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Abstract. For a peer-to-peer (P2P) system holding massive amount of
data, efficient search for resources (such as data or services) is a key
determinant to its scalability. This paper presents semantic small world
(SSW), an overlay network and index structure for semantic based P2P
search. By dynamically clustering peer nodes in a semantic space based
on the semantics of their data and organizing the clusters into a small
world network, SSW achieves a very competitive trade-off between the
search latencies/traffic and maintenance overheads. Preliminary evalua-
tion shows that SSW is much more scalable to very large network sizes
and very large numbers of data objects compared to pSearch, the state-
of-the-art semantic-based search technique for P2P systems.

1 Introduction

The advent of applications such as Napster and Gnutella has made peer-to-peer
(P2P) systems popular for the wide-spread exchange of resources and voluminous
information between thousands of users. In contrast to traditional client-server
computing models, a node in these P2P systems can act as both a server as well
as a client. Despite avoiding centralized server bottlenecks and single point of
failure, these decentralized systems present fundamental challenges when search-
ing for resources (e.g. data, files, and services) available at one or more of these
numerous host nodes. Meanwhile, such decentralization mandates that these sys-
tems dynamically adapt to continuous node membership and content changes
without incurring high maintenance overheads.

The importance of P2P searches has motivated several proposals for per-
forming these operations efficiently. Mechanisms such as Gnutella and Random
Walk [8] either flood the network or search through a single path in the network
randomly. While their search costs may not be low in terms of the total number
of messages and/or the number of hops traversed per search, their advantages
are in the low maintenance cost, making it relatively easy to handle member-
ship changes3, or even data content changes. Improvements to better direct such

3 In this paper, peer join, peer leave and peer failure are collectively referred to as
membership changes.
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messages by indexing around a neighborhood (of an overlay network), such as
Local Index [16] and Neighborhood Signature [7], can enhance the performance
of searches. However, membership/content changes can require additional costs
to update such indexes. Further improvements to search efficiency has led to
constructing overlay networks (e.g., CAN [12], CHORD [14], TAPESTRY [13],
PASTRY [18]) that use hashed keys on the data name space to direct the searches
to the specific node(s) holding the requested data objects. This comes at a higher
maintenance cost for updating the relevant information on membership/content
changes.

While all these techniques address the scalability issue (particularly of sear-
ches) with respect to the number of nodes in the P2P system, it is equally
important to address the voluminous information content of such systems. The
vast repositories of information (just as in the Internet today) are simply not
favorable to searches based on hashed keys, mandating the employment of con-
tent/semantic based searches. This is the reason why search engines are popular
for navigating the Internet today.

Recognizing the need for content-based search in P2P networks, a recent
proposal called pSearch [15] builds a semantic-based information retrieval engine
on top of an m-dimensional CAN overlay network. To address the issues of high
dimensionality, pSearch stores the physical location of each data object in p

places in the CAN based on p separate partial semantic spaces. This structure
incurs not only a considerable amount of state information (each node requires
maintenance of 2m pointers as mandated by CAN) but also a nontrivial cost for
publishing index information to the CAN (each data object needs to be published
to the CAN p times when newly created by an existing node or brought in by
an incoming node). Moreover, a search requires all p separated spaces to be
examined.

To address many of these problems, this paper presents a novel approach,
Semantic Small World (SSW), to build a P2P system from the ground-up. The
idea is to dynamically cluster peers with semantically similar data closer to each
other in a semantic space and organize the clusters into an overlay network and
a distributed index structure in the process of peer joins and leaves4. We show
a simple yet effective dimensionality reduction technique (called adaptive space
linearization) for constructing a one dimensional SSW to address the challenges
raised by high dimensionality of semantic space. The overlay network that we
construct is a small world network that has a much more attractive trade-off
between search path length and maintenance costs compared to other overlays
such as CAN and CHORD. In addition, SSW is an index structure that supports
all dimensions of the semantic space in the search instead of limiting itself to
perform p separate searches on m-dimensional CAN overlay network (as is done
in pSearch). This approach can potentially lead us to data objects that may be
missed out in pSearch. Preliminary evaluation shows that SSW is much more
scalable to very large network sizes and very large numbers of data objects

4 Distributed index and overlay network are two synonymous facets of the SSW, so
we use them interchangeably.
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compared to pSearch, the state-of-the-art semantic-based search technique for
P2P systems.

The rest of this paper is structured as follows. Background on semantic space,
semantic vector, small world network and related work are provided in Section
2. In Section 3, the concept of SSW and technical challenges are presented.
Algorithms for various P2P operations are detailed in Section 4. The simulation
setup and results for a preliminary performance evaluation are presented in
Section 5 and Section 6, respectively. Finally, we conclude this paper and outline
directions for future research in Section 7.

2 Preliminaries

In this section, we provide background on semantic space/vector and small world
network and review some studies related to our work.

2.1 Background

Semantic Space and Vector. Various digital objects, such as documents,
multimedia, and genomic data can be represented and stored as data objects in
P2P systems. The semantics or features of such data object can be identified by
a k-element vector, namely Semantic Vector (SV) (also called as feature vector
in the literature)5. Each element in the vector represents a particular feature
or attribute associated with the data object (i.e., color for an image, concept
or key word for a text document) with weight representing the importance of
this feature element in representing the semantics of the data object. SV can be
obtained or derived from attributes, content or metadata of the object and the
typical approaches to generate SV includes completely representing the data ob-
ject, extracting some properties of the object, or deriving some statistics of the
object. The SV of a data object can be mapped to a point in a k-dimensional
semantic space. Euclidean distance is used to represent the semantic distance
between two SVs in this paper.

Small World Network. Small world networks can be characterized by average
path length between two nodes in the network and cluster coefficient defined
as the probability that two neighbors of a node are neighbors themselves. A
network is said to be small world if it has small average path length (i.e., similar
to the average path length in random networks) and large cluster coefficient (i.e.,
much greater than that of random networks). Studies on a spectrum of networks
with small world characteristics show that searches can be efficiently conducted
when the network exhibits the following properties: 1) each node in the network
knows its local neighbors, called short range contacts; 2) each node knows a
small number of randomly chosen distant nodes, called long range contacts, with

5 Here the data objects are not limited to specific types. Therefore, we use generic
semantic vectors, instead of specialized ontology developed for certain type of data
objects (such as semantic web), to represent the semantics of data objects.
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Table 1. Comparison of P2P Search Techniques.

Schemes Gnutella Local Index CAN CHORD Semantic Small World

Search cost (total messages) O(N) O(N/h) O(kN1/k) O(logN) O( 1

l log2(N/M)1/k + M)
States maintained per peer 0 O(h) O(2k) O(logN) O(2k + l + M)

probability proportional to C
d where d is the distance and C is a normalization

constant that brings the total probability to 1 [5][6]. A search can be performed in
O(log2N) steps on such networks, where N is the number of nodes in a network
[6]. The constant number of contacts (implying low maintenance cost) and small
average path length serve as the motivation for trying to build a small world
overlay network in our approach.

In addition to our proposal of constructing a small world network, [4] men-
tioned the idea of using small world principles to facilitate search in P2P without
giving rigid treatment on how to construct a small world and how search can be
conducted. [9] proposes to build a one-dimensional small world network based
on the principles discussed above.

2.2 Related Work

Here we first compare some representative P2P search techniques. Then, we re-
view some semantic clustering techniques and focus on more details of pSearch.

Comparison of P2P Search Techniques. Table 1 summarizes the search
cost and states maintained per peer. In the table, h denotes the average number
of nodes in the neighborhood for local indexes; k (k ≤ logN) denotes the dimen-
sionality for CAN and semantic small world; M and l denote the cluster size
and number of long range contacts for semantic small world, respectively. From
the comparison, we can see that semantic small world provides flexible tradeoff
between states maintained per peer (a constant number of states) and search
efficiency (polynomial-logarithmic cost)6.

Semantic Clustering. The idea of clustering nodes with similar documents
together has appeared in [1][4][10][11]. Proposals in [1] and [10] rely on a central-
ized server or super-peers to cluster documents and nodes. Preliminary work in
[4] proposes to cluster nodes with similar interest together, without discussing
how to define the interest similarity amongst peers and how to form clusters.
[11] relies on periodic message exchanges amongst peers to keep track of other
peers with similar documents, which incurs very high message overhead. All
these techniques rely on a basic assumption that data objects in a peer are
highly homogeneous. On the other hand, while taking advantage of homogeneity
in data sets, SSW is suitable for both heterogeneous and homogeneous data sets.

6 As demonstrated later, the optimal number of long range contacts and size of clusters
are small constant numbers.
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pSearch. As mentioned earlier, pSearch [15] builds a semantic based informa-
tion retrieval engine on top of an m-dimensional CAN, where m = 2.3 · ln(N)
and N is the total number of nodes selected to support the engine. To address
the issues of high dimensionality, pSearch partitions the lower (but more im-
portant) dimensions into p groups (where each group consists of m dimensions)
and maps the partial semantic space corresponding to each group into the key
space of CAN. To process a semantic based similarity search, p separate searches
are performed on the CAN key space. The most similar data object(s) in the
result of these p searches are returned as the answer. Figure 1 shows an exam-
ple of pSearch mapping a data object to a 2-dimensional CAN. The example
shows that the first six elements of the semantic vector (totally 300 elements)
are grouped into three 2-dimensional sub-vectors and mapped to three partial
semantic spaces realized in one CAN.

data objects

examining region for the query

querydata

p3 p3

p2

p1p1

p2

0

2

4

6

300

Fig. 1. An illustrative example of pSearch.

In addition to the excessive search and maintenance cost previously men-
tioned, pSearch has four primary deficiencies. First of all, it lacks the flexibility
to accommodate dynamic changes in the system. Since the dimensionality of
CAN in pSearch is pre-determined (i.e., m), it is not clear how pSearch can
adapt to the changes in network size to achieve the optimal routing hops. Sec-
ondly, CAN employs a relatively regular key space partition scheme (i.e., always
partition a space evenly) which may result in skewed loads on peer nodes. This
deficiency is inherited into pSearch. Thirdly, since only partial semantic informa-
tion is mapped to CAN, background sampling, which consumes a large amount of
bandwidth, especially when peer membership changes frequently, is required to
improve the search result. In addition, the effectiveness of this sampling heuris-
tic depends highly on the degree of data object homogeneity stored at a peer.
Lastly, the position of a peer in pSearch’s semantic spaces does not fully reflect
the semantics of its local data objects.

In contrast, our system is much more flexible to the dynamic membership
changes. No prior knowledge of the network size is required. Our semantic space

SemPGRID'04



partition scheme naturally follows data density, resulting in more fairly dis-
tributed load among peers even in skewed data distributions. Since all semantic
information, instead of only m dimensions as in pSearch, are used to construct
the index/overlay, no heuristics are required to direct the search. Lastly, the
placement of peers in the semantic space factors in the semantics of their local
data objects, making SSW more adaptive to data locality.

3 Semantic Small World

In this section, we describe the concept of semantic small world (SSW), provide
technical details on construction of SSW, and propose a solution to linearize the
semantic clusters in high dimensional space into a one-dimensional SSW.

3.1 Overview

SSW serves as both an overlay network and a distributed index structure. Thus, a
peer in SSW is not only a storage server of its local data objects but also an index
server which provides location information of certain data objects physically
stored in other peer nodes. Such location information, similar to the leaf node
pointers of typical tree-based index structures, is referred to as foreign indexes.
Since the data objects are seen as points in a k-dimensional semantic space,
peer nodes in SSW are placed in this semantic space using the semantics of their
locally stored data objects and are responsible for maintaining foreign indexes
for data objects mapped to their semantic subspaces. As a result, peers in SSW
are self-organized into semantic clusters (with a pre-determined maximum size
M) which correspond to semantic subspaces taken charge of by peers within the
clusters. The peer nodes within a cluster know each other (directly or indirectly)
by keeping track of a pre-determined number (called out-degree, where out-degree
≤ M) of peers within the cluster in a NeighborList. Furthermore, those semantic
clusters are self-organized into a small world network for its search efficiency and
adaptiveness to dynamics.

Figure 2 shows an example of SSW (with M = 4, k = 2). As shown in the
figure, the search space is partitioned into 11 clusters after a series of peer joins
and leaves. Peer 1 in cluster E maintains short range contacts to neighboring
peer clusters A, B and G and a long range contact to a distant peer cluster C.
The contacts of other peers are not shown here for clarity of presentation.

3.2 Construction of Semantic Small World

We now discuss how to construct a small world network depicted above. This
involves three major tasks: 1) obtaining a semantic label that positions a peer
node in the semantic space; 2) forming peer clusters in the semantic space;
3) constructing an overlay network across the logical peer clusters to form a
semantic small world network.
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Fig. 2. An illustrative example for SSW overlay structure.

– Semantic labelling. This task is executed before or when a peer node joins
the network. We assume that each node obtains the SVs for its local data
objects by local computation. A peer clusters its local data objects into data
clusters consisting of data objects with similar semantics [17]. A peer chooses
the centroid of its largest data cluster as its semantic label (also called a join
point) to decide which semantic subspace (and which cluster) the peer is to
be placed in. While we assume a single join point here, multiple join points
can be used as well. Using centroid of the largest data cluster in a peer
node to decide the peer’s position in the semantic space has several positive
effects. For example, if a node has relatively homogeneous data set (which is
likely to be the case in real life), the semantic subspace where a peer resides
in is also where most of its data objects fall into, thereby reducing the cost
to publish foreign indexes. Moreover, the queries issued by the peers in the
nearby subspace usually exhibit similar locality., i.e., a peer is likely to query
for data objects with similar semantic meaning as its own data objects. Our
construction of SSW exploits these characteristics naturally.

– Cluster formation. The SVs of all data objects existing in the system
form a virtual search space. Instead of assigning each node to an individual
subspace (as CHORD does), SSW is made up of peer clusters (with a preset
maximum size M) each capturing a portion of the semantic space. A new
peer node joins a cluster which accommodates its semantic label (i.e., join
point). If the cluster size exceeds M , the cluster will be split into two based on
heuristics (which will be examined later) adopted to maintain good clustering
effect. The benefit of this approach is that the size of semantic subspaces
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adapts to the density of peers and data objects in the semantic space. In
addition, as demonstrated later, clustering makes SSW more stable, and
more adaptive to membership changes than other techniques.

– Overlay network/index construction. To construct the overlay, each
peer node maintains a set of short range contacts pointing to a peer in the
neighboring peer clusters and a certain number of long range contacts. The
long range contacts are obtained by randomly choosing a point in the seman-
tic search space based on a distribution, C

dk where k is the dimensionality
of the semantic space, d is the semantic distance, and C is a normalization
constant that brings the total probability to 1. These extra long range con-
tacts reduce the network diameter and transform the network into a small
world with polylogarithmic search cost.

3.3 Dimension Reduction

An intuitive way to construct SSW is to simply assign short range contacts in
all dimensions of the semantic space. However, for a semantic space with high
dimensionality (e.g., the dimensionality of semantic vector for text documents
such as LSI [2] normally is 50-300), this intuitive scheme makes maintenance
issues complicated due to the decentralized and highly dynamic nature of P2P
systems.

A typical way to address the challenges of high dimensionality is to reduce the
dimensionality. However, well-known space filling curves, including the Hilbert
curve, Z-curve, Gray-coded curve and Peano curve, cannot be employed naturally
for SSW due to the dynamic cluster formation in our proposal that adapts to
data density in the semantic space. In this paper, we develop a simple yet effective
method, called adaptive space linearization, for linearizing the clusters in high
dimensional space into a one-dimensional SSW (termed as SSW-1D) through
the cluster split process.

When a peer joins the network, if its cluster exceeds the pre-defined maximum
cluster size, M , the cluster is partitioned. Our partition strategy is to choose the
two peers in the cluster that are semantically farthermost from each other as the
seeds for splitting. Then, alternatively assign peers to the two sub-clusters based
on the shortest distance to the seeds. Finally, the cluster space is partitioned
at the middle point of the dimension that has the largest span between the
centroids of the semantic labels of the two sub-clusters (low order dimensions
are used to break ties). This is similar to how R-tree nodes are split [3]. Based
on this strategy, we obtain two subspaces that have relatively equal number of
foreign index entries even though the physical size of the two subspaces may not
be equal7.

Next, we describe a naming scheme which preserves the semantic proximity
among clusters as much as possible. To maintain the 1-1 mapping between the
naming of clusters in SSW-1D and their semantic subspaces, we use a 128-bit

7 Existing overlay networks, such as CAN and CHORD, simply partition a space into
two equal sized subspaces.
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binary number (called cluster ID) to name the cluster8. Each peer maintains a
variable, Par Bit, which initially points to the most significant bit of the cluster
ID. Par Bit indicates the bit to be set (to 0/1) in the next cluster split. After
each split, the two sub-cluster decrease their Par Bit by one (reset Par Bit to the
next less significant bit). Algorithm 1 illustrates the cluster ID encoding process.
The first peer cluster in the network sets all bits of its cluster ID to 0. When
peers continue to join the network and eventually trigger a cluster splitting, the
two sub-clusters obtain IDs by resetting the bit pointed by Par Bit separately
and retaining all other bits the same as the ID of the original cluster. The sub-
cluster that has smaller centroid along the partition dimension obtains an ID
with the bit pointed by Par Bit set to 0 and the other one obtains an ID with
the bit pointed by Par Bit set to 1. The same process is employed as more peers
join the system to invoke more splits.

Algorithm 1 Algorithm for cluster ID encoding.

Cluster ID encoding when Cluster i with cluster ID Ci128Ci127...Ci1 is parti-
tioned into two sub-clusters j and k while j has smaller centroid along the
partition dimension. Cj and Ck represent the cluster IDs for Cluster j and
k, respectively.

1: for x = 128 to 1 do
2: if x = Par Bit then
3: Cjx = 0.
4: Ckx = 1.
5: else
6: Cjx = Cix.
7: Ckx = Cix.
8: end if
9: end for

10: Par Bit = Par Bit − 1.

Figure 3 shows the process of adaptive space linearization where the whole
semantic space is partitioned into 11 clusters with the cluster IDs indicated in
the figure. We illustrate the process in a 2-dimensional space where the vertical
lines represent the first dimension and the horizontal lines represent the second
dimension. We assume that the name space is 4-bit long. In this example, the
semantic space is first partitioned along the vertical line as indicated by ”p = 1”
in the figure. At this point, peers at the left side and right side of this line obtain
ID ”0000” and ”1000”, respectively. Then the left side is partitioned along the
horizontal line as indicated by ”p = 2”. At this point, peers at the lower left
side and top left side obtain ID ”0000” and ”0100”, respectively. The solid line
shows the order of the assigned cluster IDs, while the dashed line indicates that
a search can be performed bi-directionally.

8 We assume the name space is representable by 128-bit IDs.
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Fig. 3. An illustrative example for adaptive space linearization.
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Fig. 4. An illustrative example for SSW-1D.

Figure 4 illustrates SSW-1D built upon the naming scheme described above.
A peer in cluster 4 maintains short range contacts to neighboring peer clusters
2 and 5. It also maintains a long range contact to a distant peer cluster 10.
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Table 2. Data structure at each peer of SSW

ClusterState: {ClusterRange, ClusterSize, Par His, Par Bit}
NeighborList: {NodeId}
ShortContact: {NodeId, ClusterRange}
LongContact: {NodeId, ClusterRange}
ForeignIndex: {Semantic Vector, NodeId}

4 Search and Maintenance

Before we present the search and maintenance operations in SSW-1D, we sum-
marize the information maintained in each peer node (in Table 2). ClusterState
consists of ClusterRange, specifying the semantic subspace covered by the cluster
this peer node resides in, ClusterSize, indicating the current size of its cluster,
Par His, recording the previous partitions this peer has been involved in, and
Par Bit, indicating the position of next bit to be set for future sub-clusters
during next partition. Par His consists of tuples of 〈Dimension, Par Pt〉 which
indicates the partition point along the specified dimension. NeighborList, for
intra-cluster search, stores out-degree NodeIds of peer nodes within the same
cluster. ShortContact and LongContact are self-explanatory. Each contact con-
sists of a NodeId and the ClusterRange of the subspace where the pointed node
resides in. ForeignIndex, for the location information of data objects stored at
other nodes, consists of a set of semantic vectors of data objects as well as the
NodeIDs of their source nodes.

4.1 Search

To initiate a content-based search, a requester first generates a search semantic
vector (denoted as SVs) based on the query terms. Here we focus on the search
process, which consists of the flooding search and navigation stages, to reach
the node holding foreign indexes (or the data itself) for data objects satisfying
the query. Correspondingly, the search operation at a peer node has two modes:
search-within-cluster and search-across-cluster. Algorithm 2 illustrates the search
process. When a message is received, a peer node will first check whether SVs

falls within the range of its cluster. If that is the case, it starts search-within-
cluster mode by flooding the message to peers in its NeighborList (except for the
one from whom the message was received9). Then the data object with highest
similarity to the query is returned as the result. Otherwise, the search-across-
cluster mode is invoked. A pseudo-cluster-name (PCN), the estimated cluster
name for the semantic subspace where the query resides in, is calculated for
SVs based on the partition history (Par His) stored at this peer. First, we set
all the bits of PCN to be 0. Iterating through the Par His of the peer, the bits

9 A sequence number is attached to each search message so that a node can recognize
and drop a search message that appeared before.
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of PCN are set as the same value of corresponding bits of this peer’s Cluster
ID as long as the SVs confirms to the same Par His entry. Otherwise, the PCN
resolving process at this node stops and the corresponding bit is set to a different
value since this peer does not have further details about the PCN. The search-
across-cluster mode is initiated/continued by forwarding the search message to
the contact with the shortest naming distance to the PCN. The above process
is repeated until the cluster whose semantic subspace covering SVs is reached.

Algorithm 2 Algorithm for Search.

Search at Peer i : i.search(SVs)

1: if SVs ∈ i.ClusterRange then
2: if receive search(SVs) before then
3: drop search(SVs).
4: else
5: forward search(SVs) to all members in its NeighborList excluding the imme-

diate sender.
6: end if
7: else
8: Calculate PCN for SVs.
9: m = closest contact to PCN of Peer i.

10: forward search(SVs) to m.
11: end if

Here, we show an example to illustrate the search process in SSW-1D. Let’s
go back to Figure 4. Assuming that Peer 1 in Cluster 4 wants to search for
data objects based on SVs [0.9,0.3], it first checks its own cluster range. Since
[0.9,0.3] is not within the subspace of the cluster, Peer 1 then calculates the PCN
for the query. It starts from the first entry in its Par His. The first partition is
at coordinate 0.4 along the first dimension while Cluster 4 is at the left half
([0-0.4]). Therefore, the first bit of the query’s PCN is set to 1 and the PCN
resolving process stops with a PCN=8 for the query. Then Peer 1 checks its
contacts and forwards the search to the closest peer node (in the naming space),
which is a peer in Cluster 10 in this example. When the query reaches a peer in
Cluster 10, this peer re-calculates the PCN for the query since the query is still
not in its cluster range. This time, the query PCN is resolved as ”1011” (i.e.,
Cluster 11). The search is finally forwarded to a peer in Cluster 11, which finds
SVs within its own cluster range, so it floods the cluster for results.

4.2 Peer Join

Peer join needs to be handled properly in order to keep maintenance costs low
while adhering to the effectiveness and efficiency of the SSW. In addition to the
obvious task of locating and joining a cluster, there are two other crucial tasks:
1) cluster splitting, and 2) foreign index publishing.
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– General Process. Let x.label denote the semantic label of the join point
chosen by Peer x. Peer x joins the network by sending a join message with
this join point to an existing Peer i in the network (a list of existing peers
are known to new peers). Peer i first performs a search and directs the join
message to one of the peer nodes (e.g., Peer j) in the cluster that covers the
SV of the join point. This peer node is called a contact peer. If the cluster
size is below the maximum cluster size M , Peer x simply joins the cluster.
The membership changes are disseminated to other members during routine
message exchanges, such as search messages, without additional communi-
cation cost.

– Cluster Splitting. If the cluster size exceeds M , cluster splitting is in-
voked by the contact peer. The contact peer first obtains a complete list of
the semantic labels of all peers in the cluster by polling the peers in the
cluster through flooding. Then it splits the cluster into two according to the
cluster splitting strategy described in Section 3.3. The contact peer finishes
the cluster splitting by informing all peers in its cluster to update their Clus-
terState. In addition, peers transfer the foreign indexes no longer belonging
to their new sub-clusters to the other sub-clusters. A peer also updates its
inter-cluster state (e.g., replacing the ShortContact) and informs the neigh-
boring peer clusters. The cluster splitting operation is invoked infrequently,
i.e., only when the number of active nodes in a cluster exceeds M . Large M

should bring down the maintenance overheads since less number of splits are
conducted. However, the search cost will increase due to flooding within a
cluster. The effect of M will be evaluated in the simulation later.

– Foreign Index Publishing. After joining a cluster, a peer may find that
some of its local data objects do not belong to this cluster. As a result,
the newly joined peer publishes the locations of these data objects to their
corresponding peer clusters (as foreign indexes). The first node (in a corre-
sponding peer cluster) reached during the publishing process adds a tuple
consisting of SV and the NodeID of source node for a data object into its
foreign index store.

4.3 Peer Leave

When a peer leaves the network, it checks whether it is the last peer in the clus-
ter. If there are other peers in the cluster, this peer simply informs its leaving
by transferring its foreign index to a randomly selected peer in its cluster. Oth-
erwise, the semantic subspace of this cluster needs to be merged with one of its
neighboring clusters. To perform a merge, a leaving peer first transfers the for-
eign index to a selected neighboring cluster. The peer receiving the transferred
index updates its cluster range as well as the affected short range contacts. Sim-
ilarly, this change is attached with other routine messages so that other peers in
this newly merged peer cluster update their cluster range as well as the affected
short range contacts.
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4.4 Peer Failure

A failed peer is detected during routine operations such as search. If a peer
detects a failure in one of its long range contacts, it re-establishes this contact
simply as explained in Section 3.2. On the other hand, if the peer detecting a
failure is located in one of the neighboring clusters E of the failed peer, originally
located in cluster F , it is likely that other peers in cluster E maintain short
range contacts to other live peers in cluster F . Therefore, at the expense of two
messages, the short range contact of the detecting peer can be recovered. If a
short range contact of a peer in cluster E cannot be recovered by contacting
other peers in its cluster, it implies that no live peer exists in cluster F . At this
point, cluster merging as described for peer leave could be initiated at cluster
E.

5 Performance Evaluation

We move on to evaluate SSW’s benefits using simulations. We compare SSW-1D
(we refer it as SSW in this section for simplicity) with pSearch, the state-of-
the-art in semantic-based P2P search. The goal of a search is to find a data
object semantically similar to the query specified. Based on [15], pSearch takes
4 groups of the most important dimensions, each with m dimensions (i.e., p = 4,
m = 2.3lnN). The simulation setup, parameters and performance metrics are
explained below.

5.1 Simulation setup

The simulation is initialized by having one node pre-exist in the network and then
injecting node join operations into the network till the network reaches a certain
size (N). After this point, a mixture of operations including peer join, peer leave
and search are randomly (based on certain ratios) injected into the network.
This is also when statistics collection begins. On the average, each peer issues
100 searches during each run of the simulation. The proportion of join to leave
operations is kept the same to maintain the network at approximately the same
size. The simulation parameters, their values and the defaults (unless otherwise
stated) are given in Table 3. Most of these parameters are self-explanatory. More
details for some of the parameters are given below.

Increasing the number of long range contacts should bring down the search
path length, but the maintenance cost will increase. Increasing cluster size should
decrease the maintenance cost at the expense of high search cost within a cluster
due to flooding. These tradeoff are evaluated in detail. Without loss of generality,
the dimensionality of SV (and the semantic space) is set to 100 and the dataset
used in the simulation follows random distribution.

5.2 Metrics

We use the following metrics for our evaluations:
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Table 3. Parameters used in the simulations

Descriptions Values, default

N Number of nodes in the network 256 - 16K, 1K

l Number of long range contacts 1 - 6, 4

M Size of peer clusters 1 - 1024, 8

x Out-degree within peer clusters 4

n Number of data objects per peer 1 - 100, 100

γ Percentage of join/leave operations 0% - 50%, 20%

– Search path length is the average number of logical hops traversed by
search messages to the destination.

– Search cost is the average number of messages incurred per search. Flooding
techniques like Gnutella may have short path length, but their search cost
is high.

– Maintenance cost is the number of messages incurred per membership
change, consisting of overlay maintenance cost and foreign index pub-
lishing cost. In some cases, we also use cost per operation to denote the
amortized number of messages per operation. Cost per operation is calcu-
lated by dividing the total number of messages incurred by all searches and
other operations causing membership changes (e.g., peer join, leave) by the
total number of operations.

6 Simulation Results

In this section, we first demonstrate the scalability of SSW in terms of the size
of the network and the number of data objects in the system. We then examine
the effect of cluster sizes on SSW.

6.1 Scalability

In terms of scalability to network size, we vary the number of nodes from 28 to
214 to evaluate the search efficiency and maintenance cost of SSW with differ-
ent numbers of long range contacts (i.e., 1-6). Since pSearch does not use any
clustering, we disable the clustering feature of SSW (i.e., cluster size is set to 1)
in these experiments. A later experiment will evaluate SSW with various cluster
sizes and show that it can perform even better with appropriate cluster sizes.

Figure 5 shows the average path length when we vary the number of long
range contacts from 1 to 6. Since the size of peer clusters is set to 1 in this
experiment, there is no flooding within a cluster and thus the average search
path length for SSW represents the search cost as well. The search path length
for SSW increases slowly with the size of network. The slope of pSearch’s path
length is close to SSW with 4 long range contacts but with a much higher offset.
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Fig. 5. Comparing the network size scalability of the schemes with respect
to search path length. Results for SSW are shown with different number of
long range contacts.
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Fig. 6. Comparing the network size scalability of the schemes with respect
to overlay maintenance cost.

Overlay maintenance cost is proportional to the number of states maintained
at each peer, which are 20 and 2+ l (2 short range contacts and l long range con-
tacts) for pSearch and SSW respectively. Figure 6 shows the overlay maintenance
cost for the same experiments as Figure 5. These two figures confirm our expec-
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tation that compared to pSearch, SSW can achieve better search performance
with much smaller number of states maintained per peer.
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Fig. 7. Comparing the foreign index publishing costs as a function of the
number of data objects per peer.

The other maintenance cost to consider is the overhead of publishing for-
eign index at peer joins (apart from the cost shown in Figure 6). This cost is
proportional to the number of data objects that need to be published, and the
corresponding relationship is shown in Figure 7 for different long range contacts.
Due to the fact that pSearch has to publish a data object multiple times, the
index publishing cost for pSearch is much higher than SSW.

Having considered the costs of individual operations, it is important to put
these in perspective to understand the trade-offs between search efficiency and
the maintenance overheads. This is obviously a function of the proportion (γ) of
different operations that are being considered. In Figure 8, we show the average
cost per operation for different values of γ on the x-axis. In the graph, the bars
for pSearch (the last bar) are given for easier comparison.

The number of long range contacts (l) for SSW can be tuned according to
network stability. For instance, if a network is relatively stable with infrequent
membership changes, the number of long range contacts can be increased to
reduce search path length. In other environments where membership changes
frequently, long range contacts can be limited to a small number to keep the
maintenance costs low (these are again confirmed by the results in Figure 8).
We find that 4 long range contacts is a reasonable trade-off point between search
efficiency and maintenance overhead, and we use this value in next experiment.
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Fig. 8. Effect of varying γ, the percentage of Join/ Leave under different
number of long range contacts.

6.2 Clustering Effects

Until now the size of the peer cluster (M) has been set at 1. When M is larger,
cluster splits or merges occur less frequently, resulting in lower overlay mainte-
nance costs. Further, the total number of clusters in the system decreases with
larger cluster sizes, thereby reducing searches across clusters. The down-side of
large sized clusters is the higher search cost within a cluster (due to flooding).
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Fig. 9. Effect of Varying γ, the percentage of Join/Leave operations under
different cluster size.
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The effect of the cluster size on cost per operation are given in Figure 9.
The cluster size is varied between 1 (the size used in the simulations until now)
and 1024 (the whole network is one big cluster). We also vary the percentage of
join/leave operations in this set of experiment. From this figure, we can see that
within a spectrum of cluster sizes between 2 and 16, SSW does better than the
size of 1 (whose results were presented in the previous section) in terms of cost
per operation.

Similarly, the size of peer clusters can be tuned to an optimal point according
to application requirements and network stability. The size of peer clusters can
be increased to reduce maintenance overhead under unstable environments where
peers join or leave the network frequently, and can be decreased to make search
more focussed under stable environments.

7 Conclusion

Peer-to-Peer applications such as Napster and Gnutella have made the Internet
a popular medium for resource and information exchange between thousands of
participating users. A primary consideration in the design of such applications is
the search efficiency and network traffic while being scalable to network size and
data volume. In this paper, we propose an overlay network, namely, semantic
small world (SSW), to support semantic based search in peer-to-peer systems.
Peers in SSW reside in a semantic space in accordance with the semantics of data
objects stored locally and form clusters with other peers residing in the same
semantic subspace. These peer clusters are self-organized into a small world net-
work which has efficient search performance with low maintenance overhead. To
address the issues of high dimensionality, we proposed a dynamic dimension re-
duction method, called adaptive space linearization, to map a high dimensional
semantic space to a one-dimensional SSW. SSW facilitates efficient search with-
out incurring high maintenance overhead. By placing and clustering peers in
the semantic space based on the semantics of their data objects, SSW adapts
to distribution of data automatically. With these attractive features, we believe
that SSW can have a significant impact on the deployment of large scale P2P
applications.

We are currently conducting more in-depth simulations and evaluating effects
of various factors, such as skewness of data distribution, node failure rate, etc.,
on the performance of SSW. We are also exploiting strategies for various types of
searches, such as K nearest neighbor search and partial lookup. We are exploiting
resource heterogeneity amongst peers by dynamically adjusting number of join
points, long range contacts and cluster size. We also plan to investigate locality
of interest in multiple queries.
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