,
the two e-commerce applications and the file download
server. The other three applications serve as the background
load for our experiments.

To demonstrate the efficacy of CPUallocation in Sharc, we
introduced identical, periodic bursts of requests in the two e-
commerce applications. Resource trading was turned off for
the first application andwas permitted for the other. Observe
that each burst triggers compute-intensive transactions in the
database capsules. Since resource trading is permitted for
EC2, the database capsule can borrow CPU cycles from the
Web server capsule (which is I/O intensive) and use these
borrowed cycles to improve transaction throughput. Since
resource trading is prohibited in EC1, the corresponding
database capsule is unable to borrow additional resources,
which affects its throughput. Fig. 4 plots the CPU allocations
of the various capsules for the two applications and the
throughput of both applications. The figure shows that
trading CPU resources in EC2 allows it to process each burst
faster than EC1. Specifically , tradingCPUbandwidth among
its capsules enables the database capsule of EC2 to finish the
two bursts 85 sec and 25 sec faster, respectively, than the
database capsule of EC1.

Next, we demonstrate the efficacy of network bandwidth
allocation in Sharc. We consider the file download applica-
tion that has three replicated capsules. To demonstrate the

efficacy of resource trading, we send a burst of requests at
t ¼ 70 seconds to the application; the majority of these
requests go to the first capsule and the other two capsules
remain underloaded. To cope with the increased load, Sharc
reassigns unused bandwidth from the two underloaded
capsules to the overloaded capsule. We then send a second
similar burst at t ¼ 160 seconds and observe a similar
behavior. We send a third burst at t ¼ 300 seconds that is
skewed toward the latter two capsules, leaving the first
capsule with unused bandwidth. In this case, both over-
loaded capsules borrow bandwidth from the underutilized
capsule; the borrowed bandwidth is shared equally among
the two overloaded capsule. Finally, at t ¼ 500 seconds, a
similar simultaneous burst is sent to the two capsules again
with similar results. Fig. 5 plots the network allocations of
the three capsules and demonstrates the above behavior.

An interesting feature exhibited by these experiments is
related to the exponential smoothing parameter � men-
tioned in Section 4.3. For CPU bandwidth allocation, � was
chosen to be 1.0 (no history), causing Sharc to reallocate
bandwidth to the database capsule of EC2 very quickly. For
network bandwidth allocation, � was chosen to be 0.5,
resulting in a more gradual trading of network bandwidth
among the capsules of the file download application. Figs. 4
and 5 depict this behavior. Thus, the value of � can be used
to control the sensitivity of resource trading. One additional
aspect of the above experiments (not shown here due to
space constraints) is that Sharc isolates the remaining three
applications, namely, S1, S2, and WS, from the bursty
workloads seen by the first three applications. This is
achieved by providing each of these applications with a
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Capsule Placement and Reservations

Fig. 4. Predictable CPU allocation and trading. (a) and (b) show the CPU allocation for the database server and the Web server capsules. (c) shows

the progress of the two bursts processed by these database servers.



guaranteed resource share, which is unaffected by the
bursty workloads of the e-commerce and file download
applications.

6.3 Performance of a Scientific Application
Workload

We conducted an experiment to demonstrate resource
sharing among four applications representing a research
workgroup environment. The placement of various cap-
sules and their CPU reservations are listed in Table 2 (since
these applications are compute-intensive, we focus only on
CPU allocations in this experiment). As shown in the table,
the first two applications arrive in the first few minutes and
are allocated their reserved shares by Sharc. The capsule of
the scientific application running on node 2 is put to sleep at
t ¼ 25 minutes until t ¼ 38 minutes. This allows the other
capsules of that application on nodes 3 and 4 to borrow
bandwidth unused by the sleeping capsule. The DiskSim
application arrives at t ¼ 36 minutes and the bandwidth
borrowed on node 3 by the scientific application has to be
returned (since the total allocation on the node reaches
100 percent, there is no longer any spare capacity on the
node, preventing any further borrowing). Finally, two
kernel builds startup at t ¼ 37 minutes and are allocated
their reserved shares. We measured the CPU allocations
and the actual CPU usages of each capsule. Since there are
10 capsules in this experiment, due to space constraints, we
only present results for the three capsules on node 3. As
shown in Fig. 6, the allocations of the three capsule closely
match the above scenario. The actual CPU usages are
initially larger than the allocations, since SFQ is a fair-share
CPU scheduler and fairly redistributes unused CPU
bandwidth on that node to runnable capsules (regardless
of their allocations). Note that, at t ¼ 36 minutes, the total
allocation reaches 100 percent; at this point, there in no

longer any unused CPU bandwidth that can be redistrib-
uted and the CPU usages closely match their allocations as
expected. Thus, a proportional-share scheduler behaves
exactly like a reservation-based scheduler at full capacity,
while redistributing unused bandwidth in presence of
space capacity; this behavior is independent of Sharc,
which continues to allocate bandwidth to capsules based
on their initial reservations and instantaneous needs.

6.4 Impact of Resource Trading

To show that resource trading can help applications
provide better quality of service to end-users, we conducted
an experiment with a streaming video server. The server
has two capsules, each of which streams MPEG-1 video to
clients. We configure the server with a total network
reservation of 8 Mb/s (4 Mb/s per capsule). At t ¼ 0, each
capsule receives two requests each for a 15 minute long
1.5 Mb/s video and starts streaming the requested files to
clients. At t ¼ 5 minutes, a fifth request for the video
arrives and the first capsule is entrusted with the task of
servicing the request. Observe that the capsule has a
network bandwidth reservation of 4 Mb/s, whereas the
cumulative requirements of the three requests is 4.5 Mb/s.
We run the server with resource trading turned on, and
then repeat the entire experiment with resource trading
turned off. When resource trading is permitted, the first
capsule is able to borrow unused bandwidth from the
second capsule and service its two clients at their required
data rates. In the absence of resource trading, the token
bucket regulator restricts the total bandwidth usage to 4
Mb/s, resulting in late packet arrivals at the three clients.
To measure the impact of these late arrivals on video
playback, we assume that each client can buffer 4 seconds
of video and that video playback is initiated only after this
buffer is full. We then measure the number of playback
discontinuities that occur due to a buffer underflow (after
each such glitch, the client is assumed to pause until the
buffer fills up again). Fig. 7a plots the number of
discontinuities observed by the clients of the first capsule
in the two scenarios. The figure shows that when resource
trading is permitted, there are very few playback disconti-
nuities (the two observed discontinuities are due to the time
lag in lending bandwidth to the first capsule—the control
plane can react only at the granularity of the recomputation
period I , which was set to 5 seconds in our experiment). In
contrast, lack of resource trading causes a significant
degradation in performance. Figs. 7b and 7c show a 150
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second long snapshot of the reception and playback of one
of the streams provided by the first capsule (stream 2) for
the two cases. Observe that the client is receiving data at
nearly 1.5 Mbps when trading is allowed, but only at about
1.4 Mbps in the absence of trading. As shown in Fig. 7b,
there are repeated buffer underflows (represented by the
horizontal portions of the plot), due to the bandwidth
restrictions imposed by the rate regulator. Thus, the
experiment demonstrates the utility of resource trading in
improving application performance.

6.5 Scalability of Sharc

To demonstrate the scalability of Sharc, we conducted
experiments to measure the CPU and communication over-
heads imposed by the control plane and the nucleus. Observe
that these overheads depend solely on the number of capsules
andnodes in the systemand are relatively independent of the
characteristicof each capsule. Theexperiments reported in this
section were conducted by running the control plane and the
nuclei on 1 GHz Pentium III workstations with 256 MB
memory running RedHat Linux version 6.2.

6.5.1 Overheads Imposed by the Nucleus

We first measured the CPU overheads of the nucleus for
varying loads; the usages were computed using the times

system call and profiling tools such as gprof. We varied the
number of capsules onanode from10 to 10,000 andmeasured
the CPU usage of the nucleus for different interval lengths.
Fig. 8a plots our results. As shown, the CPU overheads
decrease with increasing interval lengths. This is because the

nucleus needs to query the kernel for CPU and network
bandwidth usages and notify it of new allocations once in
each interval I . The larger the interval duration, the less
frequent are these operations and, consequently, the smaller
is the resulting CPU overhead. As shown in the figure, the
CPU overheads for 1,000 capsules was less than 2 percent
when I ¼ 5s. Even with 10,000 capsules, the CPU usage was
less than4percentwhenI ¼ 20s and less than3percentwhen
I ¼ 30s.

Fig. 8b plots the system call overhead incurred by the
nucleus for querying CPU and network bandwidth usages
and for notifying new allocations. As shown, the overhead
increases linearly with increasing number of capsules; the
average overhead of these system calls for 500 capsules was
only 497�s and 297�s, respectively.

Fig. 8c plots the communication overhead incurred by the
nucleus for a varying number of capsules. The communica-
tion overhead is defined to be the total number of bytes
required to report the usage vector to the control plane and
receive new allocations for capsules. As shown in the figure,
when I ¼ 30s, the overhead is around 1,300 KB for
10,000 capsules (43.3 KB/s), and is around 130 KB per
interval (4.3 KB/s) for 1,000 capsules. Together, these results
show that the overheads imposed by the nucleus for most
realistic workloads is small in practice.

6.5.2 Control Plane Overheads

Next, we conducted experiments to examine the scalability
of the control plane. Since we were restricted by a five PC
cluster, we emulated larger clusters by starting up multiple
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Fig. 7. Impact of resource trading. (a) shows the number of playback discontinuities seen by the three clients of the overloaded video server with and

without the trading of network bandwidth. (b) and (c) show a portion of the reception and playback of the second stream for the two cases.



nuclei on each node and having each nucleus emulate all
operations as if it controlled the entire node. Due to
memory constraints on our machines, we did not actually
start up a large number of applications, but simulated them
by having the nuclei manage the corresponding physical
hierarchies and report varying CPU and network band-
width usages. The nuclei on each node were unsynchro-
nized and reported usages to the control plane every I time
units. From the perspective of the control plane, such a
setup was no different from an actual cluster with a large
number of nodes.

Fig. 9a plots the CPU overhead of the control plane for
varying cluster sizes and interval lengths. The figure shows
that a control plane running on a dedicated node can easily
handle the load imposed by a 256 node cluster with
10,000 capsules (the CPU overhead was less than 16 percent
when I ¼ 30s). Fig. 9b plots the total busy time for a 256 node
cluster. The busy time is defined to the total CPU overhead
plus the total time to send and receive messages to all the
nuclei. As shown in the figure, the control plane can handle
up to 100,000 capsules before reaching saturation when
I ¼ 30s. Furthermore, smaller interval lengths increase these
overheads, since all control plane operations occur more
frequently. This indicates that a larger interval length should
be chosen to scale to larger cluster sizes. Finally, Fig. 9c plots
the total communication overhead incurred by the control
plane. Assuming I ¼ 30s, the figure shows that a cluster of
256 nodes running 100,000 capsules imposes an overhead of
3.46Mb/s, which is less than 4 percent of the available
bandwidthonaFastEthernetLAN.The figure also shows that
the communication overhead is largely dominated by the

number of capsules in the system and is relatively indepen-
dent on the number of nodes in the cluster.

6.6 Effect of Tunable Parameters

To demonstrate the effect of tunable parameters I and �,
we used the same set of workgroup applications described
in Table 2. We put a capsule of the scientific application to
sleep for a short duration. We varied the interval length I
and measured its impact on the allocation of the capsule. As
shown in Fig. 10a, increasing the interval length causes the
CPU usage to be averaged over a larger measurement
interval and diminishes the impact of the transient sleep on
the allocation of the capsule (with a large I of five minutes,
the effect of the sleep was negligibly small on the
allocation). Next, we put a capsule of Disksim to sleep for
a few minutes and measured the effect of varying � on the
allocations. As shown in Fig. 10b, use of a large � makes the
allocation more sensitive to such transient changes, while a
small � diminishes the contribution of transient changes in
usage on the allocations. This demonstrates that an
appropriate choice of I and � can be used to control the
sensitivity of the allocations to short-term changes in usage.

6.7 Handling Failures

We used fault injection to study the effect on failures in
Sharc. Due to space constraints, we only present a summary
of our experimental evaluation of the three kinds of failure
handling that Sharc supports in Table 3. For a detailed
description, please refer to an extended version of this
paper [29].
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Fig. 8. Overheads imposed by the nucleus. (a) CPU overhead, (b) system call overhead, and (c) communication overhead.

Fig. 9. Overheads imposed by the control plane. (a) CPU overhead, (b) total busy time, and (c) communication overhead.



7 RELATED WORK

7.1 Resource Management in a Single Machine

Several techniques for predictable allocation of resources
within a single machine have been developed over the past
decade. New ways of defining resource principals have
been proposed that go beyond the traditional approach of
equating resource principals with entities like processes and
threads. Banga et al. [4] provide a new operating system
abstraction called a resource container, which enables fine
grained allocation of resources and accurate accounting of
resource consumption in a single server. Scheduling domains
in the Nemesis operating system [17], activities in Rialto [16],
and Software Performance Units in [32] are other examples.
Numerous approaches have been proposed for predictable
scheduling of CPU cycles and network bandwidth on a
single machine among competing applications. These
include proportional-share schedulers such as Start-time
Fair Queuing [12], and reservation-based schedulers as in
Rialto [16] and Nemesis [17].

A key contribution of Sharc is to extend the benefits of
such single node resource management techniques for CPU
and network bandwidth to clustered environments. As
discussed in Section 4.2, Sharc can work with a variety of
scheduling algorithms. Moreover, Sharc’s model of an
application as composed of a set of capsules is general
enough to allow it to work with any of the resource
principal abstractions mentioned above.

There has also been work on predictable allocation of
memory, disk bandwidth, and shared services in single
servers. Verghese et al. [32] address the problemofmanaging
resources in a shared-memory multiprocessor to provide
performance guarantees to high-level logical entities (called
software performance units (SPUs)) such as a groupof processes

that comprise a task. Their resource management scheme,
called “performance isolation,” has been implemented on the
Silicon Graphics IRIX operating system for three system
resources: CPU, memory, and disk bandwidth. Of particular
interest is their mechanism for providing isolation, with
respect to physical memory, which works by having
dynamically adjustable limits on the number of pages that
different SPUs are entitled to based on their usage and
importance. They also implement some mechanisms for
managing shared kernel resources such as spinlocks and
semaphores. Waldspurger [33] introduces several novel
mechanisms for managing memory in the VMWare ESX
Server. These mechanisms allow the server to support
overcommitment of memory to achieve better scalability
than simple static partitioning of memory would allow. An
algorithm based on a combination of proportional allocation
of memory and an idle memory tax is used to provide
memory isolation guarantees, while achieving high memory
utilization. The Cello disk scheduling framework [27] was
proposedbyShenoyandVin tomeet thediverseperformance
requirements of applications supported by modern general
purpose file and operating systems. Cello assigns weights to
application classes and allocates disk bandwidth to them in
proportion to their weights. It derives a schedule that
balances the trade off between the desire to align the service
provided to applications to their needs and the desire to
minimize disk latency overheads. Reumann et al. [24]
propose an OS abstraction called Virtual Service (VS) to
eliminate the performance interference caused by shared
services such as DNS, proxy cache services, time services,
distributed file systems, and shared databases.

We plan to enhance Sharc to also manage disk
bandwidth and memory. For disk bandwidth, we intend
to use the Cello disk scheduling framework [27] that has
now been implemented in the Linux kernel [21]. Our design
philosophy for managing disk bandwidth is similar—allow
Sharc to determine per-capsule reservations let the Cello
scheduler enforce these allocations. For managing memory,
we are designing a virtual memory manager based on the
idea of dividing memory among capsules so that the miss
rates they experience are inversely proportional to their
weights. Developing mechanisms to extend this to manage
memory on a cluster-wide basis is part of ongoing work.

All these techniques focus on resource allocation for
applications running on a single server. Sharc, on the other
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hand, is concerned with multitiered applications with
components distributed across multiple nodes.

7.2 Resource Management in Shared Clusters

Research on clustered environments has spanned a number
of issues. Systems such as Condor have investigated
techniques for harvesting idle CPU cycles on a cluster of
workstations to run batch jobs [19]. Numerous middleware-
based approaches for clustered environments have also
been proposed [7], [8]. Finally, gang scheduling and
coscheduling efforts have investigated the issue of coordi-
nating the scheduling of tasks in distributed systems [15];
however, this approach does not support resource reserva-
tion, which is a particular focus of our work.

Some recent efforts have focused on the specific issue of
resource management in shared commodity clusters.

A proportional-share scheduling technique for a network
of workstations was proposed in [3]. Whereas there are
some similarities between their approach and Sharc, there
are some notable differences. The primary difference is that
their approach is based on fair relative allocation of cluster
resources using proportional-share scheduling, whereas we
focus on absolute allocation of resources using reservations
(reservations and shares are fundamentally different re-
source allocation mechanisms). Even with an underlying
proportional-share scheduler, Sharc can provide absolute
bounds on allocations using admission control—the admis-
sion controller guarantees resources to applications and
constrains the underlying proportional-share scheduler to
fair redistribution of unused bandwidth (instead of fair
allocation of the total bandwidth as in [3]). A second
difference is that lending resources in [3] results in
accumulation of credit that can be used by the task at a
later time; the notion of lending resources in Sharc is
inherently different—no credit is ever accumulated and
trading is constrained by the aggregate reservation for an
application.

Chase et al. present the design and implementation of
Muse, an architecture for resource management in a hosting
center [6]. Muse uses an economic model for dynamic
provisioning of resources to multiple applications. In the
model, each application has a utility function which is a
function of its throughput and reflects the revenue
generated by the application. There is also a penalty that
the application charges the system when its goals are not
met. The system computes resource allocations by solving
an optimization problem that maximizes the overall profit.
Muse puts emphasis on energy as a driving resource
management issue in server clusters. Like Sharc, Muse uses
an exponential smoothing-based predictor of future re-
source requirement. There are some important differences
between Muse and Sharc. Muse allows resources to be
traded between applications, whereas Sharc does not. Sharc
manages both CPU and network bandwidth. Muse man-
ages only CPU, although we note that its resource manage-
ment mechanism can be easily extended to manage network
bandwidth.

The Cluster Reserves work at Rice University has also
investigated resource allocation in server clusters [2]. The
work assumes a large application running on a cluster,
where the aim is to provide differential service to clients
based on some notion of service class. This is achieved by

providing fixed resource shares to application spanning
multiple nodes and dynamically adjusting the shares on
each server based on the local resource usage. The approach
uses resource containers [4] and employs a linear program-
ming formulation for allocating resources, resulting in
polynomial time complexity. In contrast, techniques em-
ployed by Sharc have complexity that is linear in the
number of capsules. Further, Sharc can manage both CPU
and network interface bandwidth, whereas Cluster Re-
serves only support CPU allocation (the technique can,
however, be extended to manage network interface band-
width as well).

7.3 Other Resource Management Issues in
Shared Clusters

The design of shared clusters involves several problems
that are complementary to the one of trading resources
presented in this paper. In [30], we present techniques to
infer the CPU and network requirements of applications.
This information is then used to overbook cluster resources
in a controlled fashion such that the cluster can maximize
its revenue while providing probabilistic QoS guarantees to
applications. We also present several capsule placement
strategies and investigate their impact on the cluster’s
revenue.

7.4 Resource Management in Dedicated Clusters

Alongside research on shared hosting centers, work has
appeared on resource management in hosting centers based
on a dedicated model in which the applications are
assigned resources at the granularity of a single server.
Ranjan et al. [22] address the issue of allocating resources in
such a model. Their algorithm determines the number of
servers to be allocated to each class periodically. It assumes
a G/G/N model with FCFS scheduling on each server in
the cluster. Response time is assumed to be linearly related
to utilization. The algorithm works by trying to maintain a
target utilization level. Oceano [1] is a management
infrastructure developed at IBM for a server farm. This
work is mainly concerned with the implementation issues
involved in building such a platform and is low on
algorithmic details. The Cluster-On Demand (COD) [20]
work presents an automated framework to manage re-
sources in a shared hosting platform. COD introduces the
concept of a virtual cluster, which is a functionally isolated
group of hosts within a shared hardware base. A key
element of COD is a protocol to resize virtual clusters
dynamically in cooperation with pluggable middleware
components.

7.5 Resource Management in Highly
Distributed Clusters

In [34], the authors consider a model of hosting platforms
different from that considered in our work. They visualize
future applications executing on platforms constructed by
clustering multiple, autonomous distributed servers, with
resource access governed by agreements between the
owners and the users of these servers. They present an
architecture for distributed, coordinated enforcement of
resource sharing agreements based on an application-
independent way to represent resources and agreements.
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In this work, we have looked at hosting platforms
consisting of servers in one location and connected by a
fast network. However, we also believe that distributed
hosting platforms will become more popular and resource
management in such systems will pose several challenging
research problems.

7.6 Scalability and Reliability in Cluster-Based
Systems

The design of scalable, fault-tolerant network services
running on server clusters has been studied in [9], [14].
Use of virtual clusters to manage resources and contain
faults in large multiprocessor systems has been studied in
[11]. Scalability, availability, and performance issues in
dedicated clusters have been studied in the context of
clustered mail servers [26].

8 CONCLUDING REMARKS

In this paper, we argued the need for effective resource
control mechanisms for sharing resources in commodity
clusters. To address this issue, we presented the design of
Sharc—a system that enables resource sharing in such
clusters. Sharc depends on resource control mechanisms
such as reservations or shares in the underlying OS, and
extends the the benefits of such mechanisms to clustered
environments. The control plane and the nuclei in Sharc
achieve this goal by

1. supporting resource reservation for applications,
2. providing performance isolation and dynamic

resource allocation to application capsules, and
3. providing high availability of cluster resources.

Our evaluation of the Sharc prototype showed that Sharc
can scale to 256 node clusters running 100,000 capsules. Our
results demonstrated that a system such as Sharc can be an
effective approach for sharing resources among competing
applications in moderate size clusters.
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