
ar
X

iv
:1

40
7.

74
98

v1
 [

cs
.D

S]
 2

8
Ju

l 2
01

4

Directed Multicut with linearly ordered terminals

Robert F. Erbacher

Army Research Lab

robert.f.erbacher.civ@mail.mil

Trent Jaeger

Penn State University

tjaeger@cse.psu.edu

Nirupama Talele

Penn State University

nrt123@psu.edu

Jason Teutsch

Penn State University

teutsch@cse.psu.edu

July 29, 2014

Abstract

Motivated by an application in network security, we investigate the follow-
ing “linear” case of Directed Multicut. Let G be a directed graph which
includes some distinguished vertices t1, . . . , tk. What is the size of the smallest
edge cut which eliminates all paths from ti to tj for all i < j? We show that this
problem is fixed-parameter tractable when parametrized in the cutset size p via
an algorithm running in O(4ppn4) time.

1 Multicut requests as partially ordered sets

The problem of finding a smallest edge cut separating vertices in a graph has received
much attention over the past 50 years. Directed Multicut, one of the more
general forms of this problem, encompasses numerous applications in algorithmic
graph theory.

Name: Directed Multicut.

Instance: A directed graph G and pairs of terminal vertices
{(s1, t1), . . . , (sk, tk)} from G.

Problem: Find a smallest set of edges in G whose deletion eliminates all paths
si → ti.

Special cases of the Directed Multicut problem have been met with success,
although the general problem has no polynomial-time solution unless P = NP. The

1

http://arxiv.org/abs/1407.7498v1
robert.f.erbacher.civ@mail.mil
tjaeger@cse.psu.edu
nrt123@psu.edu
teutsch@cse.psu.edu

classical and efficient Ford-Fulkerson algorithm [9] solves Directed Multicut for
the case of a single pair of terminal vertices, yet deciding whether there exists a
minimum edge cut of a given size separating both s from t and t from s in a directed
graph is NP-complete [10] as is deciding the size of a minimum edge cut separating
three vertices in an undirected graph [8].

While Directed Multicut appears intractable from the perspective of NP-
completeness, it remains an open problem to determine whether we can find an
efficient parametrized solution for Directed Multicut. In practice we can opti-
mize our solution based on other parameters besides the input length. In the case
of Directed Multicut, the relevant parameters are the number of (sets of) ter-
minal vertices k and and the size of the smallest solution, or cutset, p. Formally a
problem is fixed parameter tractable (FPT) in parameters k and p if there exists an
algorithm which, on input x, either gives a solution consistent with parameters k
and p or correctly decides that no such solution exists in at most f(k, p) · poly(|x|)
steps for some computable bound f .

Some subcases of Directed Multicut already have FPT solutions within the
realm of fixed-parameter tractability. Recently Kratsch, Pilipczuk, Pilipczuk, and
Wahlström [13] showed that Directed Multicut restricted to acyclic graphs is
fixed-parameter tractable when parameterized in both the size of the cutset and
the number of terminals. Chitnis, Hajiaghayi, and Marx [5], on the other hand,
investigated Directed Multicut with restrictions of the terminal pairs. They
showed that Directed Multiway Cut, the special case of Directed Multicut

where all pairs of terminal vertices must be separated in both directions, is FPT
when parametrized in just the size of the cutset. In the negative direction, Marx
and Razgon [15] showed that Directed Multicut is W[1]-hard when parameter-
ized the size of the cutset. Thus an FPT solution for Directed Multicut, if
such an algorithm exists, most likely requires parameterization in the number of
terminals in addition to the size of the cutset. We remark that in this same paper
[15] Marx and Razgon also showed that the undirected Multicut problem is FPT
when parametrized in the size of the cutset. Bousquet, Daligault, and Thomassé
independently achieved this same result [2].

We now formalize the Poset Cut problem, a subject which derives from a
network security framework [18]. We shall show that Poset Cut is equivalent to
Directed Multicut with respect to fixed parameter tractability.

Name: Poset Cut

Instance: A directed graph G = (V,E) with terminal vertices T ⊆ V , a par-
tially ordered set P , and a surjective map ℓ : T → P .

Problem: Find a minimum set of edges S ⊆ E so that for all terminal vertices
x, y ∈ T , if there is a path from x to y in (V,E \ S) then ℓ(x) ≥P ℓ(y).

2

The Poset Cut problem is immediately a special case of Directed Multicut.
Indeed, given an instance of Poset Cut, we can read off from the poset P and
mapping ℓ : T → P those pairs of terminals which must be separated in the Poset

Cut solution. These pairs together with the original input graph give us an instance
of Directed Multicut such that an edge cut is a solution to the Poset Cut

instance if and only if it is a solution to the Directed Multicut instance. Thus
if Directed Multicut is fixed-parameter tractable, then so is Poset Cut. We
now show that the reverse is also true.

Theorem 1. If Poset Cut is FPT, then so is Directed Multicut. In par-
ticular, given an instance of Directed Multicut with k terminal pairs and a
permitted maximum of p cuts, we can efficiently find an instance of Poset Cut

with at most 2k terminal nodes and a permitted maximum of p cuts such that the
Poset Cut instance has a solution iff the Directed Multicut instance does.

Proof. Consider an instance of Directed Multicut consisting of a graph G, for-
bidden terminal pairs s1 6→ t1, . . . , sk 6→ tk, and a cutsize parameter p. We define
the corresponding Poset Cut instance as follows. The graph G′ will consist of all
the nodes and edges in G plus some extra nodes and edges. For each terminal node
si, add a node ai and enough paths from ai to si so that ai and si remain connected
in any solution for the Poset Cut instance. In more detail

• add p+ 1 nodes ci,1, . . . , ci,p+1,

• add an edge from ai to each ci,j , and

• add a further edge from each ci,j to si.

Similarly for each terminal node ti, we add a node bi and connect ti to bi with many
paths: make p + 1 new nodes di,1, . . . di,p+1, add an edge from ti to each di,j, and
add an edge from each di,j to bi. We define the poset for this Poset Cut instance
as follows: set ai to be greater than bj for all i 6= j, and all other pairs of terminal
nodes are designated as incomparable.

By construction, there is a path ai → bi iff there is a path si → ti, and this
condition holds even when up to p edges are deleted from G′. If there is a Poset

Cut solution on G′ under the given poset with at most p cuts, there is a further
solution which is identical but avoids cutting any paths between ai and si or ti and
bi. Hence we may assume that the solution has all its cuts inside the embedding of G
within G′. Transferring these cuts back to the original graph G gives a solution for
the Directed Multicut instance. On the other hand, any solution for Directed

Multicut in G will also be a solution for Poset Cut in G′ because the only paths
between pairs of terminal vertices in the Poset Cut instance start at some ai and
end at some bj.

3

Edwards, Jaeger, Muthukmaran, Rueda, Talele, Teutsch, Vijayakumar [16] and
Jaeger, Teutsch, Talele, Erbacher [19] distilled the placement of host security medi-
ators on a distributed system to a solution for the Poset Cut problem. They in-
terpreted the components of a distributed system as nodes in a directed graph with
edges indicating which components can communicate directly with others. Some
information traveling through a network will have high integrity, and other infor-
mation will have lower integrity, and security is achieved by blocking all flows from
lower integrity to higher integrity nodes. Terminal nodes represent both the pos-
sible attack surfaces and higher integrity entities in the system, and each terminal
corresponds to a specific integrity level as measured by the poset. In this context,
we can interpret Poset Cut as a search for minimum intervention which mediates
between all illegal information flows.

For the remainder of this paper, we will focus on the subcase of Poset Cut

where the poset is a chain.

Name: Linear Cut

Instance: A directed graph (V,E) and a tuple of terminal sets 〈T1, . . . , Tk〉
which are subsets of V .

Problem: Find a smallest set of edges S ⊆ E such that for any s ∈ Ti and
t ∈ Tj , if there is a path from s to t in (V,E \ S), then i ≥ j.

That is, Linear Cut wants to find a smallest edge cut which prevents every
terminal set Ti from flowing to Tj whenever j > i. We shall show that Linear

Cut, which is NP-hard in the sense of Proposition 6, is FPT when parameterized
in the size of the cutset. Rephrased in terms of posets, Chitnis, Hajiaghayi, and
Marx’s algorithm [5] for Directed Multiway Cut shows that Poset Cut is FPT
parametrized in the cutset size when the underlying poset is an antichain.

2 A parameterized algorithm for Linear Cut

We shall show that Linear Cut is FPT when parametrized in the size of cutset.
Before presenting our parametrized algorithm, we first analyze the following example
which illustrates why the näıve greedy cut does not yield an optimal solution. The
graph given in Figure 1 has three terminal vertices t0, t1, and t2, and we would like
to find a small set of edges whose removal eliminates all paths from t0 to either t1 or
t2 as well as all paths from t1 to t2. Consider the greedy algorithm which uses the
Ford-Fulkerson algorithm to first eliminate all paths from t0 to the other terminal
vertices and then again to extinguish the paths from t1 to t2. A minimal edge cut

4

from t0 to the set {t1, t2} has size 3, so let us assume that the algorithm chooses
edges {a, b, c}. Now a minimal edge cut from t1 to t2 has size 2, for example {h, i}.
Thus this greedy algorithm solves the Linear Cut instance with a cut of size 5.
On the other hand, {d, e, f, g} is a solution of size 4.

Figure 1 The greedy algorithm is not optimal.

t0

t1 t2

a b c

d h i

e

g

f

We now describe our parametrized solution for Linear Cut. Our algorithm
either outputs a solution cut of size less ≤ p or returns NO if no such cut exists.
Our construction exploits a technique used in Chen, Liu, and Lu’s fixed-parameter
solution [3] to the Multiway Cut problem in undirected graphs which improved
a result of Marx [14]. A similar idea appeared earlier in Chen, Liu, Lu, O’Sullivan,
and Razgon’s algorithm [4] for Skew Separator, a key step in their parametrized
solution for Directed Feedback Vertex Set. We remark that the pushing of
important separators technique along the lines of [14, Theorem 3.7] gives a param-
eterized solution for Linear Cut in time O(4p

3
nO(1)), and using a reduction to

the Skew Separator algorithm in [4] one can also show that Linear Cut has a
solution which runs in the same time as the algorithm given below, namely O(4ppn4).

An (X,Y)-separator is a set of edges such that any path from X to Y passes
through one of its members. Our solution, Algorithm 1 proceeds in two phases. First
we handle the trivial cases where T = 〈〉, p = 0, or T1 is either already separated
from the other terminals or can’t be separated with p edge cuts (lines 1–12). The
second phase picks an edge pointing out of the T1 region and checks whether making
it undeleteable hurts the min size of a (T1, T2 ∪ · · · ∪ Tk)-separator. If not we add
the edge to the list of undeleteable edges, and if so we branch on the only two
possibilities: either the edge belongs in the Linear Cut solution or it doesn’t.

The following theorem gives the main justification for this algorithm. A set of
edges is a linear cut with respect to the k-tuple of terminals 〈T1, . . . , Tk〉 if there is
no path from Ti to Tj whenever i < j once these edges have been removed.

5

Algorithm 1 FPT algorithm for Linear Cut parameterized in cutset size.

Input: A graph G = (V,E), a k-tuple of terminal sets 〈T1, T2, . . . Tk〉 which are
subsets of V , some undeletable edges F ⊆ E, and a parameter p.

Output: A set of ≤ p edges in E \ F such that when these edges are deleted from
G there is no path from Ti to Tj for any i < j, if such a set of edges exists,
otherwise return NO.

1: function LC((V,E), 〈T1, . . . , Tk〉, F, p)
2: For ease of reading, let T = 〈T1, . . . , Tk〉.
3: if T = 〈〉 then return ∅;
4: else if p ≤ 0 then

5: if for all i < j, Tj is not reachable from Ti in G then return ∅;
6: else return NO;
7: end if

8: end if

9: let m be the size of a minimum (T1, T2 ∪ · · · ∪ Tk)-separator which does not
include edges from F .

10: if m > p or no separator exists due to undeleteable edges then return NO;
11: else if m = 0 then return LC((V,E), 〈T2, . . . , Tk〉, F, p);
12: else

13: let e ∈ E \ F be an edge with a tail reachable from T1 via undeleteable
edges.

14: if the size of a minimum (T1, T2 ∪ · · · ∪ Tk)-separator which does not
include edges from F ∪ {e} exists and is equal to m, then

15: return LC((V,E),T , F ∪ {e}, p);
16: else if {e} ∪ LC((V,E \ {e}),T , F, p − 1) or LC((V,E),T , F ∪ {e}, p) is

not NO, then
17: return the first of these two found to have a solution;
18: else

19: return NO;
20: end if

21: end if

22: end function

6

Theorem 2. Let 〈(V,E),T , F, p〉 be an input to Algorithm 1, where T is an ab-
breviation for 〈T1, . . . , Tk〉, and let e be an edge pointing from some node reachable
from T1 via undeleteable edges to a node outside T1 ∪ F . Suppose that the smallest
(T1, T2 ∪ · · · ∪ Tk)-separator with undeletable edges F is the same size as the small-
est (T1, T2 ∪ · · · ∪ Tk)-separator with undeletable edges F ∪ {e} and has cardinality
at most p. Then the smallest linear cut among the terminal sets 〈T1, . . . , Tk〉 with
undeletable edges F in (V,E) has the same size as the smallest linear cut among
these same terminals with undeletable edges F ∪ {e}.

Proof. First note that making edges undeleteable can only increase the size of the
smallest cut. Hence it suffices to show, under the hypothesis of the theorem, that
the smallest linear cut with forbidden edges F ∪ {e} is no bigger than a minimal
linear cut with forbidden edges F .

Let S be a minimal (T1, T2 ∪ · · · ∪ Tk)-separator with undeletable edges F ∪ {e}.
Then S is also a separator between these same sets with undeletable edges F , and
by the assumption of the theorem S is also a minimal such separator. Let W be
a minimal linear cut in G = (V,E) for T with undeletable edges F , and let R
denote the set of edges that are reachable from T1 in (V,E \S). We shall show that
W ′ = (W ∪ S) \R is a linear cut in G for T with undeletable edges F ∪ {e} which
is no larger than W . Since making edges undeletable can only increase the size of a
smallest solution, W ′ will indeed be minimal.

For clarity, we reformulate the problem instance without undeletable edges. We
replace each undeletable edge (x, y) ∈ F ∪ {e} with p + 1 new, regular edges from
x to y, whereby transforming the graph into a multigraph without any undeletable
edges. Now any linear cut (resp. (T1, T2∪· · ·∪Tk)-separator) consisting of at most p
edges will be a solution in the transformed multigraph if and only if it is a solution in
the original graph. The reason is that there are not enough total cuts in the instance
to sever connectivity between any vertices with p+ 1 multiedges. Thus these edges
are effectively undeletable, and of course cuts not involving undeletable edges or
multiedges will work the same in both the original and transformed instance.

First we argue that W ′ is not larger than W by proving |S \W | ≤ |W ∩R|.
Since S does not contain any of the undeletable, multiedge parts of G, by Menger’s
Theorem [12, Theorem 7.45], or more precisely its generalization to sets of vertices
[3, Lemma 1], there are |S| disjoint edge paths from T1 to

⋃
j>1 Tj , each containing

an edge in S. It follows that there are |S \W | disjoint edge paths from T1 to S \W .
Now suppose that |W ∩R| < |S \W |. Then there must be a path from T1 to some
edge x ∈ S \W which avoids W ∩ R. Furthermore, by minimality of S, there is a
path from x to some terminal set Tj with j > 1. But now there is a path from T1

to some Tj which avoids W , contradicting that W is a linear cut.
It remains to show that W ′ is in fact a linear cut in G for T with undeletable

edges F ∪ {e}. Let Q be a forbidden path. If Q does not intersect R, then it must
pass through W \R and hence through W ′. On the other hand, suppose that Q does
pass through R. Since T1 is the least-indexed terminal set, Q must end at Tj for

7

some j > 1, and therefore Q must pass through S ⊆ W ′. In either case, removing
W ′ eliminates the forbidden path Q.

Theorem 3. Algorithm 1 finds a solution in time O[4pp · (|V | + |E|) · |E|], if one
exists, and outputs NO otherwise.

Proof. Line 13 of Algorithm 1 selects an edge e ∈ E \ F for consideration. If the
condition for edge e in line 14 holds, then preserving e does not hurt the (T1, T2 ∪
· · · ∪ Tk)-separator, and therefore by Theorem 2 no harm comes to the Linear

Cut instance by adding e to the list of undeletable edges. If this condition is not
satisfied, then the algorithm exhaustively searches both for a solution containing the
edge e (Option 1) and for a solution not containing e (Option 2). In Option 1, the
algorithm searches for a solution of size p−1 containing e, and in Option 2, the size
of the smallest(T1, T2 ∪ · · · ∪ Tk)-separator increases by 1. Along any branch of the
algorithm, either of these two Options can occur at most p times for each terminal
before the algorithm returns NO, and the latter happens only when exhaustive
search fails to find a solution. Hence the algorithm eventually terminates with the
correct answer.

We can refine our analysis further to show that there are at most 4p possible
branches in the algorithm. We argue that any branch of the algorithm witnesses at
most 2p branching splits. Suppose that the initial input parameter is p and that the
smallest (T1, T2 ∪ · · · ∪ Tk)-separator has size m. Since each iteration of Option 1
decreases the size of the minimal (T1, T2 ∪ · · · ∪ Tk)-separator by 1, the path which
always chooses Option 1 will witness exactly m branches up to the point where
Line 11 of Algorithm 1 recognizes that T1 has been separated and removes it from
further consideration. Each time Option 2 is chosen along the path, the size of the
smallest(T1, T2 ∪ · · · ∪ Tk)-separator increases by at least 1, so if Option 2 happens
r times, then Option 1 must happen a total of at least m + r times before T1 is
separated. Thus the size of the cutset size parameter when T1 becomes separated is
at most p−m− r, the initial parameter value minus the number of times Option 1
was chosen, and the total number of splits witnessed is (m+ r)+ r, which is at most
twice the number of edges added to the cutset. The same counting argument holds
for separators for successive Ti’s and it follows that each search path can witness at
most 2p splits in case the algorithm succeeds.

The number of steps between each encounter with an Option is essentially the
time required to check whether a separator size p exists, which is O[p(|V |+ |E|)] by
the argument in [3, Lemma 2], times the number edges. The multiplicative factor
of |E| comes from the potential recursion in line 15. Hence the total runtime is
O[22pp · (|V |+ |E|) · |E|].

Corollary 4. Linear Cut is fixed-parameter tractable when parameterized in the
size of the cutset.

8

3 Hardness result

Marx and Razgon [15] showed that Directed Multicut parameterized in the size
of the cutset is W[1]-hard by reducing this problem to the known W[1]-hard problem
Clique. Therefore the following is immediate from Theorem 1.

Corollary 5. Poset Cut is W[1]-hard when parameterized in the size of the cutset.

Whether Directed Multicut is fixed-parameter tractable when parameter-
ized in both the size of the cutset and the number of terminals remains an open
problem, even in the case where we fix the number of terminal pairs at k = 3 [5, 15].
Linear Cut for k = 2 is possible via the Ford-Fulkerson algorithm, however for
longer chains the problem also becomes NP-hard.

Proposition 6. Deciding whether a Linear Cut instance has a solution of size p
is NP-complete for k = 3 terminals.

Proof. Linear Cut is trivially in NP as one can easily check by breadth-first search
whether a given set of edges is a solution.

We reduce the undirected Multiway Cut problem for k = 3, which is NP-hard
[8], to the Linear Cut problem for k = 3. Let G be an undirected graph with
terminal nodes s, t and u be an instance of Multiway Cut, the problem of finding
a smallest edge cut which separates s, t, and u. Construct a new directed graph
G′ which has the same vertices as G except for each edge e = {x, y} in G we also
add two new vertices ae and be. The edges from G do not carry over to G′, and
instead we add directed edges (x, ae), (y, ae), (ae, be), (be, y), and (be, x). We call
this collection of edges the gadget for e. Our Linear Cut instance consists of the
graph G′ together with the embedded terminals nodes s, t, and u from G with the
(arbitrary) tuple ordering 〈s, t, u〉. Technically we treat the terminal nodes here as
singleton sets when formulating this instance of Linear Cut.

Assume C = {e1, . . . , ep} is a Multiway Cut solution for G. We claim that
C ′ = {(ae1 , be1), . . . , (aep , bep)} is then a Linear Cut solution for G′. Suppose there
were some prohibited path in G′ between two terminals, say s and t, which avoids
C ′. This path must have the form

s → a(s,x1) → b(s,x1) → x1 → a(x1,x2) → b(x1,x2) → x2 → · · · → t

for some vertices x1, x2, . . . in G. Contracting all the ai’s and bi’s from this path
yields a path from s to t in G which avoids C, which is impossible.

Conversely, assume that C ′ = {d1, . . . , dp} is a Linear Cut solution for G.
For each i ≤ p, let ei be the gadget for the edge in G which di belongs to. Then
C = {e1, . . . , ep} is a Multiway Cut solution for G as any path x1 → · · · → xk
between terminals in G avoiding C gives rise to a path between the same terminals
in G′ which avoids C ′, namely

x1 → a(x1,x2) → b(x1,x2) → x2 → a(x2,x3) → b(x2,x3) → x3 → · · · → xk,

9

which cannot exist. Thus Multiway Cut is polynomial-time reducible to Linear

Cut.

4 Approximation

It seems difficult to efficiently approximate Directed Multicut [1, 6, 11], which
indicates that Poset Cut may not have a good approximation algorithm either.
The best known polynomial-time approximation algorithm for Directed Multi-

cut is just under O(
√
n) [1]. We wonder whether Linear Cut may be easier to

approximate.
Recall that Directed Multiway Cut is the problem of Poset Cut restricted

to the instances where the underlying poset is an antichain.

Name: Directed Multiway Cut

Instance: A directed graph (V,E) and a tuple of terminal sets T1, . . . , Tk which
are subsets of V .

Problem: Find a smallest set of edges S ⊆ E such that there is no path from
Ti to Tj in (V,E \ S) for all i 6= j.

Garg, Vazirani, and Yannakakis [10] gave a 2 log n approximation for Directed

Multiway Cut, later improved to a factor of 2 by Naor and Zosin [17] using
an LP relaxation. The undirected Multiway Cut problem for k terminals has a
simple 2 − 2/k approximation algorithm using isolated cuts [8] and even a 1.5 −
2/k approximation using LP relaxation [7] (see also [20]). By making two calls
to Algorithm 1, we can obtain a simple approximation to Directed Multiway

Cut which runs faster than Chitnis, Hajiaghayi, and Marx’s 22
O(p)

nO(1)-time exact
solution [5] but does not beat Naor and Zosin’s polynomial-time 2-approximation
[17].

Corollary 7. One can find a solution for Directed Multiway Cut of instance
size n in time O(4ppn4) which is within a factor of two of optimal whenever a
solution of size p exists.

Proof. Assume that T1, . . . , Tk are the terminal sets which need to be separated in
the directed graph (V,E). Using Algorithm 1, make one Linear Cut which cuts
using the terminal sets 〈T1, . . . , Tk〉 and another which uses this k-tuple reversed,
〈Tk, . . . , T1〉. The union of these two cuts is a solution to the Directed Multiway

Cut instance, when both exist, and neither cut is larger than the smallest possible
solution.

10

References

[1] Amit Agarwal, Noga Alon, and Moses S. Charikar. Improved approximation
for directed cut problems. In Proceedings of the thirty-ninth annual ACM sym-
posium on Theory of computing, STOC ’07, pages 671–680, New York, NY,
USA, 2007. ACM.

[2] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is fpt.
In Proceedings of the 43rd annual ACM symposium on Theory of computing,
STOC ’11, pages 459–468, New York, NY, USA, 2011. ACM.

[3] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm
for the minimum node multiway cut problem. Algorithmica, 55(1):1–13, May
2009.

[4] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A
fixed-parameter algorithm for the directed feedback vertex set problem. Journal
of the ACM, 55(5):21:1–21:19, November 2008.

[5] Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-
parameter tractability of directed multiway cut parameterized by the size of
the cutset. In Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’12, pages 1713–1725. SIAM, 2012.

[6] Julia Chuzhoy and Sanjeev Khanna. Hardness of cut problems in directed
graphs. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, STOC ’06, pages 527–536, New York, NY, USA, 2006. ACM.

[7] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approxima-
tion algorithm for multiway cut. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, STOC ’98, pages 48–52, New York, NY,
USA, 1998. ACM.

[8] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiway cuts (extended abstract). In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, STOC
’92, pages 241–251, New York, NY, USA, 1992. ACM.

[9] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Technical
report, 1956.

[10] Naveen Garg, Vijay Vazirani, and Mihalis Yannakakis. Multiway cuts in di-
rected and node weighted graphs. In Serge Abiteboul and Eli Shamir, editors,
Automata, Languages and Programming, volume 820 of Lecture Notes in Com-
puter Science, pages 487–498. Springer Berlin / Heidelberg, 1994.

11

[11] Anupam Gupta. Improved results for directed multicut. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’03,
pages 454–455, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[12] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.

[13] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström.
Fixed-parameter tractability of multicut in directed acyclic graphs.
http://arxiv.org/abs/1202.5749.

[14] Dániel Marx. Parameterized graph separation problems. Theoretical Computer
Science, 351(3):394–406, 2006.

[15] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut pa-
rameterized by the size of the cutset. In Proceedings of the 43rd annual ACM
symposium on Theory of computing, STOC ’11, pages 469–478, New York, NY,
USA, 2011. ACM.

[16] Divya Muthukumaran, Sandra Rueda, Nirupama Talele, Hayawardh Vijayaku-
mar, Trent Jaeger, Jason Teutsch, and Nigel Edwards. Transforming commod-
ity security policies to enforce Clark-Wilson integrity. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC 2012), December
2012.

[17] J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway
cut problem. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, (FOCS ’97), pages 548–553, 1997.

[18] Lee Pike. Post-hoc separation policy analysis with graph algorithms. In Work-
shop on Foundations of Computer Security (FCS 2009). Affiliated with Logic
in Computer Science (LICS)(August 2009), 2009.

[19] Nirupama Talele, Jason Teutsch, Trent Jaeger, and Robert F. Erbacher. Using
security policies to automate placement of network intrusion prevention. In
Engineering Secure Software and Systems, volume 7781 of Lecture Notes in
Computer Science, pages 17–32. Springer, Berlin Heidelberg, 2013.

[20] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2003.

12

http://arxiv.org/abs/1202.5749

	1 Multicut requests as partially ordered sets
	2 A parameterized algorithm for Linear Cut
	3 Hardness result
	4 Approximation

