CSE543 Computer and Network Security

Module: Network Security

Professor Patrick McDaniel
Fall 204
Networking

- Fundamentally about transmitting information between two (or more) devices
- Direct communication is now possible between any two devices anywhere (just about)
 - Lots of abstraction involved
 - Lots of network components
 - Standardized protocols, e.g., TCP
 - Wired and wireless
 - Works in protection environment
- What about ensuring security?
Network Security

• Every machine is connected
 ‣ What is trust model of the network?

• Not just limited to dogs as users
 ‣ What other ‘dogs’ are out there?
Exploiting the network ...

• The Internet is extremely vulnerable to attack
 ‣ it is a huge open system ...
 ‣ which adheres to the end-to-end principle
 • smart end-points, dumb network

• Can you think of any large-scale attacks that would be enabled by this setup?
The End-to-End Argument

• Clark et. al discussed a property of good systems that says features should be placed as close to resources as possible
 ‣ In communication, this means that we want the middle of the network to be simple, and the end-points to be smart (e.g., do everything you can at the end-points)
 • “Dumb, minimal network”
 ‣ This is the guiding principle of IP (Internet)
 ‣ Q: Does this have an effect on security?

Note: this is a departure from the early networks which smart network, dumb terminals
Network security: the high bits

• The network is …
 ‣ … a collection of interconnected computers
 ‣ … with resources that must be protected
 ‣ … from unwanted inspection or modification
 ‣ … while maintaining adequate quality of service.

• Another way of seeing network security is …
 ‣ … securing the network infrastructure such that the integrity, confidentiality, and availability of the resources is maintained.
The network ...
The big picture

- Internet Protocol (IP)
 ‣ Really refers to a whole collection of protocols making up the vast majority of the Internet

- Routing
 ‣ How these packets move from place to place

- Network management
 ‣ Administrators have to maintain the services and infrastructure supporting everyone’s daily activities
Security Problems in the TCP/IP Protocol Suite

- Bellovin’s observations about security problems in IP
 - Not really a study of how IP is misused, e.g., IP addresses for authentication, but really what is inherently bad about the way in which IP is setup

- A really, really nice overview of the basic ways in which security and the IP design is at odds
TCP/IP uses a *three-way handshake* to establish a connection with 32-bit sequence numbers:

1. \(C \rightarrow S: Q_C \)
2. \(S \rightarrow C: Q_S, \text{ack}(Q_C) \) where sequence number \(Q_S \) is nonce
3. \(C \rightarrow S: \text{ack}(Q_S) \) … then send data

2. However assume the bad guy does not hear msg 2, if he can guess \(Q_S \), then he can get \(S \) to accept whatever data it wants (useful if doing IP authentication, e.g., “rsh”)

Sequence number prediction
Sequence Number Prediction (fixes)

• The only way you really fix this problem to stop making the sequence numbers predictable:
 ‣ Randomize them -- you can use AES or some other mechanism to generate them randomly
 ‣ There is an entire sub-field devoted to the creation and management of randomness in OSes

• Also, you could look for inconsistencies in timing information
 ‣ Assumption: the adversary has different timing than
 ‣ OK, maybe helpful, but far from definitive
Routing Manipulation

• RIP - routing information protocol
 ‣ Distance vector routing protocol used for local network
 ‣ Routers exchange reachability and “distance” vectors for all the sub-networks within (a typically small) domain
 ‣ Use vectors to decide which is best, notification of changes is propagated quickly

• So, the big problem is that you receive vast amounts of data that a router uses to form the routing table
 ‣ So, just forge that, and the game is up
 ‣ Manipulate paths, DOS, hijack connections, etc.

• Solutions:
 ‣ Authenticate data, but this is less than obvious how to do this efficiently (a whole lot of people are trying)
Internet Control Message Protocol (ICMP)

• ICMP is used as a control plane for IP messages
 ‣ Ping (connectivity probe)
 ‣ Destination Unreachable (error notification)
 ‣ Time-to-live exceeded (error notification)

• These are largely indispensable tools for network management and control
 ‣ Error notification codes can be used to reset connections without any authentication/validation

• **Solution**: auth/verify/sanity check sources and content
 ‣ ICMP “returned packets”

• **Real solution**: filter most of ICMP, ignore it
In 1996, someone discovered that many operating systems, routers, etc. could be crash/rebooted by sending a single malformed packet.

- It turns out that you can send a IP packet larger than 65,535 (2^{16}), it would crash the system.
- The real reason lies in the way fragmentation works:
 - It allows somebody to send a packet bigger than IP allows.
 - Which blows up most fixed buffer size implementations.
 - ... and dumps core, blue screen of death, etc.
- Note: this is not really ICMP specific, but easy (try it)

```bash
% ping -l 65555 your.host.ip.address
```

- This was a popular pastime of early hackers.
Address Resolution Protocol (ARP)

- Protocol used to map IP address onto the physical layer addresses (MAC)
 1) ARP request: who has x.x.x.x?
 2) ARP response: me!
- Policy: last one in wins
- Used to forward packets on the appropriate interfaces by network devices (e.g., bridges)

• Q: Why would you want to spoof an IP address?
ARP poisoning

• Attack: replace good entries with your own
• Leads to
 ‣ Session hijacking
 ‣ Man-in-the-middle attacks
 ‣ Denial of service, etc.
• Lots of other ways to abuse ARP.
• Nobody has really come up with a good solution
 ‣ Except smart bridges, routers that keep track of MACs
• However, some not worried
 ‣ If adversary is in your perimeter, you are in big trouble
 ‣ You should validate the source of each packet independently (e.g., via IPsec)
• Finger user identity (my advisor hated this)
 ‣ host gives up who is logged in, existence of identities

```
PSU.local Presentations > finger megan
Login: megan              Name: Megan Smith
Directory: /Users/megan          Shell: /bin/bash
Last login Mon 23 Aug 13:19 (EDT) on console
No Mail.
No Plan.
PSU.local Presentations >
```

• This is horrible in a distributed environment
 ‣ Privacy, privacy, privacy …
 ‣ Lots of information to start a compromise of the user.
• Post office protocol - mail retrieval
 ‣ Passwords passed in the clear (duh)
 ‣ Solution: SSL, SSH, Kerberos
• Simple mail transport protocol (SMTP) - email
 ‣ Nothing authenticated: SPAM
 ‣ Nothing hidden: eavesdropping
 ‣ Solution: SSL
• File Transfer protocol - file retrieval
 ‣ Passwords passed in the clear (duh)
 ‣ Solution: SSL, SSH, Kerberos
DNS - The domain name system

- DNS maps between IP address (12.1.1.3) and domain and host names (ada.cse.psu.edu)
 - How it works: the “root” servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively
 - Note: there are 13 “root” servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)
A DNS query

ISP Nameserver

User PC

DNS Cache

www.patrickmcdaniel.org = 207.140.168.131
“Glue” information

• Suppose you ask a name server for a record and it redirects you to another name server (NS record)
 ‣ e.g., if you ask a root for a NS (name server) record for NET, it returns NS records for the authoritative servers for .net

• It will also give you the A (resource) record for the authoritative servers you were directed to
 ‣ avoid looking them up
 ‣ This is known as the “glue” records
DNS Vulnerabilities

• Nothing is authenticated, so really the game is over
 ‣ You can not really trust what you hear …
 ‣ But, many applications are doing just that.
 ‣ Spoofing of DNS is really dangerous

• Moreover, DNS is a catalog of resources
 ‣ Zone-transfers allow bulk acquisition of DNS data
 ‣ … and hence provide a map for attacking the network

• Lots of opportunity to abuse the system
 ‣ Relies heavily on caching for efficiency -- cache pollution
 ‣ Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
 ‣ Data may be corrupted before it gets to authoritative server
A Cache Poisoning Attack

• All requests have a unique query ID
• The nameserver/resolver uses this information to match up requests and responses
• If an adversary can guess the query ID, then it can forge the responses and pollute the DNS cache
 ‣ 16-bit query IDs (not hard)
 ‣ Some servers increment IDs (or use other bad algo.)
 ‣ First one in wins!!!
• Note: If you can observe the traffic going to a name server, you can pretty much arbitrarily own the Internet for the clients it serves.
DNSsec

- A standard-based (IETF) solution to security in DNS
 - Prevents data spoofing and corruption
 - Public key based solution to verifying DNS data
 - Authenticates
 - Communication between servers
 - DNS data
 - content
 - existence
 - non-existence
 - Public keys (a bootstrap for PKI?)
DNSsec Mechanisms

• TSIG: transaction signatures protect DNS operations
 ‣ Zone loads, some server to server requests (master -> slave), etc.
 ‣ Time-stamped signed responses for dynamic requests
 ‣ A misnomer -- it currently uses shared secrets for TSIG (HMAC) or do real signatures using public key cryptography

• SIG0: a public key equivalent of TSIG
 ‣ Works similarly, but with public keys
 ‣ Not as popular as TSIG, being evaluated

• Note: these mechanisms assume clock sync. (NTP)
DNSsec Mechanisms

- Securing the DNS records
 - Each domain signs their “zone” with a private key
 - Public keys published via DNS
 - *Indirectly* signed by parent zones
 - Ideally, you only need a self-signed root, and follow keys down the hierarchy

```
root          .edu          psu.edu     cse.psu.edu
       Signs     Signs     Signs
```
DNSsec challenges

- Incremental deployability
 - Everyone has DNS, can’t assume a flag day

- Resource imbalances
 - Some devices can’t afford real authentication

- Cultural
 - Most people don’t have any strong reason to have secure DNS ($$$ not justified in most environments)
 - Lots of transitive trust assumptions (you have no idea how the middlemen do business)

- Take away: DNSsec will be deployed, but it is unclear whether it will be used appropriately/widely
Transport Security

- A host wants to establish a secure channel to remote hosts over an untrusted network
 - Not Login – end-users may not even be aware that protections in place (transparent)
 - Remote hosts may be internal or external
- The protection service must …
 -Authenticate the end-points (each other)
 -Negotiate what security is necessary (and how achieved)
 -Establish a secure channel (e.g., key distribution/agreement)
 -Process the traffic between the end points

- Also known as *communications security*.
IPsec (not IPSec!)

- Host level protection service
 - IP-layer security (below TCP/UDP)
 - De-facto standard for host level security
 - Developed by the IETF (over many years)
 - Available in most operating systems/devices
 - E.g., XP, Vista, OS X, Linux, BSD*, …
 - Implements a wide range of protocols and cryptographic algorithms

- Selectively provides ….
 - Confidentiality, integrity, authenticity, replay protection, DOS protection
IPsec and the IP protocol stack

- IPsec puts the two main protocols in between IP and the other protocols
 - AH - authentication header
 - ESP - encapsulating security payload
- Other functions provided by external protocols and architectures

<table>
<thead>
<tr>
<th>HTTP</th>
<th>FTP</th>
<th>SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>ESP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP</td>
</tr>
</tbody>
</table>
Modes of operation

• Transport: the payload is encrypted and the non-mutable fields are integrity verified (via MAC)

• Tunnel: each packet is completely encapsulated (encrypted) in an outer IP packet
 ‣ Hides not only data, but some routing information
Tunneling

• “IP over IP”
 ‣ Network-level packets are encapsulated
 ‣ Allows traffic to avoid firewalls
IPsec Protocol Suite

Policy/Configuration Management

(SPS) Security Policy System

Key Management

(IKE) Internet Key Exchange

Manual

Packet Processing

(ESP) Encapsulating Security Payload

(AH) Authentication Header
Internet Key Exchange (IKE)

- Built on of ISAKMP framework
- Two phase protocol used to establish parameters and keys for session
 - Phase 1: authenticate peers, establish secure channel
 - Phase 2: negotiate parameters, establish a security association (SA)
- The details are unimaginably complex
- The SA defines algorithms, keys, and policy used to secure the session
IPsec: Packet Handling (Bump …)

IP Protocol Stack

SADB

IPsec

Application
Presentation
Session
Transport
Network (IP)
Data Link
Physical
Authentication Header (AH)

- Authenticity and integrity
 - via HMAC, over IP headers and data
- Advantage: the authenticity of data and IP header information is protected
 - it gets a little complicated with mutable fields, which are supposed to be altered by network as packet traverses the network
 - some fields are immutable, and are protected
- Confidentiality of data is not preserved
- Replay protection via AH sequence numbers
 - note that this replicates some features of TCP (good?)
Authentication Header (AH)

- Modifications to the packet format
IPsec Authentication

• SPI: (spy) identifies the security association for this packet
 – Type of crypto checksum, how large it is, and how it is computed
 – Really the policy for the packet

• Authentication data
 – Hash of packet contents include IP header as specified by SPI
 – Treat transient fields (TTL, header checksum) as zero

• Keyed MD5 Hash is default
Encapsulating Security Payload (ESP)

- Confidentiality, authenticity and integrity
 - via encryption and HMAC
 - over IP *payload* (data)
- Advantage: the security manipulations are done solely on user data
 - TCP packet is fully secured
 - simplifies processing
- Use “null” encryption to get authenticity/integrity only
- Note that the TCP ports are hidden when encrypted
 - good: better security, less is known about traffic
 - bad: impossible for FW to filter/traffic based on port
- Cost: can require many more resources than AH
Encapsulating Security Payload (ESP)

- Modifications to packet format
IPsec ESP Packet Format

IPv4 ESP Packet Format

<table>
<thead>
<tr>
<th>Unencrypted</th>
<th>Encrypted</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Header</td>
<td>Other IP Headers</td>
</tr>
</tbody>
</table>

ESP Header Format

- Security Parameter Identifier (SPI)
- Opaque Transform Data, variable length

DES + MD5 ESP Format

- Security Parameters Index (SPI)
- Initialization Vector (optional)
- Replay Prevention Field (incrementing count)
- Payload Data (with padding)
- Authentication checksum
Practical Issues and Limitations

• IPsec implementations
 ‣ Large footprint
 • resource poor devices are in trouble
 • New standards to simplify (e.g., JFK, IKE2)
 ‣ Slow to adopt new technologies
 ‣ Configuration is really complicated/obscure

• Issues
 ‣ IPsec tries to be “everything for everybody at all times”
 • Massive, complicated, and unwieldy
 ‣ Policy infrastructure has not emerged
 ‣ Large-scale management tools are limited (e.g., CISCO)
 ‣ Often not used securely (common pre-shared keys)
Network Isolation: VPNs

• Idea: I want to create a collection of hosts that operate in a coordinated way
 ‣ E.g., a virtual security perimeter over physical network
 ‣ Hosts work as if they are isolated from malicious hosts

• Solution: Virtual Private Networks
 ‣ Create virtual network topology over physical network
 ‣ Use communications security protocol suites to secure virtual links “tunneling”
 ‣ Manage networks as if they are physically separate
 ‣ Hosts can route traffic to regular networks (*split-tunneling*)
VPN Example: RW/Telecommuter

- Internet
- LAN

Physical Link
Logical Link (IPsec)

(network edge)
VPN Example: Hub and Spoke

Internet

LAN

(network edge)

Physical Link
Logical Link (IPsec)
VPN Example: Mesh

Internet

LAN

(network edge)

Physical Link

Logical Link (IPsec)
Virtual LANs (VLANs)

- VPNs built with hardware
 - Physically wire VPN via soft configuration of a switch crossbar
 - No encryption – none needed
 - “wire based isolation”
 - Many switches support VLANs
 - Allows networks to be reorganized without rewiring

- Example usage: two departments in same hallway
 - Each office is associated with department
 - Configuring the network switch gives physical isolation
 - Note: often used to ensure QoS