
KPT: A Dynamic KNN Query Processing Algorithm for
Location-aware Sensor Networks

Julian Winter Wang-Chien Lee

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
Email: {jwinter, wlee}@cse.psu.edu

Abstract

An important type of spatial queries for sensor
networks are K Nearest Neighbor (KNN) queries.
Currently, research proposals for KNN query pro-
cessing is based on index structures, which are
typically expensive in terms of energy consump-
tion. In addition, they are vulnerable to node fail-
ure and are difficult to maintain in dynamic sensor
networks. In this paper, we propose KPT, an al-
gorithm for dynamically processing KNN queries
in location-aware sensor networks. KPT shows
great potential for energy savings and improved
query latency. Since the tree infrastructure is con-
structed only temporarily, KPT is less vulnerable
to sensor node failure.

1 Introduction
Recent research on accessing data available in sensor net-
works has been focused on index structures, data stor-
age, routing algorithms, data dissemination and aggrega-
tion techniques [2, 4, 6, 8, 7, 9, 15]. A major goal of these
proposals is to support various types of queries posed to a
sensor network from any location. A query is transmitted
from the query source to the sensor nodes or network loca-
tions that contain the data needed to satisfy the query. The
results (i.e., data collected at the sensor nodes) are then ag-
gregated (if allowed) and returned back to the query source.
The main requirement for query processing is to incur as
little energy expenditure as possible without dropping the
queries or sacrificing execution latency.

Spatial queries such as window/range queries and k
nearest neighbors (KNN) search are particularly relevant

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

to sensor network applications because the data needed
for these applications is often geographically distributed in
the network. Several approaches have been proposed that
support window/range queries in sensor networks [5, 14],
while a preliminary study of the KNN queries in sensor
networks, called Peer-Tree, has just started [1]. Peer-tree, a
distributed index structure based on the design principle of
R-trees, ignores the fact that sensor nodes are susceptible
to radio interference, signal attenuation, and fading. As a
result of these radio problems index structures are difficult
to implement in sensor networks and expensive to main-
tain in terms of energy consumption. This paper introduces
the KNN Perimeter Tree (KPT) Algorithm for supporting
KNN queries. KPT exploits the fact that KNN queries
are geographically-based to achieve energy savings and in-
creased fault tolerance. A preliminary performance evalua-
tion is given to demonstrate the capabilities of KPT. For this
paper we are assuming a stationary, location-aware sensor
network. KPT assumes that sensors are aware of their ge-
ographical neighbors needed to support geographical rout-
ing. Sensor data is stored using local storage which can be
organized as cache lines based on sensing event types. A
given sensor can aggregate data over a period of time; for
example a line in the cache may represent the sensing data
of a minute.

This paper is organized as follows. In Section 2 we in-
troduce KNN queries in sensor networks and review rele-
vant research efforts. Then we introduce the KPT algorithm
in Section 3 and its analysis in Section 4. Finally, Section 5
concludes this study and discusses the future work.

2 Related Work

In this section we describe the background of sensor net-
works, KNN queries and related research contributions.

2.1 KNN Query in Sensor Networks

k-Nearest Neighbor (KNN) queries of spatial data have
been an interesting research topic for some time [10, 11]. A
KNN query is initiated by a query source node and involves
finding the k spatially nearest objects to a given query point

119

within the sensor network. Centralized or distributed in-
dex structures such as the R-tree have provided support for
KNN queries [3]. However, in the context of sensor net-
works, technical issues such as node failures (caused by de-
pleted energy resources or communication problems) make
such index structures unwieldy and inefficient for executing
KNN queries.

KNN queries can be classified into two types for sensor
networks. For Type 1 queries, we assume that all sensor
nodes locally store sensor data and are able to answer a spe-
cific query constrained by a geographical query condition.
For example, assume that a query desires the k nearest tem-
perature readings to some query point and all sensor nodes
have a sensing component to measure temperature. In this
case, the query needs to be transmitted to the k geograph-
ically nearest sensor nodes to the desired query point. The
KNN nodes sample the temperature data and return it back
to the query source node.

For Type 2 KNN queries, we assume that some addi-
tional query condition precludes the ability of all sensors to
satisfy a query despite being located inside the desired ge-
ographic region. Type 2 queries request sensor data about
the k nearest events to some given query point. These
event locations are unpredictable and therefore determin-
ing which k sensors to transmit the query to for execution
is more complicated than Type 1. In this paper, we con-
sider only Type 1 KNN queries and leave support of Type
2 KNN queries as future work.

2.2 Geographical Routing

We assume for this research that sensor networks are sta-
tionary and location aware and that sensor nodes are knowl-
edgeable about neighbor nodes within their radio range.
Given these assumptions, several algorithms exist that can
route messages towards geographic locations.

The Greedy Perimeter Stateless Routing (GPSR) algo-
rithm is a geographical routing algorithm which operates
in two modes in location-aware sensor networks: greedy
mode and perimeter mode [4]. In greedy mode, the for-
warding node forwards the message to the neighbor near-
est the destination. If no such neighbor exists, the al-
gorithm switches to perimeter mode, which, given a pla-
narized graph of the network topology, routes messages
around voids in the network. GPSR can be employed for
routing Nearest Neighbor (NN) queries in sensor networks.
Given a desired location, GPSR can continue to route the
query message until the NN to the query point is reached.
The nearest neighbor sensor node can be confirmed by rout-
ing in perimeter mode around the query point. Due to this
nice property, GPSR was selected as the routing protocol
for implementing KPT.

2.3 Peer-Tree

To the best of our knowledge, Peer-Tree (PT) is the only
other proposal in the literature that is able to support KNN
queries. Peer-tree applies the decentralized R-tree index

structure to ad-hoc sensor networks in order to support
location-based queries [1].

Like with the R-tree, the sensor network is partitioned
into Minimum Bounding Rectangles (MBRs). Each MBR
covers a geographical region and includes as a member any
sensor node inside that area. The clusters are then orga-
nized in a hierarchical fashion until one overall cluster ge-
ographically spans the entire network. For each cluster, a
specific node is designated as a clusterhead, which knows
the location and ID of all sensors that belong to the MBR
cluster. Furthermore, it knows the location and ID of the
clusterheads of any child clusters and its parent cluster-
head. Although the authors do not discuss the physical
layer of the network topology directly, it is logical that that
the authors assume the clusterhead can communicate with
all nodes within its MBR as well as its parent.

In Peer-Tree, queries do not originate at the root of the
tree, but come up from the level 0 child nodes since it is
desirable to allow queries to be spawned from random lo-
cations in the network. NN queries can be locally scoped to
include only the largest MBR necessary for satisfying the
query. For handling NN queries, the source node routes the
query message to its clusterhead. The clusterhead deter-
mines whether the query point is within its MBR. If so, the
clusterhead then begins the algorithm for finding the NN. If
it is not, the clusterhead forwards the query to its parent for
processing. Eventually a clusterhead is reached that cov-
ers the area that contains both the query source and query
point. This clusterhead becomes the Peer-Tree root node
for processing the query.

The traditional branch-and-bound algorithm [10] is ex-
ecuted by the root node. Beginning with the child MBRs
of the root, the partition list is sorted by MINDIST and
the Peer-Tree is recursively traversed while a NN leaf node
candidate is maintained and used for pruning MBRs. Sup-
porting KNN queries with Peer-Tree is more complicated
and not discussed by the Peer-Tree authors. For Peer-Tree
to execute the query, it must be sent to the parent of the
highest clusterhead required for finding the NN in order to
guarantee that all candidate nodes will be evaluated (unless
the query is already at the root clusterhead). At this point,
the same branch-and-bound technique is employed except
that a sorted buffer of at most k nearest neighbors is main-
tained and pruning is done according to the distance of the
furthest nearest neighbor in this buffer.

There are several problems with the Peer-Tree approach.
First, query messages must typically be routed through sev-
eral layers of clusterheads. Transmission between clus-
terheads is executed largely independently of the physical
geographic direction and distance. Depending on the net-
work topology and the locations of clusterheads, it is possi-
ble that many unnecessary hops are included when routing
messages towards query points. Furthermore, the cluster-
heads become communication bottlenecks where network
congestion is likely (depending on the rate of submitted
queries) especially if the distances between clusterheads is
large and additional transmitting power is required. Ad-

120

ditionally, adding hierarchical infrastructure to sensor net-
works is inherently problematic since sensor networks are
highly unstable. To handle the issue of fault tolerance,
the authors propose using a lease period for all clusterhead
nodes so that the hierarchical infrastructure is re-evaluated
periodically.

3 KNN Perimeter Tree
Our hypothesis is that geographical routing algorithms
such as GPSR can be used to approach shortest-path rout-
ing such that overall improved performance and fault toler-
ance is possible for KNN queries. Minimizing the individ-
ual responsibilities of sensor nodes makes the network less
vulnerable to failure since there are no critical nodes in the
network. Furthermore, less communication is necessary to
maintain index or topology information in the network.

The KNN Perimeter Tree (KPT) builds upon GPSR [4]
for processing KNN queries. KPT is deployed at all sensor
nodes during network deployment. GPSR can successfully
deliver messages to the nearest neighbor of any query point
in the network. Since data is only available at the sensor
nodes that generate them, a query need only be routed to the
sensor nodes that own the data. All nodes in the network
may participate in processing/forwarding queries.

The KPT algorithm can be broken down into phases as
follows:

1. find the nearest neighbor and a maximum KNN
boundary;

2. find k − 1 nearest neighbors;

3. disseminate and execute query;

4. return result.

3.1 Find NN and a Maximum KNN Boundary

The query message is geographically routed from the query
source towards the query point specified in the query.
Based on GPSR, the message will eventually reach the geo-
graphically nearest neighbor to the query point. This node
is designated as the home node of the KNN query. The
home node is assigned temporary responsibilities for orga-
nizing the dissemination of the query and processing the
results. This responsibility does make the home node vul-
nerable to node failure however only for the short duration
of the time needed to process the query.

To avoid flooding a query to the whole network, a max-
imum KNN boundary is estimated to restrict the search
space for finding the remaining k−1 nearest neighbors. We
consider several approaches for determining this boundary
while the query message is being routed to the home node.
These approaches seek to determine a circular boundary in
terms of a radius distance centered at the query point which
is guaranteed to contain the KNN sensor nodes and the ap-
proaches have different tradeoffs.

An intuitive approach (called SUMDIST) for determin-
ing the boundary is to add the position of each sensor node
on the forwarding path from the query source to the home

Home node

Query point

Figure 1: KPT home node and perimeter

node to a list in the query message. When the home node is
reached, the distance between the home node position and
the k-th position in the list serves as the maximum bound-
ary. This approach has a higher communication cost since
up to k locations are transmitted along with the query at
every hop. For large values of k, this cost can be large.

A second approach (called MHD-1) includes only a
counter variable, and a maximum hop distance (MHD)
value which represents the largest distance value for any
one hop on the route between the query source node and
the home node. The counter variable is incremented at
each forwarding hop until it reaches k. MHD always main-
tains the largest hop distance visited. After the query mes-
sage reaches the home node, the maximum KNN boundary
value can be determined by multiplying the MHD value by
k. The advantage of this approach is that the cost of deter-
mining the maximum KNN boundary is less than the naive
approach since only a few values are transmitted with the
query message (independent of k). However, the search
boundary is likely to be larger (and thus less efficient) than
the boundary obtained from the naive approach.

An improvement on the second approach (called MHD-
2) is to minimize the MHD value by plotting the hop dis-
tance along the direct path between the query source and
query destination using geometry instead of taking the di-
rect hop distance between neighbor nodes. However, the
location of the query source node has to be added to the
query message at an additional energy cost.

An assumption that is made for all three methods is that
at least k hops occur on the route between the query source
and the home node. Therefore, it is necessary to consider
the case when fewer than k hops occur. To solve this prob-
lem we estimate the boundary by taking the MHD value
and multiplying it by k (even for the naive approach). We
believe that this estimation should be fairly good for many
cases; however in implementing the KPT algorithm, we
must consider the case when the estimation fails.

Figure 1 demonstrates the state of the KPT algorithm af-
ter the query has been routed to the nearest neighbor home
node and the perimeter has been established. The query
point is illustrated with a star and the home node which
connects the incoming geographical route with the perime-

121

ter route is solid.

3.2 Find k − 1 Nearest Neighbors

Given that the query is at the home node which knows the
maximal KNN boundary, the next step is to determine the
IDs and locations of the k − 1 nearest neighbor nodes. A
naive approach is to simply flood the query to all nodes
within the circular KNN boundary centered at the query
point. However, flooding expends excess energy, particu-
larly if nodes are densely packed with much overlapping of
radio and sensing ranges.

We propose the Perimeter Tree which is designed to re-
duce the number of total messages required to determine
the (k − 1)-NN nodes and for disseminating the query to
them. The philosophy of this approach is to divide the
boundary circle into regions for each of which a minimum
spanning tree can be constructed that is rooted at a perime-
ter node. The subtrees expand in the direction away from
the destination. The individual trees are bounded by the
circular boundary and the two subtree boundaries on both
sides.

The perimeter nodes that encircle the query point each
make up a root of a minimum spanning tree that expands
away from the destination and is bounded by the circu-
lar KNN boundary. The perimeter nodes are determined
when the query message is transmitted by the home node
in GPSR perimeter mode to validate the home node as the
NN to the query point similar to the Perimeter Refresh Pro-
tocol in GHT [9]. At each hop around the perimeter, the
midpoint on the line between Perimeter nodes is computed
and by plotting a line from the query point through the mid-
point to the circular boundary the subtree boundaries are
determined, similar to a Voronoi cell [12].

The next step is to establish the spanning trees in each
of the bounded areas that are rooted at the perimeter nodes.
The goal is to build a tree with as few messages transmitted
as possible and with also the shortest possible latency. By
having multiple trees rooted at the perimeter nodes instead
of one tree rooted at the home node the maximum height
of the trees is reduced which reduces the overall query la-
tency, although in highly irregular networks balancing the
tree may not be possible which would affect the query la-
tency but not the correctness. The construction of the tree
begins with the perimeter root node which knows the query
point, the two subtree boundaries (the midpoints between
it and its two perimeter neighbors) and the circular KNN
boundary. At a minimum, this information is transmitted
to its potential children along with other information spec-
ified in Phase 3. In a tree, nodes only have one parent and
belong to a certain level of the tree. Finally, a child node
responds to its parent after hearing from its children and
transmitting all node level information including node IDs
and locations. This information is forwarded to the perime-
ter root which then transmits it to the home node. The home
node then has all the locations of all nodes within the circu-
lar KNN boundary which it can then sort by their distance
from the query point and thus determine the KNN node set.

Figure 2: KNN Perimeter Tree

The perimeter boundaries are employed in order to keep
the tree as balanced as possible and thus reduce the over-
all query latency. However, strictly enforcing this bound-
ary for construction of the tree may exclude nodes that are
within the circular boundary but are out of communication
range of all potential parent nodes within its median bound-
ary. Therefore we allow nodes to select a parent outside its
tree boundary, but only if it does not hear a request from
another potential parent from within its tree boundary. Al-
though it may be possible for a sensor node to exist within
the circular boundary and be completely disconnected from
all other nodes within the circular boundary, it is unlikely.
Furthermore, this would tend to happen towards the edge
of the circular boundary reducing the probability that the
disconnected node belongs to the KNN set.

Figure 2 demonstrates the state of the KPT after the
Perimeter Tree has been established. The perimeter nodes
are used to construct the tree boundaries to minimize the
total height of the tree.

3.3 Disseminate and Execute Query

After Phase 2, the home node is aware of the IDs and lo-
cations of the KNN nodes. The next step is for the query
to be disseminated for execution. A naive approach is for
the home node to unicast or multicast using the Perimeter
Tree the query to the KNN nodes. In order to reduce the
overall latency, we propose combining the query dissem-
ination with the Perimeter Tree establishment from Phase
2. As the Perimeter Tree is constructed, the actual query
is transmitted to all tree members for automatic execution.
This approach should have drastically improved latency,
but less efficient energy performance since more than the
KNN nodes actually execute the query. Imposing a quota
system on the number of nodes to execute a query per sub-
tree can reduce the execution cost without increasing the la-
tency. The quota estimation method assigns the top q nodes
of every subtree to execute the query automatically where
q is a quota estimation defined in Equation (1) and p is the
number of perimeter nodes and c is an adjustable parameter
which trades off the quota size and the number of retrans-
missions needed when quota estimations fail.

122

q =
k

p
+ c (1)

The q value is set by the perimeter root node and decre-
mented as it is assigned to nodes farther down the tree. The
nodes assigned to execute the query do so and return the
results back to the home node as the tree is constructed.
The remaining nodes in the tree that are not assigned by
the quota to execute the query automatically simply return
location information.

After the tree is constructed, the home node receives the
p× q results along with all the location and ID results from
all nodes within the circular KNN boundary. The home
node determines the KNN node set and whether the quota
results include all necessary data to satisfy the KNN query.
If any members of the KNN node set did not return quota
estimation results, then the quota failed and must be re-
solved. The resolution can be handled simply by unicast-
ing the query to the missing nodes and routing the results
back, adding additional overhead and latency and is thus
undesirable. The c parameter can be adjusted by experi-
ment to determine the appropriate quota size. Flooding is
used to execute the query if the circular boundary is un-
derestimated using one of the MHD methods which adds
considerable energy and latency costs. However, we feel
that this situation will be rare.

3.4 Return Results

After the home node has collected the query results, it
needs to transmit them back to the query source by unicas-
ting the results geographically using GPSR. The Perime-
ter Tree can be destroyed after the location information
has been returned to the home node. We reiterate that the
Perimeter Tree only exists for a short period of time and
therefore is only vulnerable to node failure very briefly un-
like Peer-Tree.

4 Preliminary Performance Analysis
To give an idea of the capabilities of KPT versus Peer-Tree,
we performed a mathematical analysis on both approaches
in terms of the number of messages required to execute
a query. For the analysis, we assume that nodes are uni-
formly distributed. To determine the cost processing KNN
queries with KPT and Peer-Tree, we define some parame-
ters which are listed in Table 1.

For analyzing the performance of KNN query process-
ing, we break the execution into three phases for both KPT
and PT:

• Phase 1 consists of the number of messages required
to reach the home node for KPT or the Peer-Tree MBR
root node.

• Phase 2 represents the cost of executing the query by
getting the query to the KNN nodes and returning the
results back to the Phase 1 home node.

Variable Definition
h Height of Peer-Tree
l Average distance between nodes
n Number of nodes in network
x Number of nodes in KNN PT MBR
f MBR fanout (.69×M)
s Square axis of network (s× s)
d Average query distance
k Number of nearest neighbors required
m Minimum children per MBR
M Maximum children per MBR
Pi Probability a PT node is accessed at level i

Table 1: Summary of Parameters for Analysis

• Phase 3 represents the cost of returning the query re-
sults back to the query source node.

Estimating the query execution cost for KPT is fairly
simple. For phases 1 and 3, we can estimate the number of
hops required to route a message to the query source node
and the home node and back by using the expression d

l .
For phase 2, we estimate the number of messages as two
messages per node inside the circular boundary. We can
compute the average number of nodes inside the circular
boundary by dividing the area of the circular boundary by
the average area per sensor node (density) and thus we de-
fine the number of messages as 2×(π×(k × l)2)/((s2/n)).

Performance analysis of Peer-Tree is more complicated.
We refer to the analysis of KNN queries for R*-Trees [13]
which is similar to Peer-Tree except that message transmis-
sions are used instead of disk accesses when information
from a node is needed. For phases 1 and 3, the number
of messages required to transmit the query message to the
root parent node and the results back is the number of lev-
els in the tree from level 0 to the level of the root parent.
The level of the root parent is one above the smallest MBR
that contains the query point and the query source node.
For estimating the size of the smallest MBR that contains
the query point and the source node we assume an average
square-shaped MBR where the query distance d makes up
half the bisecting hypotenuse with an area of 2 × d2. The
number of sensor nodes contained within the parent of the
MBR that spans the source node and query point can be
estimated as x = (h × 2 × d2)/((s2)/(n)). We can deter-
mine the height of the tree needed to execute the query as
h = 1 + �logf (x

M)� [13].
For computing the cost of phase 2 for Peer-Tree,

we use the same formula for node accesses defined as∑h−1
i=0 (ni × Pi) where h is the height of the tree, Pi is

the probability that a node at level i is accessed and ni is
the total number of nodes at level i [13]. Due to the space
constraints of this paper, we leave the details to [13]. Two
messages are required for each node access, one to deliver
the query and one for a response.

For constructing experiments using the mathematical
analysis the following default parameters were used. A
network size of 100 × 100 meters2 was used with a node

123

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

k

M
es

sa
ge

s

KPT
PT

Figure 3: Experiment 1: Effect of k

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

Query Distance (d)

M
es

sa
ge

s

KPT
PT

Figure 4: Experiment 2: Effect of query distance

density of 500 uniformly distributed sensors. The average
query distance used was 30 meters with a k value of 3.
For Peer-Tree, each MBR contained between 3 and 6 chil-
dren. The metric used for analysis was simply the num-
ber of messages required to execute the query for KPT and
Peer-Tree.

Figure 3 demonstrates the effect of k on the performance
of KPT and Peer-Tree. The results show that while Peer-
Tree is not affected by the value of k, KPT performs bet-
ter for lower k values, specifically with k smaller than 6.
This makes sense since the larger the k value, the larger the
circular query boundary which includes more nodes in the
query.

Figure 4 shows the effect of the query distance on the ex-
ecution performance of both approaches. The effect of the
query distance on KPT is minimal; only a very small linear
increase for KPT while Peer-Tree suffers an exponential in-
crease in the number of messages as the query distance in-
creases. This is due to the fact that the size of the spanning
parent MBR grows much larger and the height of the tree
increases as well. Although not demonstrated here, Peer-
Tree is also affected by the size of the child node capacity
and the node density of the network.

We acknowledge that this analysis is primitive by sim-
ply counting the number of messages of an individual query

and does not take into account that the messages for Peer-
Tree would likely have to be transmitted at a higher power
level and are thus more expensive. The size of the mes-
sages, per-bit cost of transmission and query execution
costs are also not considered here. Most importantly, this
analysis assumes that all required infrastructure for Peer-
Tree is in place, i.e., the considerable cost for constructing
and maintaining the tree is not demonstrated. Nonetheless,
KPT is able to perform often significantly better than Peer-
Tree for executing KNN queries. Fault tolerance to node
failure is also not demonstrated. Considering fault toler-
ance and actual energy consumption will be demonstrated
through simulation in our future work.

5 Conclusion

We believe that KPT shows potential for improving perfor-
mance in terms of energy consumption and latency for pro-
cessing KNN queries in sensor networks. Our preliminary
analysis shows that KPT can achieve significant energy
savings over Peer-Tree in terms of the number of messages
required to execute a KNN query without even compar-
ing the costs required to construct and maintain the Peer-
Tree infrastructure when compared to the minimal neigh-
bor information required for geographical routing. Addi-
tionally, although not demonstrated through analysis, KPT
intuitively is more fault tolerant than Peer-Tree.

For the future work of this project, simulation experi-
ments are under construction that are designed to back up
the claims of this paper. Additionally, further improve-
ments of KPT may be possible if assumptions can be made
about the node distribution. Furthermore, we intend to also
investigate the use of KNN queries in mobile sensor net-
work environments by employing routing protocols for dy-
namic networks. Finally, we intend to consider supporting
Type 2 KNN queries with KPT.

References

[1] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer
spatial queries in sensor networks. In Proc. of the
3rd IEEE International Conference on Peer-to-Peer
Computing, Linkping, Sweden, September 2003.

[2] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy,
and S. Shenker. DIFS: A distributed index for features
in sensor networks. In Proceedings of the IEEE ICC
Workshop on Sensor Network Protocols and Applica-
tions, Anchorage, AK, April 2003.

[3] Antonin Guttman. R-trees: A dynamic index struc-
ture for spatial searching. In SIGMOD Conference,
pages 47–57, 1984.

[4] B. Karp and H.T. Kung. GPSR: Greedy perimeter
stateless routing for wireless networks. In Proceed-
ings of the 6th Annual International Conference on
Mobile Computing and Networking, pages 243–254,
2000.

124

