Problem

- Internet services are on the rise
 - Local computing is becoming marginalized
 - We trust more remote systems with our data
- How do we protect ourselves from malicious input?
- SSL / IPsec
 - Protect our data in flight
 - Identify channel endpoints
- What about the integrity of those services?
Secure Communication

- SSL / IPsec gives us several protections
 - Confidentiality and integrity of data *in-flight*
 - Authenticity of endpoint

- Problems with those?
 - Identity assumes protection of secret key / good CA
 - Authentic malicious systems are still malicious
 - Protecting bad data still gives bad data
Verifying system integrity

• What would you do?
 ‣ Nothing
 ‣ Proof by authority (Certificates)
 • Tells you who, but not what
 ‣ Constrain the system (Secure Boot)
 • Effective, limiting, but proof is implied
 ‣ Inspect the runtime state (Authenticated Boot)
 • Flexible, attestable, but difficult to prove semantics
Secure Boot

- Check each stage in the boot process
 - Is code that you are going to load acceptable?
 - If not, terminate the boot process
- Must establish a **Root-of-Trust**
 - A component trusted to speak for the correctness of others
 - Assumed to be correct because errors are **undetectable**
Authenticated Boot

- Secure boot enforces requirements and uses special hardware to ensure a specific system is booted
 - Implied verification (Good because it is)
- By contrast, we can measure each stage and have a verifier authenticate the correctness of the stage
 - Verifier must know how to verify correctness
 - Behavior is uncertain until verification
 - Can you verify yourself?
- What is our root-of-trust?
TPMs

- Trusted Platform Module
 - PCRs, Keys, Counters, Crypto
- Remote attestation provides a report of the current system state
- Verifier checks if this is a trusted system state
Linking Integrity to Identity

- Assigned paper discusses several problems that arise when merging these two concepts together
 - Missing Link (cuckoo attack)
 - Compromised SSL Key
 - Verifying Multiple Certificates

- Virtualization

- How do these solutions revoke invalid certificates

- What does an invalid certificate mean?
Beyond Attestation

- Attestations only give a snapshot of system integrity

 - Attestations only give a snapshot of system integrity
 - Ideally, we should prove long term integrity
 - Why is this hard in general?
 - What must be true for this property to hold?
Take Away

• Secure communication alone does not prove data integrity

• Integrity measurement gives a client a view of the system’s integrity

• Linking the identity and integrity is possible

• Proving that integrity is long-lived is difficult