Interprocedural Data Flow Analysis

Uday P. Khedker

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

Apr 2009
Part 1

About These Slides
Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

Apart from the above book, some slides are based on the material from the following books

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.
Outline

- Issues in interprocedural analysis
- Functional approach
- The classical call strings approach
- Modified call strings approach
Part 3

Issues in Interprocedural Analysis
Interprocedural Analysis: Overview

- Extends the scope of data flow analysis across procedure boundaries
 Incorporates the effects of
 - procedure calls in the caller procedures, and
 - calling contexts in the callee procedures.

- Approaches:
 - Generic: Call strings approach, functional approach.
 - Problem specific: Alias analysis, Points-to analysis, Partial redundancy elimination, Constant propagation
Inherited and Synthesized Data Flow Information

<table>
<thead>
<tr>
<th>Data Flow Information</th>
<th>x</th>
<th>Inherited by procedure r from call site c_i in procedure s</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Inherited by procedure r from call site c_j in procedure t</td>
<td></td>
</tr>
<tr>
<td>x'</td>
<td>Synthesized by procedure r in s at call site procedure c_i</td>
<td></td>
</tr>
<tr>
<td>y'</td>
<td>Synthesized by procedure r in t at call site procedure c_j</td>
<td></td>
</tr>
</tbody>
</table>
Inherited and Synthesized Data Flow Information

• Example of uses of inherited data flow information

Answering questions about formal parameters and global variables:
 ▶ Which variables are constant?
 ▶ Which variables aliased with each other?
 ▶ Which locations can a pointer variable point to?

• Examples of uses of synthesized data flow information

Answering questions about side effects of a procedure call:
 ▶ Which variables are defined or used by a called procedure?
 (Could be local/global/formal variables)

• Most of the above questions may have a May or Must qualifier.
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures

Call multi-graph
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures

Call multi-graph
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures

Call multi-graph
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures

Call multi-graph
Program Representation for Interprocedural Data Flow Analysis: Call Multi-Graph

Supergraphs of procedures

Call multi-graph
Program Representation for Interprocedural Data Flow Analysis: Supergraph

```
Start\textsubscript{main}

\hspace{0.5cm} a + b

Call p

\hspace{0.5cm} \text{End}_p

\hspace{0.5cm} \text{End}_{\text{main}}

\hspace{0.5cm} \text{Start}_p

\hspace{0.5cm} \text{Call } q

\hspace{0.5cm} n_1 \quad d = a + b

\hspace{0.5cm} \text{Call } p

\hspace{0.5cm} n_3 \quad d + 1

\hspace{0.5cm} \text{Call } p

\hspace{0.5cm} n_4

\hspace{0.5cm} \text{End}_q

\hspace{0.5cm} \text{Start}_q

\hspace{0.5cm} \text{Call } p

\hspace{0.5cm} a = 1

\hspace{0.5cm} \text{End}_q
```

Apr 2009
Program Representation for Interprocedural Data Flow Analysis: Supergraph
Program Representation for Interprocedural Data Flow Analysis: Supergraph
Program Representation for Interprocedural Data Flow Analysis: Supergraph

```
Start
main

a + b

Call p

C1

R1

End_main

Startp

C2

Call q

R2

Endp

n1 d = a + b

C3

Call p

R3

n3

Endp

Startq

a = 1

R4

n4

C4

Endq
```
Program Representation for Interprocedural Data Flow Analysis: Supergraph

\[a + b \]

\[\text{Call } p \]

\[C_1 \]

\[a \times b \]

\[\text{End}_{main} \]

\[n_1 \]

\[d = a + b \]

\[\text{Call } q \]

\[C_2 \]

\[n_3 \]

\[d + 1 \]

\[\text{End}_q \]

\[\text{Start}_{main} \]

\[\text{Start}_p \]

\[\text{Call } p \]

\[C_3 \]

\[\text{Call } p \]

\[C_4 \]

\[a = 1 \]

\[n_2 \]

\[n_4 \]
Program Representation for Interprocedural Data Flow Analysis: Supergraph

\[\text{Start}_{\text{main}} \rightarrow a + b \rightarrow \text{Call p} \rightarrow \text{C1} \rightarrow \text{Call p} \rightarrow \text{C2} \rightarrow \text{Call q} \rightarrow \text{R1} \rightarrow \text{End}_{\text{main}}\]

\[\text{Start}_{p} \rightarrow d = a + b \rightarrow \text{C3} \rightarrow \text{Call p} \rightarrow \text{R3} \rightarrow \text{End}_{p}\]

\[\text{Start}_{q} \rightarrow a = 1 \rightarrow \text{Call p} \rightarrow \text{C4} \rightarrow \text{R4} \rightarrow \text{End}_{q}\]
Validity of Interprocedural Control Flow Paths

Interprocedurally valid control flow path
Validity of Interprocedural Control Flow Paths

Interprocedurally valid control flow path
Validity of Interprocedural Control Flow Paths

Interprocedurally valid control flow path
Validity of Interprocedural Control Flow Paths

Interprocedurally invalid control flow path
Validity of Interprocedural Control Flow Paths

Interprocedurally invalid control flow path
Validity of Interprocedural Control Flow Paths

Interprocedurally valid control flow path
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths

- *Ensuring Safety.* All valid paths must be covered
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths.
- **Ensuring Safety.** All *valid* paths must be covered.
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths
- **Ensuring Safety.** All valid paths must be covered
- **Ensuring Precision.** Only valid paths should be covered.

A path which represents legal control flow
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths.
- **Ensuring Safety.** All valid paths must be covered.
- **Ensuring Precision.** Only valid paths should be covered.

A path which represents legal control flow

Subject to merging data flow values at shared program points without creating invalid paths.
Safety, Precision, and Efficiency of Data Flow Analysis

- Data flow analysis uses static representation of programs to compute summary information along paths.

- **Ensuring Safety.** All valid paths must be covered.

- **Ensuring Precision.** Only valid paths should be covered.

- **Ensuring Efficiency.** Only relevant valid paths should be covered.

A path which represents legal control flow.

Subject to merging data flow values at shared program points without creating invalid paths.
Safety, Precision, and Efficiency of Data Flow Analysis

Data flow analysis uses static representation of programs to compute summary information along paths.

- **Ensuring Safety.** All valid paths must be covered.
- **Ensuring Precision.** Only valid paths should be covered.
- **Ensuring Efficiency.** Only relevant valid paths should be covered.

Subject to merging data flow values at shared program points without creating invalid paths.

A path which represents legal control flow.

A path which yields information that affects the summary information.
Flow and Context Sensitivity

• Flow sensitive analysis:
 Considers intraprocedurally valid paths
Flow and Context Sensitivity

- Flow sensitive analysis:
 Considers \textit{intraprocedurally} valid paths

- Context sensitive analysis:
 Considers \textit{interprocedurally} valid paths
Flow and Context Sensitivity

- Flow sensitive analysis: Considers *intraprocedurally* valid paths

- Context sensitive analysis: Considers *interprocedurally* valid paths

- For **maximum statically attainable precision**, analysis must be both flow and context sensitive.
Flow and Context Sensitivity

- Flow sensitive analysis: Considers *intraprocedurally* valid paths
- Context sensitive analysis: Considers *interprocedurally* valid paths
- For maximum statically attainable precision, analysis must be both flow and context sensitive.

MFP computation restricted to valid paths only
Context Sensitivity in Interprocedural Analysis

\[x' = f_r(x) \quad \text{and} \quad y' = f_r(y) \]
Context Sensitivity in Interprocedural Analysis

\[S_s \rightarrow C_i \rightarrow R_i \rightarrow E_s \]

\[C_j \rightarrow R_j \rightarrow E_t \]

\[S_r \rightarrow R_r \rightarrow f_r \rightarrow E_r \]

\[x \rightarrow y \rightarrow x' \]

\[y' \rightarrow y \]
Context Sensitivity in Interprocedural Analysis
Context Sensitivity in Interprocedural Analysis

\[
\begin{align*}
S_s & \xrightarrow{x} C_i \\
C_i & \xrightarrow{c_i} R_i \\
R_i & \xrightarrow{x'} E_s \\
S_r & \xrightarrow{f_r} E_r \\
E_r & \xrightarrow{y'} R_j \\
R_j & \xrightarrow{c_j} E_t \\
E_t & \xrightarrow{y} S_t
\end{align*}
\]
Context Sensitivity in Interprocedural Analysis

\[S_s \xrightarrow{x} C_i \xrightarrow{x'} R_i \xrightarrow{x'} E_s \]

\[C_j \xrightarrow{y} S_r \xrightarrow{f_r} E_r \]

\[E_r \xrightarrow{y'} R_j \xrightarrow{y'} E_t \]
Context Sensitivity in Presence of Recursion

\[u \rightarrow S_k \rightarrow S_r \rightarrow S_p \rightarrow S_i \rightarrow S_q \rightarrow E_i \rightarrow E_q \rightarrow E_p \rightarrow E_k \rightarrow E_r \rightarrow v \]
Context Sensitivity in Presence of Recursion

\[u \rightarrow S_p \rightarrow S_i \rightarrow S_q \rightarrow S_j \rightarrow S_r \rightarrow S_k \rightarrow u \]

\[v \rightarrow E_p \rightarrow E_k \rightarrow E_r \rightarrow E_q \rightarrow E_i \rightarrow E_j \rightarrow E_q \rightarrow E_r \rightarrow E_p \rightarrow \ldots \]
Context Sensitivity in Presence of Recursion

\[u \rightarrow S_p \rightarrow S_i \rightarrow S_q \rightarrow S_j \rightarrow S_r \rightarrow S_k \rightarrow f \rightarrow f' \rightarrow S_p \]

\[v \rightarrow E_p \rightarrow E_k \rightarrow E_r \rightarrow E_q \rightarrow E_i \rightarrow f' \]
Context Sensitivity in Presence of Recursion
Context Sensitivity in Presence of Recursion

\[\begin{align*}
S_p & \xrightarrow{S_k} S_r \\
S_i & \xrightarrow{S_q} S_j \\
\end{align*}\]
Context Sensitivity in Presence of Recursion

\[f \rightarrow S_p \rightarrow S_k \rightarrow S_r \rightarrow S_j \rightarrow S_q \rightarrow f' \rightarrow h \rightarrow g' \rightarrow g \rightarrow E_p \rightarrow E_i \rightarrow E_q \rightarrow E_j \rightarrow E_k \rightarrow E_r \]
Context Sensitivity in Presence of Recursion

\[u \rightarrow S_p \rightarrow S_k \rightarrow S_r \rightarrow S_j \rightarrow S_q \rightarrow f \rightarrow f' \rightarrow h \rightarrow g' \rightarrow v \]

\[v \rightarrow E_p \rightarrow E_i \rightarrow E_q \rightarrow E_j \rightarrow E_r \rightarrow E_k \]
Context Sensitivity in Presence of Recursion

The diagram illustrates the context sensitivity in the presence of recursion. The nodes represent different states and functions, and the arrows indicate the flow of recursion and context sensitivity. The diagram uses different colors to differentiate between the various states and functions: red for one set of states, blue for another, and grey for a third. The arrows show the recursive calls and the backward analysis flow, indicating how context sensitivity is handled in the interprocedural analysis.

The functions and states are labeled with symbols: f, g, and other variables representing the different parts of the program's execution context. The diagram is a visual representation of how context sensitivity is managed in complex recursive programs.
Context Sensitivity in Presence of Recursion

\[S_p \rightarrow S_i \rightarrow S_q \rightarrow f \rightarrow S_j \rightarrow S_k \rightarrow S_r \rightarrow u \]

\[E_p \rightarrow E_i \rightarrow E_q \rightarrow g \rightarrow E_j \rightarrow E_k \rightarrow E_r \rightarrow v \]
Context Sensitivity in Presence of Recursion

\[u \xrightarrow{S_p} S_i \xrightarrow{S_q} f \xrightarrow{S_j} S_r \xrightarrow{S_k} u \]

\[u \xrightarrow{f'} \xrightarrow{h} \xrightarrow{g'} \xrightarrow{v} \]

\[u \xrightarrow{f'} \xrightarrow{f} \xrightarrow{h} \xrightarrow{g'} \xrightarrow{v} \]

\[u \xrightarrow{f'} \xrightarrow{f} \xrightarrow{h} \xrightarrow{g'} \xrightarrow{v} \]

\[u \xrightarrow{f'} \xrightarrow{f} \xrightarrow{h} \xrightarrow{g'} \xrightarrow{v} \]
Context Sensitivity in Presence of Recursion

\[\begin{align*}
S_k & \xrightarrow{f'} S_j \\
S_p & \xrightarrow{f'} S_i \\
S_i & \xrightarrow{h} S_q \\
E_i & \xrightarrow{g'} E_q \\
E_p & \xrightarrow{g'} E_k \\
E_k & \xrightarrow{h} E_r \\
E_r & \xrightarrow{g} v
\end{align*} \]
Context Sensitivity in Presence of Recursion

For a path from u to v, g must be applied exactly the same number of times as f.

For a prefix of the above path, g can be applied only at most as many times as f.
Staircase Diagrams of Interprocedurally Valid Paths
Staircase Diagrams of Interprocedurally Valid Paths

\[u \xrightarrow{f'} C_p \xrightarrow{C_i} C_q \xrightarrow{C_j} C_r \xrightarrow{C_k} u \]

\[v \xrightarrow{R_p} R_k \xrightarrow{R_r} R_j \xrightarrow{R_q} R_i \xrightarrow{C_i} C_q \xrightarrow{C_p} v \]
Staircase Diagrams of Interprocedurally Valid Paths
Staircase Diagrams of Interprocedurally Valid Paths

\[u \rightarrow C_p \rightarrow C_k \rightarrow C_r \rightarrow C_i \rightarrow C_q \rightarrow h \rightarrow f' \rightarrow C_p \]

\[v \rightarrow R_p \rightarrow R_k \rightarrow R_r \rightarrow R_i \rightarrow R_q \rightarrow C_q \rightarrow R_q \rightarrow R_i \rightarrow R_p \]
Staircase Diagrams of Interprocedurally Valid Paths
Staircase Diagrams of Interprocedurally Valid Paths

\[u \rightarrow C_p \rightarrow C_k \rightarrow C_r \rightarrow C_j \rightarrow v \]

\[f' \rightarrow C_i \rightarrow C_q \rightarrow h \rightarrow C_i \]

\[C_p \rightarrow C_i \rightarrow C_q \rightarrow C_j \rightarrow C_r \rightarrow C_k \rightarrow C_q \]

\[R_p \rightarrow R_k \rightarrow R_r \rightarrow R_q \rightarrow R_j \]

Apr 2009

IIT Bombay
Staircase Diagrams of Interprocedurally Valid Paths
Staircase Diagrams of Interprocedurally Valid Paths
Staircase Diagrams of Interprocedurally Valid Paths

```plaintext
C_1 → C_2 → C_3 → R_3 → C_4 → R_4 → C_5 → R_5 → C_6 → R_6 → C_7
C_8
```

Apr 2009

IIT Bombay
"You can descend only as much as you have ascended!"
Staircase Diagrams of Interprocedurally Valid Paths

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
Flow Insensitivity in Data Flow Analysis

- Assumption: Statements can be executed in any order.
- Instead of computing point-specific data flow information, summary data flow information is computed. The summary information is required to be a safe approximation of point-specific information for each point.
- \(\text{Kill}_n(x) \) component is ignored. If statement \(n \) kills data flow information, there is an alternate path that excludes \(n \).
Flow Insensitivity in Data Flow Analysis

Assuming that $\text{DepGen}_n(x) = \emptyset$, and $\text{Kill}_n(X)$ is ignored for all n
Flow Insensitivity in Data Flow Analysis

Assuming that $\text{DepGen}_n(x) = \emptyset$, and $\text{Kill}_n(X)$ is ignored for all n.

Control flow graph

Flow insensitive analysis

Function composition is replaced by function confluence
Flow Insensitivity in Data Flow Analysis

If $\text{DepGen}_n(x) \neq \emptyset$ for some basic block

$$\text{DepGen}_0(x) \neq \emptyset$$
$$\text{DepGen}_1(x) \neq \emptyset$$
$$\text{DepGen}_2(x) = \emptyset$$
$$\text{DepGen}_3(x) = \emptyset$$
$$\text{DepGen}_4(x) = \emptyset$$
$$\text{DepGen}_5(x) \neq \emptyset$$

Control flow graph

Flow insensitive analysis
Flow Insensitivity in Data Flow Analysis

An alternative model if $\text{DepGen}_n(x) \neq \emptyset$
Flow Insensitivity in Data Flow Analysis

An alternative model if \(\text{DepGen}_n(x) \neq \emptyset \)

\[
\begin{array}{c}
\text{Start} \\
0 \quad f_0 \\
1 \quad f_1 \\
2 \quad f_2 \\
i \quad f_i \\
m \quad f_m \\
\text{End}
\end{array}
\]

Allows arbitrary compositions of flow functions in any order \(\Rightarrow \) Flow insensitivity
Flow Insensitivity in Data Flow Analysis

An alternative model if $\text{DepGen}_n(x) \neq \emptyset$

In practice, dependent constraints are collected in a global repository in one pass and then are solved independently
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

1. a = &b
2. c = a
3. a = &d
4. a = &e
5. b = a
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

Constraints

<table>
<thead>
<tr>
<th>Node</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_a \supseteq {b}$</td>
</tr>
<tr>
<td>2</td>
<td>$P_c \supseteq P_a$</td>
</tr>
<tr>
<td>3</td>
<td>$P_a \supseteq {d}$</td>
</tr>
<tr>
<td>4</td>
<td>$P_a \supseteq {e}$</td>
</tr>
<tr>
<td>5</td>
<td>$P_b \supseteq P_a$</td>
</tr>
</tbody>
</table>
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

Constraints

Points-to Graph

<table>
<thead>
<tr>
<th>Node</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_a \supseteq {b}$</td>
</tr>
<tr>
<td>2</td>
<td>$P_c \supseteq P_a$</td>
</tr>
<tr>
<td>3</td>
<td>$P_a \supseteq {d}$</td>
</tr>
<tr>
<td>4</td>
<td>$P_a \supseteq {e}$</td>
</tr>
<tr>
<td>5</td>
<td>$P_b \supseteq P_a$</td>
</tr>
</tbody>
</table>

Apr 2009
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

Constraints

Points-to Graph

<table>
<thead>
<tr>
<th>Node</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_a \supseteq {b}$</td>
</tr>
<tr>
<td>2</td>
<td>$P_c \supseteq P_a$</td>
</tr>
<tr>
<td>3</td>
<td>$P_a \supseteq {d}$</td>
</tr>
<tr>
<td>4</td>
<td>$P_a \supseteq {e}$</td>
</tr>
<tr>
<td>5</td>
<td>$P_b \supseteq P_a$</td>
</tr>
</tbody>
</table>
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

1 \(a = \&b \)

2 \(c = a \)

3 \(a = \&d \)

4 \(a = \&e \)

5 \(b = a \)

Constraints

<table>
<thead>
<tr>
<th>Node</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P_a \supseteq {b})</td>
</tr>
<tr>
<td>2</td>
<td>(P_c \supseteq P_a)</td>
</tr>
<tr>
<td>3</td>
<td>(P_a \supseteq {d})</td>
</tr>
<tr>
<td>4</td>
<td>(P_a \supseteq {e})</td>
</tr>
<tr>
<td>5</td>
<td>(P_b \supseteq P_a)</td>
</tr>
</tbody>
</table>

Points-to Graph
Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
⇒ Same points-to information at each program point

Program

Constraints

<table>
<thead>
<tr>
<th>Node</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P_a \supseteq {b})</td>
</tr>
<tr>
<td>2</td>
<td>(P_c \supseteq P_a)</td>
</tr>
<tr>
<td>3</td>
<td>(P_a \supseteq {d})</td>
</tr>
<tr>
<td>4</td>
<td>(P_a \supseteq {e})</td>
</tr>
<tr>
<td>5</td>
<td>(P_b \supseteq P_a)</td>
</tr>
</tbody>
</table>

Points-to Graph

- c does not point to any location in block 1
- c does not point b in block 5
- b does not point to itself at any time
Increasing Precision in Data Flow Analysis

- Flow insensitive
 - Flow insensitive
 - Context insensitive
 - Context sensitive
 - Context sensitive
 - Flow sensitive
 - Context sensitive
 - Context insensitive
 - Flow sensitive
Increasing Precision in Data Flow Analysis

- Flow insensitive
 - Flow sensitive
 - Context insensitive
 - Context sensitive
 - Context insensitive
 - Context sensitive
 - Context sensitive
- Context insensitive
 - Flow insensitive
 - Flow sensitive
- actually, only caller sensitive
Part 4

Classical Functional Approach
Functional Approach

\[x' = f_r(x) \]
Functional Approach

- Compute summary flow functions for each procedure
- Use summary flow functions as the flow function for a call block

\[x' = f_r(x) \]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

- f_1
- f_2
- f_3
- f_4
Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

$$\Phi_r(u_1) \equiv \phi_{id}$$
Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

\[\Phi_r(u_1) \equiv \phi_{id} \]
\[\Phi_r(u_2) \equiv f_1 \]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

\[
\begin{align*}
\Phi_r(u_1) & \equiv \phi_{id} \\
\Phi_r(u_2) & \equiv f_1 \\
\Phi_r(u_3) & \equiv f_1 \\
\Phi_r(u_4) & \equiv f_1
\end{align*}
\]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

\[
\begin{align*}
\Phi_r(u_1) & \equiv \phi_{id} \\
\Phi_r(u_2) & \equiv f_1 \\
\Phi_r(u_3) & \equiv f_1 \\
\Phi_r(u_4) & \equiv f_1 \\
\Phi_r(u_5) & \equiv f_2 \circ f_1
\end{align*}
\]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

\[
\Phi_r(u_1) \equiv \phi_{id} \\
\Phi_r(u_2) \equiv f_1 \\
\Phi_r(u_3) \equiv f_1 \\
\Phi_r(u_4) \equiv f_1 \\
\Phi_r(u_5) \equiv f_2 \circ f_1 \\
\Phi_r(u_6) \equiv f_3 \circ f_1
\]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

\[
\begin{align*}
\Phi_r(u_1) &\equiv \phi_{id} \\
\Phi_r(u_2) &\equiv f_1 \\
\Phi_r(u_3) &\equiv f_1 \\
\Phi_r(u_4) &\equiv f_1 \\
\Phi_r(u_5) &\equiv f_2 \circ f_1 \\
\Phi_r(u_6) &\equiv f_3 \circ f_1 \\
\Phi_r(u_7) &\equiv f_2 \circ f_1 \sqcap f_3 \circ f_1
\end{align*}
\]
Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

\[
\begin{align*}
\Phi_r(u_1) & \equiv \phi_{id} \\
\Phi_r(u_2) & \equiv f_1 \\
\Phi_r(u_3) & \equiv f_1 \\
\Phi_r(u_4) & \equiv f_1 \\
\Phi_r(u_5) & \equiv f_2 \circ f_1 \\
\Phi_r(u_6) & \equiv f_3 \circ f_1 \\
\Phi_r(u_7) & \equiv f_2 \circ f_1 \sqcap f_3 \circ f_1 \\
\Phi_r(u_8) & \equiv f_4 \circ (f_2 \circ f_1 \sqcap f_3 \circ f_1)
\end{align*}
\]
Constructing Summary Flow Function

For simplicity forward flow is assumed.

\[
\Phi_r(\text{Entry}(n)) = \begin{cases}
\phi_{id} & \text{if } n \text{ is } \text{Start}_r \\
\prod_{p \in \text{pred}(n)} \left(\Phi_r(\text{Exit}(p)) \right) & \text{otherwise}
\end{cases}
\]

\[
\Phi_r(\text{Exit}(n)) = \begin{cases}
\Phi_s(u) \circ \Phi_r(\text{Entry}(n)) & \text{if } n \text{ calls procedure } s \\
\quad \text{and } u \text{ is } \text{Exit(End}_s) \\
f_n \circ \Phi_r(\text{Entry}(n)) & \text{otherwise}
\end{cases}
\]
Constructing Summary Flow Functions

Start_r

\(f_1 \)

\(f_2 \)
Constructing Summary Flow Functions

\[\Phi_r(u_1) = \phi_{id} \]
\[\Phi_r(u_2) = f_1 \]
\[\Phi_r(u_3) = f_1 \]
\[\Phi_r(u_4) = f_2 \circ f_1 \]
Constructing Summary Flow Functions

Iteration #2

\[\Phi_r(u_1) = \phi_{id} \]
\[\Phi_r(u_2) = f_1 \]
\[\Phi_r(u_3) = f_1 \cap f_2 \circ f_1 \]
\[\Phi_r(u_4) = f_2 \circ (f_1 \cap f_2 \circ f_1) \]
Constructing Summary Flow Functions

Iteration #3

\[\Phi_r(u_1) = \phi_{id} \]

\[\Phi_r(u_2) = f_1 \]

\[\Phi_r(u_3) = f_1 \sqcap f_2 \circ f_1 \sqcap f_2 \circ (f_1 \sqcap f_2 \circ f_1) \]

\[\Phi_r(u_4) = f_2 \circ (f_1 \sqcap f_2 \circ f_1 \sqcap f_2 \circ (f_1 \sqcap f_2 \circ f_1)) \]

Termination is possible only if all function compositions and confluences can be reduced to a finite set of functions
Lattice of Flow Functions for Live Variables Analysis

Component functions (i.e. for a single variable)

<table>
<thead>
<tr>
<th>Lattice of data flow values</th>
<th>All possible flow functions</th>
<th>Lattice of flow functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{T} = \emptyset$</td>
<td>\hat{f}_n</td>
<td>ϕ_T</td>
</tr>
<tr>
<td>$\bot = {a}$</td>
<td>\emptyset \emptyset ϕ_{id}</td>
<td>ϕ_{id} ϕ_{\bot}</td>
</tr>
<tr>
<td>\emptyset ${a}$ ϕ_{\bot}</td>
<td>ϕ_{id} ϕ_{\bot}</td>
<td></td>
</tr>
</tbody>
</table>

$\hat{\phi}_{\bot}$

Apr 2009
IIT Bombay
Lattice of Flow Functions for Live Variables Analysis

Flow functions for two variables

<table>
<thead>
<tr>
<th>Lattice of data flow values</th>
<th>All possible flow functions</th>
<th>Lattice of flow functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\top = \emptyset)</td>
<td>(\emptyset)</td>
<td>(\phi_{\top})</td>
</tr>
<tr>
<td>{a} \rightarrow {b}</td>
<td>{a} \rightarrow {b}</td>
<td>(\phi_{\top I} \rightarrow \phi_{\top I})</td>
</tr>
<tr>
<td>(\bot = {a, b})</td>
<td>{a, b} \rightarrow {a, b}</td>
<td>(\phi_{\top II} \rightarrow \phi_{\top II})</td>
</tr>
</tbody>
</table>

Lattice of data flow values

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>{a}</th>
<th>{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>{a}</td>
<td>{b}</td>
</tr>
<tr>
<td>{a}</td>
<td>{a}</td>
<td>{a, b}</td>
</tr>
<tr>
<td>{a, b}</td>
<td>{a, b}</td>
<td>{a, b}</td>
</tr>
</tbody>
</table>

All possible flow functions

<table>
<thead>
<tr>
<th>Gen(_{n})</th>
<th>Kill(_{n})</th>
<th>(f_{n})</th>
<th>Gen(_{n})</th>
<th>Kill(_{n})</th>
<th>(f_{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\phi_{II})</td>
<td>{b}</td>
<td>(\emptyset)</td>
<td>(\phi_{I \bot})</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>{a}</td>
<td>(\phi_{TI})</td>
<td>{b}</td>
<td>{a}</td>
<td>(\phi_{T \bot})</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>{b}</td>
<td>(\phi_{IT})</td>
<td>{b}</td>
<td>{b}</td>
<td>(\phi_{I \bot})</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>{a, b}</td>
<td>(\phi_{TT})</td>
<td>{b}</td>
<td>{a, b}</td>
<td>(\phi_{T \bot})</td>
</tr>
<tr>
<td>{a}</td>
<td>(\emptyset)</td>
<td>(\phi_{II})</td>
<td>{a, b}</td>
<td>(\emptyset)</td>
<td>(\phi_{I \bot})</td>
</tr>
<tr>
<td>{a}</td>
<td>{a}</td>
<td>(\phi_{II})</td>
<td>{a, b}</td>
<td>{a}</td>
<td>(\phi_{I \bot})</td>
</tr>
<tr>
<td>{a}</td>
<td>{b}</td>
<td>(\phi_{IT})</td>
<td>{a, b}</td>
<td>{b}</td>
<td>(\phi_{I \bot})</td>
</tr>
<tr>
<td>{a}</td>
<td>{a, b}</td>
<td>(\phi_{IT})</td>
<td>{a, b}</td>
<td>{a, b}</td>
<td>(\phi_{I \bot})</td>
</tr>
</tbody>
</table>
Reducing Function Compositions

Assumption: No dependent parts (as in bit vector frameworks). \(\text{Kill}_n \) is \(\text{ConstKill}_n \) and \(\text{Gen}_n \) is \(\text{ConstGen}_n \).

\[
f_3(x) = f_2(f_1(x)) = f_2((x - \text{Kill}_1) \cup \text{Gen}_1)
\]
\[
= \left((x - \text{Kill}_1) \cup \text{Gen}_1 \right) - \text{Kill}_2 \right) \cup \text{Gen}_2
\]
\[
= (x - (\text{Kill}_1 \cup \text{Kill}_2)) \cup (\text{Gen}_1 - \text{Kill}_2) \cup \text{Gen}_2
\]

Hence,

\[
\text{Kill}_3 = \text{Kill}_1 \cup \text{Kill}_2
\]
\[
\text{Gen}_3 = (\text{Gen}_1 - \text{Kill}_2) \cup \text{Gen}_2
\]
Reducing Function Confluences

Assumption: No dependent parts (as in bit vector frameworks).

Kill\(_n\) is ConstKill\(_n\) and Gen\(_n\) is ConstGen\(_n\).

- When \(\cap\) is \(\cup\),

\[
f_3(x) = f_2(x) \cup f_1(x)
\]
\[
= ((x - \text{Kill}_2) \cup \text{Gen}_2) \cup ((x - \text{Kill}_1) \cup \text{Gen}_1)
\]
\[
= (x - (\text{Kill}_1 \cap \text{Kill}_2)) \cup (\text{Gen}_1 \cup \text{Gen}_2)
\]

Hence,

\[
\text{Kill}_3 = \text{Kill}_1 \cap \text{Kill}_2
\]
\[
\text{Gen}_3 = \text{Gen}_1 \cup \text{Gen}_2
\]
Reducing Function Confluences

Assumption: No dependent parts (as in bit vector frameworks). Kill\(_n\) is ConstKill\(_n\) and Gen\(_n\) is ConstGen\(_n\).

- When \(\sqcap\) is \(\cap\),

\[
\begin{align*}
 f_3(x) &= f_2(x) \cap f_1(x) \\
 &= ((x - \text{Kill}_2) \cup \text{Gen}_2) \cap ((x - \text{Kill}_1) \cup \text{Gen}_1) \\
 &= (x - (\text{Kill}_1 \cup \text{Kill}_2)) \cup (\text{Gen}_1 \cap \text{Gen}_2)
\end{align*}
\]

Hence

\[
\begin{align*}
 \text{Kill}_3 &= \text{Kill}_1 \cup \text{Kill}_2 \\
 \text{Gen}_3 &= \text{Gen}_1 \cap \text{Gen}_2
\end{align*}
\]
An Example of Interprocedural Liveness Analysis

\[
S_{main} \quad a = 5; \quad b = 3 \\
\quad c = 7; \quad \text{read} \quad d \\
\]

\[
S_{p} \quad b = 2 \\
\quad \text{if} (b < d) \\
\]

\[
S_{q} \quad a = 1 \\
\]

\[
E_{main} \quad \text{print} \quad a + c \\
\]

\[
E_{p} \quad \text{print} \quad c + d \\
\]

\[
E_{q} \quad a = a \times b \\
\]

\[
c_1 \quad \text{Call} \quad p \\
\]

\[
c_2 \quad \text{Call} \quad q \\
\]

\[
c_3 \quad \text{Call} \quad p \\
\]

\[
c_4 \quad \text{Call} \quad q \\
\]

\[
n_1 \quad a = a + 2 \\
\quad \text{print} \quad c + d \\
\]

\[
n_2 \quad d = a \times b \\
\]

\[
n_3 \quad c = a + b \\
\]

\[
T \rightarrow \text{F} \\
\]

Apr 2009
IIT Bombay
Summary Flow Functions for Interprocedural Liveness Analysis

<table>
<thead>
<tr>
<th>Proc</th>
<th>Flow Function</th>
<th>Defining Expression</th>
<th>Iteration #1</th>
<th>Changes in iteration #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gen</td>
<td>Kill</td>
</tr>
<tr>
<td>p</td>
<td>$\Phi_p(E_p)$</td>
<td>f_{E_p}</td>
<td>${c, d}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>$\Phi_p(n_3)$</td>
<td>$f_{n_3} \circ \Phi_p(E_p)$</td>
<td>${a, b, d}$</td>
<td>${c}$</td>
</tr>
<tr>
<td></td>
<td>$\Phi_p(c_4)$</td>
<td>$f_q \circ \Phi_p(E_p) = \phi_T$</td>
<td>\emptyset</td>
<td>${a, b, c, d}$</td>
</tr>
<tr>
<td></td>
<td>$\Phi_p(S_p)$</td>
<td>$f_{S_p} \circ (\Phi_p(n_3) \sqcap \Phi_p(c_4))$</td>
<td>${a, d}$</td>
<td>${b, c}$</td>
</tr>
<tr>
<td>q</td>
<td>$\Phi_q(E_q)$</td>
<td>f_{E_q}</td>
<td>${a, b}$</td>
<td>${a}$</td>
</tr>
<tr>
<td></td>
<td>$\Phi_q(c_3)$</td>
<td>$f_p \circ \Phi_q(E_q)$</td>
<td>${a, d}$</td>
<td>${a, b, c}$</td>
</tr>
<tr>
<td></td>
<td>$\Phi_q(S_q)$</td>
<td>$f_{S_q} \circ \Phi_q(c_3)$</td>
<td>${d}$</td>
<td>${a, b, c}$</td>
</tr>
<tr>
<td></td>
<td>f_q</td>
<td>$\Phi_q(S_q)$</td>
<td>${d}$</td>
<td>${a, b, c}$</td>
</tr>
</tbody>
</table>
Computed Summary Flow Function

Summary Flow Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Summary Flow Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_p(E_p)$</td>
<td>$BI_p \cup {c, d}$</td>
</tr>
<tr>
<td>$\Phi_p(n_3)$</td>
<td>$(BI_p - {c}) \cup {a, b, d}$</td>
</tr>
<tr>
<td>$\Phi_p(c_4)$</td>
<td>$(BI_p - {a, b, c}) \cup {d}$</td>
</tr>
<tr>
<td>$\Phi_p(S_p)$</td>
<td>$(BI_p - {b, c}) \cup {a, d}$</td>
</tr>
<tr>
<td>$\Phi_q(E_q)$</td>
<td>$(BI_q - {a}) \cup {a, b}$</td>
</tr>
<tr>
<td>$\Phi_q(c_3)$</td>
<td>$(BI_q - {a, b, c}) \cup {a, d}$</td>
</tr>
<tr>
<td>$\Phi_q(S_q)$</td>
<td>$(BI_q - {a, b, c}) \cup {d}$</td>
</tr>
</tbody>
</table>

Diagram:

- S_p: $b = 2$
 - if ($b < d$)
 - $c = a + b$
 - c_4: Call q
 - E_p: print $c + d$

- n_3

- S_q: $a = 1$
 - c_3: Call p
 - E_q: $a = a \times b$
Result of Interprocedural Liveness Analysis

<table>
<thead>
<tr>
<th>Data flow variable</th>
<th>Summary flow function</th>
<th>Data flow value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure main, (BI = \emptyset)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(In_{E_m})</td>
<td>(\Phi_m(E_m))</td>
<td>(BI_m \cup {a, c})</td>
</tr>
<tr>
<td>(In_{c_2})</td>
<td>(\Phi_m(c_2))</td>
<td>((BI_m - {a, b, c}) \cup {d})</td>
</tr>
<tr>
<td>(In_{n_2})</td>
<td>(\Phi_m(n_2))</td>
<td>((BI_m - {a, b, c, d}) \cup {a, b})</td>
</tr>
<tr>
<td>(In_{n_1})</td>
<td>(\Phi_m(n_1))</td>
<td>((BI_m - {a, b, c, d}) \cup {a, b, c, d})</td>
</tr>
<tr>
<td>(In_{c_1})</td>
<td>(\Phi_m(c_1))</td>
<td>((BI_m - {a, b, c, d}) \cup {a, d})</td>
</tr>
<tr>
<td>(In_{S_m})</td>
<td>(\Phi_m(S_m))</td>
<td>(BI_m - {a, b, c, d})</td>
</tr>
</tbody>
</table>
Result of Interprocedural Liveness Analysis

<table>
<thead>
<tr>
<th>Data flow variable</th>
<th>Summary flow function</th>
<th>Data flow value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure p, $BL = {a, b, c, d}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_{Ep}</td>
<td>$\Phi_p(E_p)$</td>
<td>$BL_p \cup {c, d}$</td>
</tr>
<tr>
<td>ln_{n3}</td>
<td>$\Phi_p(n_3)$</td>
<td>$(BL_p - {c}) \cup {a, b, d}$</td>
</tr>
<tr>
<td>ln_{c4}</td>
<td>$\Phi_p(c_4)$</td>
<td>$(BL_p - {a, b, c}) \cup {d}$</td>
</tr>
<tr>
<td>ln_{S_p}</td>
<td>$\Phi_p(S_p)$</td>
<td>$(BL_p - {b, c}) \cup {a, d}$</td>
</tr>
<tr>
<td>Procedure q, $BL = {a, b, c, d}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_{Eq}</td>
<td>$\Phi_q(E_q)$</td>
<td>$(BL_q - {a}) \cup {a, b}$</td>
</tr>
<tr>
<td>ln_{c3}</td>
<td>$\Phi_q(c_3)$</td>
<td>$(BL_q - {a, b, c}) \cup {a, d}$</td>
</tr>
<tr>
<td>ln_{S_q}</td>
<td>$\Phi_q(S_q)$</td>
<td>$(BL_q - {a, b, c}) \cup {d}$</td>
</tr>
</tbody>
</table>
Result of Interprocedural Liveness Analysis

\[S_{\text{main}} \]
\[
\begin{align*}
a &= 5; \ b &= 3 \\
c &= 7; \ \text{read} \ d
\end{align*}
\]

\[c_1 \]
\[
\begin{align*}
a &= a + 2 \\
\text{print} \ c + d
\end{align*}
\]

\[n_1 \]
\[
\{a, d\}
\]

\[n_2 \]
\[
\{a, b\}
\]

\[n_3 \]
\[
\{a, b, c, d\}
\]

\[E_{\text{main}} \]
\[
\text{print} \ a + c
\]

\[S_p \]
\[
\begin{align*}
b &= 2 \\
\text{if} \ (b < d)
\end{align*}
\]

\[c_4 \]
\[
\{a, b, c, d\}
\]

\[E_p \]
\[
\text{print} \ c + d
\]

\[S_q \]
\[
\{d\}
\]

\[c_3 \]
\[
\{a, d\}
\]

\[E_q \]
\[
\{a, b, c, d\}
\]
Context Sensitivity of Interprocedural Liveness Analysis

\[S_{\text{main}} \]

\[
\begin{align*}
\emptyset \\
\{a, d\} \\
\{a, b, c, d\} \\
\{a, b, e\} \\
\{d, e\} \\
\{a, c, e\} \\
\{a, c, d, e\} \\
\{a, d, e\}
\end{align*}
\]

\[S_p \]

\[
\{a, b, d, e\} \\
\{a, b, c, d, e\} \\
\{d, e\} \\
\{a, b, c, d, e\}
\]

\[S_q \]

\[
\{a, d, e\} \\
\{a, b, c, d, e\}
\]

\[E_{\text{main}} \]

\[E_p \]

\[E_q \]
Context Sensitivity of Interprocedural Liveness Analysis

\[S_{main} \]
\[
\begin{align*}
 a &= 5; b = 3 \\
 c &= 7; \text{read } d
\end{align*}
\]

\[\emptyset \] \[
\begin{align*}
 \{a, d\} &\quad \{a, d\} \\
 \{a, b, c, d\} &\quad \{a, b, d, e\} \quad \text{T} \\
 \} \quad \{d, e\} \quad \text{F} \\
 \{a, b, c, d, e\} &\quad \{a, b, c, d, e\}
\end{align*}
\]

\[c_1 \]
\[
\begin{align*}
 \text{Call } p
\end{align*}
\]

\[n_1 \]
\[
\begin{align*}
 a &= a + 2 \\
 e &= c + d
\end{align*}
\]

\[\{a, b, e\} \] \[
\{a, b, c, d\} \quad \text{T} \quad \{d, e\} \quad \text{F} \quad \{a, b, c, d, e\}
\]

\[n_2 \]
\[
\begin{align*}
 d &= a * b
\end{align*}
\]

\[\{d, e\} \] \[
\{a, b, e\} \quad \text{Call } q
\]

\[c_2 \]
\[
\begin{align*}
 \text{Call } q
\end{align*}
\]

\[E_{main} \]
\[
\begin{align*}
 \text{print } a + c + e
\end{align*}
\]

\[S_p \]
\[
\begin{align*}
 b &= 2 \\
 \text{if } (b < d)
\end{align*}
\]

\[n_3 \]
\[
\begin{align*}
 c &= a + b
\end{align*}
\]

\[c_4 \]
\[
\begin{align*}
 \text{Call } q
\end{align*}
\]

\[\{a, b, c, d, e\} \quad \{d, e\} \quad \{d, e\} \quad \{a, b, c, d, e\} \quad \text{T} \quad \{a, b, c, d, e\} \quad \text{F} \quad \{a, b, c, d, e\} \quad \text{T} \quad \{a, b, c, d, e\} \quad \text{T} \quad \{a, b, c, d, e\}
\]

\[S_q \]
\[
\begin{align*}
 a &= 1
\end{align*}
\]

\[c_3 \]
\[
\begin{align*}
 \text{Call } p
\end{align*}
\]

\[E_q \]
\[
\begin{align*}
 a &= a * b
\end{align*}
\]

- \(f_p \) and \(f_q \) remain same
- \(e \in \text{In}_{S_p} \) but \(e \not\in \text{In}_{c_1} \)
Limitations of Functional Approach to Interprocedural Data Flow Analysis

- Problems with constructing summary flow functions
Limitations of Functional Approach to Interprocedural Data Flow Analysis

• Problems with constructing summary flow functions
 ▶ Reducing expressions defining flow functions may not be possible when $DepGen_n \neq \emptyset$
 ▶ May work for some instances of some problems but not for all
Limitations of Functional Approach to Interprocedural Data Flow Analysis

- Problems with constructing summary flow functions
 - Reducing expressions defining flow functions may not be possible when $\text{DepGen}_n \neq \emptyset$
 - May work for some instances of some problems but not for all

- Enumeration based approach
 - Instead of constructing flow functions, remember the mapping $x \mapsto y$ as input output values
 - Reuse output value of a flow function when the same input value is encountered again
Limitations of Functional Approach to Interprocedural Data Flow Analysis

- Problems with constructing summary flow functions
 - Reducing expressions defining flow functions may not be possible when \(\text{DepGen}_n \neq \emptyset \)
 - May work for some instances of some problems but not for all

- Enumeration based approach
 - Instead of constructing flow functions, remember the mapping \(x \mapsto y \) as input output values
 - Reuse output value of a flow function when the same input value is encountered again

Requires the number of values to be finite
Functional Approach for Constant Propagation Example

\[S_{main} \]
- \(a = 5; b = 3 \)
- \(c = 7; \text{read} \ d \)

\[n_1 \]
- \(a = a + 2 \)
- \(\text{print} \ c + d \)

\[c_1 \]
- \(\text{Call p} \)

\[n_2 \]
- \(d = a \times b \)

\[c_2 \]
- \(\text{Call q} \)

\[E_{main} \]
- \(\text{print} \ a + c \)

\[S_p \]
- \(b = 2 \)
- \(\text{if} \ (b < d) \)

\[n_3 \]
- \(c = a + b \)

\[c_3 \]
- \(\text{Call p} \)

\[E_p \]
- \(\text{print} \ c + d \)

\[S_q \]
- \(a = 1 \)

\[c_4 \]
- \(\text{Call q} \)

\[E_q \]
- \(a = a \times b \)
Summary Flow Functions for Interprocedural Constant Propagation

<table>
<thead>
<tr>
<th>Flow Function</th>
<th>Iteration #1</th>
<th>Changes in iteration #2</th>
<th>Changes in iteration #3</th>
<th>Changes in iteration #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_p(E_p)$</td>
<td>$\langle v_a, 2, v_c, v_d \rangle$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_p(n_3)$</td>
<td>$\langle v_a, 2, v_a + 2, v_d \rangle$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_p(c_4)$</td>
<td>$\langle \top, \top, \top, \top \rangle$</td>
<td>$\langle 2, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, \perp, v_d \rangle$</td>
</tr>
<tr>
<td>$\Phi_p(S_p)$</td>
<td>$\langle v_a, 2, v_a + 2, v_d \rangle$</td>
<td>$\langle v_a \cap 2, 2, (v_a + 2) \cap 3, v_d \rangle$</td>
<td>$\langle \perp, 2, \perp, v_d \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Phi_q(E_q)$</td>
<td>$\langle 1, v_b, v_c, v_d \rangle$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_q(c_3)$</td>
<td>$\langle 1, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, \perp, v_d \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Phi_q(S_q)$</td>
<td>$\langle 2, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, 3, v_d \rangle$</td>
<td>$\langle \perp, 2, \perp, v_d \rangle$</td>
<td></td>
</tr>
</tbody>
</table>
Interprocedural Constant Propagation Using the Functional Approach

<table>
<thead>
<tr>
<th>S_m</th>
<th>5, 3, 7, ⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>n_1</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>n_2</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>c_2</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>E_m</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_p</th>
<th>⊤, 2, ⊤, ⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_3</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>c_4</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>E_p</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>S_q</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>c_3</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
<tr>
<td>E_2</td>
<td>⊤, 2, ⊤, ⊤</td>
</tr>
</tbody>
</table>
Constant Propagation Using Functional Approach

\[a = 5; \ b = 3 \]
\[c = 7; \ \text{read} \ d \]

\[\text{Call } p \]
\[c_1 \]
\[a = a + 2 \]
\[\text{print } c + d \]
\[n_1 \]
\[d = a \times b \]
\[n_2 \]
\[\text{Call } q \]
\[c_2 \]

\[\text{print } a + c \]
\[E_{\text{main}} \]

\[S_p \]
\[b = 2 \]
\[\text{if } (b < d) \]

\[c = a + b \]
\[n_3 \]

\[\text{Call } q \]
\[c_4 \]

\[\text{print } c + d \]
\[E_p \]

\[\text{if } \]

\[T \]
\[F \]

\[S_q \]
\[a = 1 \]
\[c_3 \]

\[\text{Call } p \]
\[E_q \]
\[a = a \times b \]
Constant Propagation Using Functional Approach

\[a = 5; \ b = 3 \]
\[c = 7; \ \text{read } \ d \]

\[c_1 \]
Call \(p \)

\[n_1 \]
\[a = a + 2 \]
\[\text{print } \ c + d \]

\[n_2 \]
\[d = a \ast 2 \]

\[c_2 \]
Call \(q \)

\[E_{\text{main}} \]
\[\text{print } \ a + c \]

\[S_{\text{main}} \]

\[S_p \]
\[b = 2 \]
\[\text{if } (2 < d) \]

\[n_3 \]
\[c = a + 2 \]

\[c_4 \]
Call \(q \)

\[E_p \]
\[\text{print } \ c + d \]

\[S_q \]
\[a = 1 \]

\[c_3 \]
Call \(p \)

\[E_q \]
\[a = a \ast 2 \]
Tutorial Problem for Functional Interprocedural Analysis

\[S_{\text{main}} \]
\[
\begin{align*}
a &= 5; \\ b &= 3 \\ c &= 7; \text{read } d
\end{align*}
\]

\[c_1 \]
\[
\text{Call } p
\]

\[n_1 \]
\[
a = a + 2 \\
\text{print } c + d
\]

\[n_2 \]
\[
d = a \times b
\]

\[c_2 \]
\[
\text{Call } q
\]

\[E_{\text{main}} \]
\[
\text{print } a + c
\]

\[S_p \]
\[
\begin{align*}
b &= 2 \\
\text{if } (b < d)
\end{align*}
\]

\[n_3 \]
\[
c = a + b
\]

\[E_p \]
\[
\text{print } c + d
\]

\[S_q \]
\[
a = 1
\]

\[c_3 \]
\[
\text{Call } p
\]

\[E_q \]
\[
a = a \times b
\]
Tutorial Problem for Functional Interprocedural Analysis

\[S_{\text{main}} \]

\[a = 5; \ b = 3 \]
\[c = 7; \text{read } d \]

\(n_1 \)
\[c_1 \text{ Call } p \]
\[a = 7 \]
\[\text{print } 7 + d \]

\(n_2 \)
\[d = 14 \]

\(c_2 \text{ Call } q \]

\(E_{\text{main}} \)
\[\text{print } 2 + c \]

\[S_p \]
\[b = 2 \]
\[\text{if } (2 < d) \]
\[n_3 \]
\[c = a + 2 \]

\[T \]
\[F \]
\[E_p \]
\[\text{print } c + d \]

\[S_q \]
\[a = 1 \]

\(c_3 \text{ Call } p \]
\[a = 2 \]

\[E_q \]
Tutorial Problem for Functional Interprocedural Analysis

\[S_{\text{main}} \]
\[
\begin{align*}
a &= 5; \\
b &= 3 \\
c &= 7; \text{read } d
\end{align*}
\]

c_1 \quad \text{Call } p

\[n_1 \quad \text{Call } p \]
\[
\begin{align*}
a &= 7 \\
\text{print } 7 + d
\end{align*}
\]

c_2 \quad \text{Call } q

\[n_2 \quad d = 14 \]

c_3 \quad \text{Call } p

\[n_3 \quad c = a + 2 \]

\[S_p \quad b = 2 \]
\[
\begin{align*}
\text{if } (2 < d) \\
\text{print } c + d
\end{align*}
\]

\[E_p \quad \text{print } c + d \]

\[E_{\text{main}} \quad \text{print } 2 + c \]

\[E_q \quad a = 2 \]

Apr 2009

IIT Bombay
Tutorial Problem for Functional Interprocedural Analysis

\[a = 5; \ b = 3; \ c = 7; \text{read } d \]

\[S_{main} \]

\[c_1 \]

\[\text{Call p} \]

\[n_1 \]

\[a = 7 \]

\[\text{print } 7 + d \]

\[n_2 \]

\[d = 14 \]

\[S_p \]

\[b = 2 \]

\[\text{if } (2 < d) \]

\[n_3 \]

\[c = a + 2 \]

\[E_p \]

\[\text{print } c + d \]

\[E_{main} \]

\[\text{print } 2 + c \]

\[E_q \]

\[a = 1 \]

\[c_3 \]

\[\text{Call p} \]

\[a = 2 \]

Apr 2009

IIT Bombay
Tutorial Problem for Functional Interprocedural Analysis

\[a = 5; \ b = 3 \]
\[c = 7; \ \text{read} \ d \]

\[a = 7 \]
\[\text{print} \ 7 + d \]

\[d = 14 \]

\[\text{print} \ 2 + c \]

\[b = 2 \]
\[\text{if} \ (2 < d) \]

\[c = a + 2 \]

\[\text{print} \ c + d \]

\[a = 1 \]

\[\text{Call p} \]

\[a = 2 \]

\[\text{Call p} \]
Tutorial Problem for Functional Interprocedural Analysis

\[S_{main} \]

\[a = 5; b = 3 \]
\[c = 7; \text{read } d \]

\[c_1 \]
\[\text{Call } p \]

\[n_1 \]
\[a = 7 \]
\[\text{print } 7 + d \]

\[n_2 \]
\[d = 14 \]

\[E_{main} \]
\[\text{print } 2 + 3? \]

\[S_p \]
\[b = 2 \]
\[\text{if } (2 < d) \]

\[n_3 \]
\[c = a + 2 \]

\[E_p \]
\[\text{print } c + d \]

\[S_q \]
\[a = 1 \]

\[c_3 \]
\[\text{Call } p \]

\[E_q \]
\[a = 2 \]
Part 5

Classical Call Strings Approach
Classical Full Call Strings Approach

Most general, flow and context sensitive method

- Remember call history
 Information should be propagated *back* to the correct point

- Call string at a program point:
 - Sequence of *unfinished calls* reaching that point
 - Starting from the S_{main}

A snap-shot of call stack in terms of call sites
Interprocedural Data Flow Analysis Using Call Strings

- Tagged data flow information
 - IN_n and OUT_n are sets of the form $\{\langle \sigma, x \rangle \mid \sigma \text{ is a call string}, x \in L\}$
 - The final data flow information is
 \[
 In_n = \bigsqcap_{\langle \sigma, x \rangle \in IN_n} x
 \]
 \[
 Out_n = \bigsqcap_{\langle \sigma, x \rangle \in OUT_n} x
 \]

- Flow functions to manipulate tagged data flow information
 - Intraprocedural edges manipulate data flow value x
 - Interprocedural edges manipulate call string σ
Overall Data Flow Equations

\[\text{IN}_n = \begin{cases} \langle \lambda, BI \rangle & n \text{ is a } S_{main} \\ \bigcup_{p \in \text{pred}(n)} \text{OUT}_p & \text{otherwise} \end{cases} \]

\[\text{OUT}_n = \text{DepGEN}_n \]

Effectively, \(\text{ConstGEN}_n = \text{ConstKILL}_n = \emptyset \) and \(\text{DepKILL}_n(X) = X \).

\[
\begin{align*}
X \uplus Y &= \{ \langle \sigma, x \cap y \rangle \mid \langle \sigma, x \rangle \in X, \langle \sigma, y \rangle \in Y \} \cup \\
& \quad \{ \langle \sigma, x \rangle \mid \langle \sigma, x \rangle \in X, \forall z \in L, \langle \sigma, z \rangle \notin Y \} \cup \\
& \quad \{ \langle \sigma, y \rangle \mid \langle \sigma, y \rangle \in Y, \forall z \in L, \langle \sigma, z \rangle \notin X \} \\
\end{align*}
\]

(We merge underlying data flow values only if the contexts are same.)
Interprocedural Validity and Calling Contexts

C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow R_4 \rightarrow C_5 \rightarrow R_4 \rightarrow C_6 \rightarrow R_6 \rightarrow C_4 \rightarrow R_4 \rightarrow C_1 \rightarrow C_1
Interprocedural Validity and Calling Contexts

\[
\begin{array}{c}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
R_4 \\
R_3 \\
C_6 \\
R_6 \\
C_4 \\
R_4 \\
C_1 \\
R_4 \\
C_1 \\
C_2 \\
R_2 \\
C_3 \\
C_2 \\
R_3 \\
C_4 \\
C_1 \\
R_4 \\
C_5 \\
R_4 \\
C_5 \\
R_5 \\
C_5 \\
R_5 \\
C_6 \\
R_5 \\
C_6 \\
R_6 \\
C_7 \\
\end{array}
\]
Interprocedural Validity and Calling Contexts

• “You can descend only as much as you have ascended!”
• “You can descend only as much as you have ascended!”
• Every descending step must match a corresponding ascending step.
“You can descend only as much as you have ascended!”

Every descending step must match a corresponding ascending step.

Calling context is represented by the remaining descending steps.
• “You can descend only as much as you have ascended!”
• Every descending step must match a corresponding ascending step.
• Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
“You can descend only as much as you have ascended!”

Every descending step must match a corresponding ascending step.

Calling context is represented by the remaining descending steps.
“You can descend only as much as you have ascended!”

Every descending step must match a corresponding ascending step.

Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- "You can descend only as much as you have ascended!"
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
“You can descend only as much as you have ascended!”

Every descending step must match a corresponding ascending step.

Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

• “You can descend only as much as you have ascended!”
• Every descending step must match a corresponding ascending step.
• Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

• “You can descend only as much as you have ascended!”
• Every descending step must match a corresponding ascending step.
• Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

• “You can descend only as much as you have ascended!”
• Every descending step must match a corresponding ascending step.
• Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- "You can descend only as much as you have ascended!"
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Interprocedural Validity and Calling Contexts

- “You can descend only as much as you have ascended!”
- Every descending step must match a corresponding ascending step.
- Calling context is represented by the remaining descending steps.
Manipulating Values

- Call edge $C_i \rightarrow S_p$ (i.e. call site c_i calling procedure p).
 - Append c_i to every σ.
 - Propagate the data flow values unchanged.
Manipulating Values

- Call edge $C_i \rightarrow S_p$ (i.e. call site c_i calling procedure p).
 - Append c_i to every σ.
 - Propagate the data flow values unchanged.

- Return edge $E_p \rightarrow R_i$ (i.e. p returning the control to call site c_i).
 - If the last call site is c_i, remove it and propagate the data flow value unchanged.
 - Block other data flow values.
Manipulating Values

- Call edge $C_i \rightarrow S_p$ (i.e. call site c_i calling procedure p).
 - Append c_i to every σ.
 - Propagate the data flow values unchanged.

- Return edge $E_p \rightarrow R_i$ (i.e. p returning the control to call site c_i).
 - If the last call site is c_i, remove it and propagate the data flow value unchanged.
 - Block other data flow values.
Manipulating Values

- Call edge $C_i \rightarrow S_p$ (i.e. call site c_i calling procedure p).
 - Append c_i to every σ.
 - Propagate the data flow values unchanged.

- Return edge $E_p \rightarrow R_i$ (i.e. p returning the control to call site c_i).
 - If the last call site is c_i, remove it and propagate the data flow value unchanged.
 - Block other data flow values.

$\text{DepGEN}_n(X) = \begin{cases}
\{ \langle \sigma \cdot c_i, x \rangle \mid \langle \sigma, x \rangle \in X \} & n \text{ is } C_i \\
\{ \langle \sigma, x \rangle \mid \langle \sigma \cdot c_i, x \rangle \in X \} & n \text{ is } R_i \\
\{ \langle \sigma, f_n(x) \rangle \mid \langle \sigma, x \rangle \in X \} & \text{otherwise}
\end{cases}$
Available Expressions Analysis Using Call Strings Approach

\[S_{\text{main}} \]
- read \(a, b \)
- \(t := a \ast b \)

\[C_1 \]
- call \(p \)

\[R_1 \]
- \(n_1 \) print \(a \ast b \)

\[E_{\text{main}} \]

\[S_p \]
- \(\text{if } a == 0 \)

\[n_2 \]
- \(a = a - 1 \)

\[C_2 \]
- call \(p \)

\[R_2 \]
- \(n_3 \) \(t = a \ast b \)

\[E_p \]

Apr 2009
Available Expressions Analysis Using Call Strings Approach

\[S_{main} \]

- read \(a, b \)
- \(t := a \times b \)

\[C_1 \]
- call \(p \)

\[R_1 \]
- Is \(a \times b \) available?

\[n_1 \]
- print \(a \times b \)

\[E_{main} \]

\[S_p \]
- if \(a == 0 \)

\[n_2 \]
- \(a = a - 1 \)

\[C_2 \]
- call \(p \)

\[R_2 \]
-

\[n_3 \]
- \(t = a \times b \)

\[E_p \]
Available Expressions Analysis Using Call Strings Approach

```c
int a, b, t;
void p()
{
    if (a == 0)
    {
        a = a - 1;
        p();
        t = a * b;
    }
}
```
Available Expressions Analysis Using Call Strings Approach

```
int a, b, t;
void p()
{
    if (a == 0)
    {
        a = a-1;
        p();
        t = a*b;
    }
}
```

Is $a \times b$ available?

Yes!
Available Expressions Analysis Using Call Strings Approach

\[S_{\text{main}} \]
\[\text{read } a, b \]
\[t := a \ast b \]
\[C_1 \]
\[\text{call } p \]
\[R_1 \]
\[n_1 \]
\[\text{print } a \ast b \]
\[E_{\text{main}} \]

\[S_p \]
\[\text{if } a == 0 \]
\[n_2 \]
\[a = a - 1 \]
\[C_2 \]
\[\text{call } p \]
\[R_2 \]
\[n_3 \]
\[t = a \ast b \]
\[E_p \]

Kill
Available Expressions Analysis Using Call Strings Approach

\[S_{main} \quad \text{read } a, b \quad t := a \times b \]

\[C_1 \quad \text{call } p \]

\[R_1 \]

\[n_1 \quad \text{print } a \times b \]

\[E_{main} \]

\[S_p \quad \text{if } a == 0 \]

\[n_2 \quad a = a - 1 \]

\[C_2 \quad \text{call } p \]

\[R_2 \]

\[n_3 \quad t = a \times b \]

\[E_p \]

\[\text{Kill} \]
Available Expressions Analysis Using Call Strings Approach

S_{main}

read a, b

$t := a \ast b$

C_1
call p

R_1

n_1

print $a \ast b$

E_{main}

S_p

if $a == 0$

n_2

$a = a - 1$

C_2
call p

R_2

n_3

t = $a \ast b$

E_p

Kill
Available Expressions Analysis Using Call Strings Approach

S_{main}
- read a, b
- $t := a \times b$

C_1
- call p

R_1

n_1
- print $a \times b$

E_{main}

S_p
- if $a == 0$

n_2
- $a = a - 1$

C_2
- call p

R_2

n_3
- $t = a \times b$

E_p

Gen

$Kill$
Available Expressions Analysis Using Call Strings Approach

\[S_{main} \]

\[\text{read } a, b \]
\[t := a \ast b \]

\[C_1 \]
\[\text{call } p \]

\[R_1 \]

\[n_1 \]
\[\text{print } a \ast b \]

\[E_{main} \]

\[S_p \]
\[\text{if } a == 0 \]

\[n_2 \]
\[a = a - 1 \]

\[C_2 \]
\[\text{call } p \]

\[R_2 \]

\[n_3 \]
\[t = a \ast b \]

\[E_p \]

\[\text{Kill} \]

\[\text{Gen} \]

IIT Bombay
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{\text{main}}: \text{read } a, b; \ t := a \times b \]

\[C_1: \text{call } p \]

\[R_1 \]

\[n_1: \text{print } a \times b \]

\[E_{\text{main}} \]

\[S_{p} \]

\[\text{if } a == 0 \]

\[n_2: a = a - 1 \]

\[C_2: \text{call } p \]

\[R_2 \]

\[n_3: t = a \times b \]

\[E_{p} \]
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]

- read \(a, b \)
- \(t := a \times b \)

\[\langle \lambda | 1 \rangle \]

\[C_1 \]
- call \(p \)

\[n_1 \]
- print \(a \times b \)

\[E_{main} \]

\[S_p \]
- if \(a == 0 \)

\[n_2 \]
- \(a = a - 1 \)

\[C_2 \]
- call \(p \)

\[R_2 \]

\[n_3 \]
- \(t = a \times b \)

\[E_p \]
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]
\[\text{read } a, b \]
\[t := a \ast b \]
\[\langle \lambda | 1 \rangle \]

\[C_1 \]
\[\text{call } p \]

\[E_{main} \]

\[S_p \]
\[\text{if } a == 0 \]

\[n_2 \]
\[a = a - 1 \]

\[C_2 \]
\[\text{call } p \]

\[R_1 \]

\[n_1 \]
\[\text{print } a \ast b \]

\[R_2 \]

\[n_3 \]
\[t = a \ast b \]

\[E_p \]

Apr 2009
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]
read \(a, b \)
\(t := a \ast b \)

\[C_1 \]
call \(p \)

\[R_1 \]
\[n_1 \]
print \(a \ast b \)

\[E_{main} \]

\[\langle c_1 | 1 \rangle \]

\[S_p \]
if \(a == 0 \)

\[n_2 \]
\(a = a - 1 \)

\[C_2 \]
call \(p \)

\[R_2 \]
\[n_3 \]
\(t = a \ast b \)

\[E_p \]
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]

read \(a, b \)
\(t := a \ast b \)
\[\langle \lambda | 1 \rangle \]

\[C_1 \]
call \(p \)

\[R_1 \]

\[n_1 \]
print \(a \ast b \)

\[E_{main} \]

\[S_p \]
if \(a == 0 \)

\[n_2 \]
\(a = a - 1 \)
\[\langle c_1 | 0 \rangle \]

\[C_2 \]
call \(p \)

\[R_2 \]

\[n_3 \]
\(t = a \ast b \)

\[E_p \]

\(\langle c_1 | 1 \rangle \)
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

S_{main}

$read \ a, b$
$t := a \ast b$

$\langle \lambda | 1 \rangle$

C_1

$call \ p$

n_1

$print \ a \ast b$

E_{main}

S_p

$if \ a == 0$

n_2

$a = a - 1$

$\langle c_1 | 1 \rangle$

$\langle c_1 | 1 \rangle$

$\langle c_1 c_2 | 0 \rangle$

C_2

$call \ p$

n_3

$t = a \ast b$

E_p

R_1

n_2

$\langle c_1 | 0 \rangle$

R_2

Apr 2009
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\(S_{\text{main}} \)
- \(\text{read } a, b \)
- \(t := a \times b \)

\(C_1 \)
- call \(p \)

\(R_1 \)

\(n_1 \)
- print \(a \times b \)

\(E_{\text{main}} \)

\(\langle c_1 | 1 \rangle \)

\(S_p \)
- if \(a == 0 \)

\(n_2 \)
- \(a = a - 1 \)

\(\langle c_1 | 0 \rangle \)

\(C_2 \)
- call \(p \)

\(\langle c_1 | 1 \rangle \)

\(\langle c_1 c_2 | 0 \rangle \)

\(R_2 \)

\(n_3 \)
- \(t = a \times b \)

\(\langle c_1 c_2 | 0 \rangle \)

\(E_p \)
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]
\[\text{read } a, b \]
\[t := a \ast b \]
\[\langle \lambda | 1 \rangle \]
\[C_1 \]
\[\text{call p} \]
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 c_2 | 0 \rangle, \langle c_1 c_2 c_2 | 0 \rangle, \ldots \]

\[S_p \]
\[\text{if } a == 0 \]
\[n_2 \]
\[a = a - 1 \]
\[\langle c_1 | 0 \rangle, \langle c_1 c_2 | 0 \rangle, \ldots \]

\[C_2 \]
\[\text{call p} \]
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 c_2 | 0 \rangle \]
\[\langle c_1 c_2 c_2 | 0 \rangle \]
\[\ldots \]

\[R_1 \]
\[n_1 \]
\[\text{print } a \ast b \]
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 c_2 | 0 \rangle \]
\[\langle c_1 c_2 c_2 | 0 \rangle \]
\[\ldots \]

\[E_{main} \]
\[E_p \]
\[n_3 \]
\[t = a \ast b \]
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 c_2 | 0 \rangle \]
\[\langle c_1 c_2 c_2 | 0 \rangle \]
\[\ldots \]
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} \]

read \(a, b \)
\[t := a \times b \]
\[\langle \lambda | 1 \rangle \]
\[C_1 \]
call \(p \)
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 \times c_2 | 0 \rangle, \langle c_1 \times c_2 \times c_2 | 0 \rangle, \ldots \]
\[S_p \]
if \(a == 0 \)
\[n_2 \]
a = a - 1
\[\langle c_1 | 0 \rangle, \langle c_1 \times c_2 | 0 \rangle, \ldots \]
\[C_2 \]
call \(p \)
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 \times c_2 | 0 \rangle \]
\[\langle c_1 \times c_2 \times c_2 | 0 \rangle \]
\[R_2 \]
\[\langle c_1 \times c_2 | 0 \rangle \]
\[\langle c_1 \times c_2 \times c_2 | 0 \rangle \]
\[E_p \]
print \(a \times b \)
\[n_1 \]
\[\langle c_1 | 0 \rangle \]
\[\langle c_1 \times c_2 | 0 \rangle \]
\[\langle c_1 \times c_2 \times c_2 | 0 \rangle \]
\[\ldots \]
\[\langle \lambda | 1 \rangle \]
\[\langle c_1 | 1 \rangle \]
\[\langle c_1 \times c_2 | 0 \rangle \]
\[\langle c_1 \times c_2 \times c_2 | 0 \rangle \]
\[\ldots \]
\[E_{main} \]
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[S_{main} : \]
\[\text{read } a, b \]
\[t := a \times b \]
\[\langle \lambda | 1 \rangle \]

\[C_1 \]
\[\text{call } p \]
\[\langle c_1 | 1 \rangle, \langle c_1 c_2 | 0 \rangle, \langle c_1 c_2 c_2 | 0 \rangle, \ldots \]

\[S_p \]
\[\text{if } a == 0 \]
\[\langle c_1 | 0 \rangle, \langle c_1 c_2 | 0 \rangle, \ldots \]

\[n_2 \]
\[a = a - 1 \]
\[\langle c_1 | 0 \rangle, \langle c_1 c_2 | 0 \rangle, \ldots \]

\[C_2 \]
\[\text{call } p \]
\[\langle c_1 c_2 | 0 \rangle, \langle c_1 c_2 c_2 | 0 \rangle, \ldots \]

\[n_3 \]
\[t = a \times b \]
\[\langle c_1 c_2 | 0 \rangle, \langle c_1 c_2 c_2 | 0 \rangle, \ldots \]

\[R_1 \]
\[\langle c_1 | 0 \rangle \]

\[n_1 \]
\[\text{print } a \times b \]
\[\langle c_1 c_2 | 0 \rangle, \langle c_1 c_2 c_2 | 0 \rangle, \ldots \]

\[R_2 \]
\[\langle c_1 | 0 \rangle \]

\[E_{main} \]

\[E_p \]

Apr 2009
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

S_{main}
- read a, b
- $t := a \ast b$
- C_1 call p
- R_1
- n_1 print $a \ast b$

E_{main}

S_p
- if $a == 0$
- n_2
- $a = a - 1$
- C_2 call p
- R_2
- n_3
- $t = a \ast b$

E_p
- $\langle c_1|1\rangle$
- $\langle c_1c_2|0\rangle, \langle c_1c_2c|0\rangle, \ldots$
- $\langle c_1|1\rangle$
- $\langle c_1c_2|0\rangle, \langle c_1c_2c|0\rangle, \ldots$
- $\langle c_1|0\rangle$
- $\langle c_1c_2|0\rangle$
- $\langle c_1c_2c|0\rangle$
- \ldots
- $\langle c_1|0\rangle$
- $\langle c_1c_2|0\rangle$
- $\langle c_1c_2c|0\rangle$
- \ldots
- $\langle c_1|1\rangle$
- $\langle c_1c_2|1\rangle$
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

S_{main}
- read a, b
- $t := a \ast b$
- call p

C_1

R_1
- print $a \ast b$

E_{main}

S_p
- if $a == 0$
 - n_2
 - $a = a - 1$
 - $a = a - 1$
 - call p
 - C_2

R_2
- $t = a \ast b$

E_p

$\langle c_1|1 \rangle$
$\langle c_1 c_2 |0 \rangle, \langle c_1 c_2 c_2 |0 \rangle, \ldots$
$\langle c_1 |1 \rangle$
$\langle c_1 c_2 |0 \rangle, \langle c_1 c_2 |0 \rangle, \ldots$
$\langle c_1 |1 \rangle$
$\langle c_1 c_2 |0 \rangle, \langle c_1 c_2 |0 \rangle, \ldots$
$\langle c_1 |1 \rangle$
$\langle c_1 c_2 |1 \rangle$
$\langle c_1 |1 \rangle$
$\langle c_1 c_2 |1 \rangle$
$\langle c_1 |1 \rangle$
$\langle c_1 c_2 |1 \rangle$
Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of nodes to be processed

\[\langle c_1|1 \rangle, \langle c_1c_2|0 \rangle, \langle c_1c_2c_2|0 \rangle, \ldots \]

\[S_p \quad \text{if } a == 0 \]

\[n_2 \quad a = a - 1 \]

\[\langle c_1|0 \rangle, \langle c_1c_2|0 \rangle, \ldots \]

\[C_2 \quad \text{call } p \]

\[n_3 \quad t = a \ast b \]

\[\langle c_1c_2|0 \rangle \]

\[\langle c_1c_2c_2|0 \rangle \]

\[\ldots \]

\[\langle c_1c_2|0 \rangle \]

\[\langle c_1c_2c_2|0 \rangle \]

\[\ldots \]

\[\langle c_1|1 \rangle \]

\[\langle c_1c_2|1 \rangle \]
Tutorial Problem

Generate a trace of the preceding example in the following format:

<table>
<thead>
<tr>
<th>Step No.</th>
<th>Selected Node</th>
<th>Qualified Data Flow Value</th>
<th>Remaining Work List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IN_n, OUT_n</td>
<td></td>
</tr>
</tbody>
</table>

- Assume that call site c_i appended to a call string σ only if there are at most 2 occurrences of c_i in σ
- What about work list organization?
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a,b,c;
2. void main()
3. {
4. c = a*b;
5. }
6. void p()
7. {
8. if (...)
9. {
10. p();
11. Is a*b available?
12. }
13. a = a*b;
14. }
15. }
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a, b, c;
2. void main()
3. { c = a*b;
4. p();
5. }
6. void p()
7. { if (...
8. { p();
9. Is a*b available?
10. a = a*b;
11. }
12. }

Path 1

3 : Gen
4
7
8
7
12
9
10 : Kill
11
12
5
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a,b,c;
2. void main()
3. {
 c = a*b;
4. p();
5. }
6. void p()
7. {
 if (...
8. { p();
9. Is a*b available?
10. a = a*b;
11. }
12. }

Path 1

3 : Gen
4
7
8
7
8
9
12
10 : Kill
11
12
5

Path 2

3 : Gen
4
7
8
7
8
9
12
10 : Kill
11
12
9
10 : Kill
10 : Kill
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

```
1. int a,b,c;
2. void main()
3. {
4.     c = a*b;
5.     p();
6. }
7. void p()
8. {
9.     Is a*b available?
10.     a = a*b;
11. }
12. }
```
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a, b, c;
2. void main()
3. {
4. c = a*b;
5. }
6. void p()
7. {
8. if (...)
9. { p();
10. Is a*b available?
11. }
12. }
13. a = a*b;
14. }
15.]
16. }
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a,b,c;
2. void main()
3. {
4. c = a*b;
5. }
6. void p()
7. {
8. if (...)
9. p();
10. Is a*b available?
11. }
12. }

Apr 2009
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a, b, c;
2. void main()
3. {
4. c = a * b;
5. }
6. void p()
7. {
8. if (...)
9. Is a * b available?
10. a = a * b;
11. }
12. }

- Interprocedurally valid IFP
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a, b, c;
2. void main()
3. {
4. c = a * b;
5. }
6. void p()
7. {
8. if (...)
9. {
10. p();
11. } \textcolor{blue}{\text{Is a*b available?}}
12. }

- Interprocedurally valid IFP

\[C_2, S_p, E_p, R_2, \quad \text{Kill} \quad n_2, E_p, R_2, n_2 \]
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

1. int a, b, c;
2. void main()
3. {
4. c = a*b;
5. }
6. void p()
7. {
8. if (...)
9. { p();
10. Is a*b available?
11. a = a*b;
12. }

- Interprocedurally valid IFP

\[
C_2, S_p, C_2, S_p, E_p, R_2, \text{ Kill } n_2, E_p, R_2, n_2
\]
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

```plaintext
1. int a, b, c;
2. void main()
3. {
4.   c = a * b;
5. }
6. void p()
7. {
8.   if (...) 
9.   { p(); 
10.  Is a*b available?
11.  a = a * b;
12. }
```

- Interprocedurally valid IFP

 \[S_{main}, n_1, C_1, S_p, C_2, S_p, C_2, S_p, E_p, R_2, \text{Kill} \ n_2, E_p, R_2, n_2 \]
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

- Interprocedurally valid IFP

$$S_m, n_1, C_1, S_p, C_2, S_p, C_2, S_p, E_p, R_2, n_2,$$

Kill

$$n_2, E_p, R_2, n_2$$
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

- Interprocedurally valid IFP
 \[S_m, n_1, C_1, S_p, C_2, S_p, C_2, S_p, E_p, R_2, \overset{\text{Kill}}{n_2}, E_p, R_2, n_2 \]

- You cannot descend twice, unless you ascend twice
The Need for Multiple Occurrences of a Call Site

even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

- Interprocedurally valid IFP
 \[S_m, n_1, C_1, S_p, C_2, S_p, C_2, S_p, E_p, R_2, ^{\text{Kill}} n_2, E_p, R_2, n_2 \]

- You cannot descend twice, unless you ascend twice

- Even if the data flow values do not change while ascending, you need to ascend because they may change while descending
Terminating Call String Construction

- For non-recursive programs: Number of call strings is finite
Terminating Call String Construction

- For non-recursive programs: Number of call strings is finite

- For recursive programs: Number of call strings could be infinite. Fortunately, the problem is decidable for finite lattices.
Terminating Call String Construction

- For non-recursive programs: Number of call strings is finite

- For recursive programs: Number of call strings could be infinite
 Fortunately, the problem is decidable for finite lattices.
 > All call strings up to the following length must be constructed
Terminating Call String Construction

• For non-recursive programs: Number of call strings is finite

• For recursive programs: Number of call strings could be infinite

Fortunately, the problem is decidable for finite lattices.

▶ All call strings upto the following length *must be* constructed
 ○ \(K \cdot (|L| + 1)^2 \) for general bounded frameworks
 (\(L \) is the overall lattice of data flow values)
Terminating Call String Construction

- For non-recursive programs: Number of call strings is finite

- For recursive programs: Number of call strings could be infinite. Fortunately, the problem is decidable for finite lattices.

 ▶ All call strings up to the following length must be constructed

 - $K \cdot (|L| + 1)^2$ for general bounded frameworks (where L is the overall lattice of data flow values)
 - $K \cdot (|\hat{L}| + 1)^2$ for separable bounded frameworks (where \hat{L} is the component lattice for an entity)
Terminating Call String Construction

- For non-recursive programs: Number of call strings is finite

- For recursive programs: Number of call strings could be infinite. Fortunately, the problem is decidable for finite lattices.

 ▶ All call strings up to the following length must be constructed

 - $K \cdot (|L| + 1)^2$ for general bounded frameworks
 (L is the overall lattice of data flow values)
 - $K \cdot (|\hat{L}| + 1)^2$ for separable bounded frameworks
 (\hat{L} is the component lattice for an entity)
 - $K \cdot 3$ for bit vector frameworks
Terminating Call String Construction

• For non-recursive programs: Number of call strings is finite

• For recursive programs: Number of call strings could be infinite
 Fortunately, the problem is decidable for finite lattices.
 ▶ All call strings up to the following length must be constructed
 ◦ $K \cdot (|L| + 1)^2$ for general bounded frameworks
 (L is the overall lattice of data flow values)
 ◦ $K \cdot (|\hat{L}| + 1)^2$ for separable bounded frameworks
 (\hat{L} is the component lattice for an entity)
 ◦ $K \cdot 3$ for bit vector frameworks
 ◦ 3 occurrences of any call site in a call string for bit vector frameworks

⇒ Not a bound but prescribed necessary length
Terminating Call String Construction

• For non-recursive programs: Number of call strings is finite

• For recursive programs: Number of call strings could be infinite
 Fortunately, the problem is decidable for finite lattices.
 ▶ All call strings up to the following length must be constructed
 ◦ $K \cdot (|L| + 1)^2$ for general bounded frameworks
 (L is the overall lattice of data flow values)
 ◦ $K \cdot (|\hat{L}| + 1)^2$ for separable bounded frameworks
 (\hat{L} is the component lattice for an entity)
 ◦ $K \cdot 3$ for bit vector frameworks
 ◦ 3 occurrences of any call site in a call string for bit vector frameworks

⇒ Not a bound but prescribed necessary length

⇒ Large number of long call strings
Classical Call String Length

• Notation
 - $IVP(n, m)$: Interprocedurally valid path from block n to block m
 - $CS(\rho)$: Number of call nodes in ρ that do not have the matching return node in ρ
 (length of the call string representing $IVP(n, m)$)

• Claim
 Let $M = K \cdot (|L| + 1)^2$ where K is the number of distinct call sites in any call chain
 Then, for any $\rho = IVP(S_{main}, m)$ such that

 $CS(\rho) > M,$

 $\exists \rho' = IVP(S_{main}, m)$ such that

 $CS(\rho') \leq M,$ and $f_{\rho}(BI) = f_{\rho'}(BI).$

 $\Rightarrow \rho$, the longer path, is redundant for data flow analysis
Sharir-Pnueli [1981]

- Consider the smallest prefix ρ_0 of ρ such that $CS(\rho_0) > M$
- Consider a triple $\langle c_i, \alpha_i, \beta_i \rangle$ where
 - α_i is the data flow value reaching call node C_i along ρ and
 - β_i is the data flow value reaching the corresponding return node R_i along ρ
 - If R_i is not in ρ, then $\beta_i = \Omega$ (undefined)
Classical Call String Length

M

ρ_0

ρ
Classical Call String Length

\[\langle c_i, \alpha_i, \beta_i \rangle \]

\[M \]

\[\rho_0 \]

\[\rho \]
Classical Call String Length

\[M \]

\[\alpha_j \]

\[\langle c_j, \alpha_i, \Omega \rangle \]

\[\rho_0 \]

\[\rho \]
Classical Call String Length

- Number of distinct triples $\langle c_i, \alpha_i, \beta_i \rangle$ is $M = K \cdot (|L| + 1)^2$.
Classical Call String Length

- Number of distinct triples $\langle c_i, \alpha_i, \beta_i \rangle$ is $M = K \cdot (|L| + 1)^2$.
- There are at least two calls from the same call site that have the same effect on data flow values.
Classical Call String Length

When β_i is not Ω
When β_i is not Ω
Classical Call String Length

When β_i is not Ω
Classical Call String Length

When β_i is Ω
Classical Call String Length

When β_i is Ω

\[M \]

ρ_0 ρ
Classical Call String Length

When β_i is Ω
Tighter Bound for Bit Vector Frameworks

- \hat{L} is $\{0, 1\}$, L is $\{0, 1\}^m$
- $\hat{\cap}$ is either boolean AND or boolean OR
- $\hat{\top}$ and $\hat{\bot}$ are 0 or 1 depending on $\hat{\cap}$.
- \hat{h} is a *bit function* and could be one of the following:

<table>
<thead>
<tr>
<th>Raise</th>
<th>Lower</th>
<th>Propagate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\top}$</td>
<td>$\hat{\bot}$</td>
<td>$\hat{\bot}$</td>
</tr>
<tr>
<td>$\hat{\bot}$</td>
<td>$\hat{\top}$</td>
<td>$\hat{\bot}$</td>
</tr>
</tbody>
</table>
Tighter Bound for Bit Vector Frameworks

Karkare Khedker 2007

- Validity constraints are imposed by the presence of return nodes
- For every cyclic path consisting on Propagate functions, there exists an acyclic path consisting of Propagate functions
- Source of information is a Raise or Lower function
- Target of is a point reachable by a series of Propagate functions
- Identifies interesting path segments that we need to consider for determining a sufficient set of call strings
Relevant Path Segments for Tighter Bound for Bit Vector Frameworks

Which paths in a supergraph are sufficient to construct maximal call strings?

- All paths from C_i to R_i are abstracted away when a new call node C_j is to be suffixed to a call string
- We should consider maximal interprocedurally valid paths in which there is no path from a return node to a call node
- Consider all four combinations

Case A: Source is a call node and target is a call node
Case B: Source is a call node and target is a return node
Case C: Source is a return node and target is also a return node
Case D: Source is a return node and target is a call node: Not relevant
Tighter Length for Bit Vector Frameworks

Case A:
Source is a call node and target is also a call node $P(\text{Entry} \leadsto C_S \leadsto C_T)$

- No return node, no validity constraints
- Paths $P(\text{Entry} \leadsto C_S)$ and Paths $P(C_S \leadsto C_T)$ can be acyclic
- A call node may be common to both segments
- At most 2 occurrences of a call site
Case B: Source is a call node C_S and target is some return node R_T

- $P(\text{Entry} \leadsto C_S \leadsto C_T \leadsto R_T)$
 - Call strings are derived from the paths $P(\text{Entry} \leadsto C_S \leadsto C_T \leadsto C_L)$ where C_L is the last call node
 - Thus there are three acyclic segments $P(\text{Entry} \leadsto C_S)$, $P(C_S \leadsto C_T)$, and $P(C_T \leadsto C_L)$
 - A call node may be shared in all three
 - At most 3 occurrences of a call site

- $P(\text{Entry} \leadsto C_T \leadsto C_S \leadsto R_S \leadsto R_T)$
 - C_T is required because of validity constraints
 - Call strings are derived from the paths $P(\text{Entry} \leadsto C_T \leadsto C_S \leadsto C_L)$ where C_L is the last call node
 - Again, there are three acyclic segments and at most 3 occurrences of a call site
Tighter Length for Bit Vector Frameworks

Case C:

Source is a return node R_S and **target** is also some return node R_T

- $P(\text{Entry} \rightsquigarrow C_T \rightsquigarrow C_S \rightsquigarrow R_S \rightsquigarrow R_T)$
- C_T and C_S are required because of validity constraints
- Call strings are derived from the paths $P(\text{Entry} \rightsquigarrow C_T \rightsquigarrow C_S \rightsquigarrow C_L)$ where C_L is the last call node
- Again, there are three acyclic segments and at most 3 occurrences of a call site
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

C_a

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

$\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_{m-1}} \mid x \rangle$

C_a

R_a
Classical Approximate Approach

- Maintain call string suffixes of upto a given length m.

Call string of length $m - 1$
$\langle C_1 \cdot C_2 \ldots C_{i-1} \mid x \rangle$

\[\downarrow \]

C_a

Call string of length m
$\langle C_1 \cdot C_2 \ldots C_{i-1} \cdot C_a \mid x \rangle$

\[\downarrow \]

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

Call string of length $m - 1$

\[\langle C_i_1 \cdot C_i_2 \ldots C_{i_{m-1}} \mid x \rangle \]

\[C_a \]

Call string of length m

\[\langle C_i_1 \cdot C_i_2 \ldots C_{i_{m-1}} \cdot C_a \mid x \rangle \]

\[\langle C_i_1 \cdot C_i_2 \ldots C_{i_{m-1}} \cdot C_a \mid y \rangle \]

\[R_a \]
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

Call string of length $m - 1$

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_{m-1}} \mid x \rangle
\]

\[
C_a
\]

Call string of length m

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_{m-1}} \cdot C_a \mid x \rangle
\]

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_{m-1}} \cdot C_a \mid y \rangle
\]

\[
R_a
\]

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_{m-1}} \mid y \rangle
\]
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

Call string of length m

\[\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x \rangle \]

\[C_a \]

\[R_a \]
Classical Approximate Approach

- Maintain call string suffixes of upto a given length m.

Call string of length m
\[
\langle C_1 \cdot C_2 \cdots C_m | x \rangle
\]

\[
\downarrow
\]

C_a

Call string of length m
\[
\langle C_2 \cdots C_m \cdot C_a | x \rangle
\]

(First call site c_i_1 removed from incoming call string and call site c_a attached)

\[
\downarrow
\]

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

Call string of length m:

$$\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x \rangle$$

C_a

Call string of length m:

$$\langle C_{i_2} \ldots C_{i_m} \cdot C_a \mid x \rangle$$

(First call site c_{i_1} removed from incoming call string and call site c_a attached)

$$\langle C_{i_2} \ldots C_{i_m} \cdot C_a \mid y \rangle$$

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x \rangle
\]

\[
\langle C_{i_2} \ldots C_{i_m} \cdot C_a \mid x \rangle
\]

\[
\langle C_{i_2} \ldots C_{i_m} \cdot C_a \mid y \rangle
\]

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid y \rangle
\]

(call string of length m)

(call string of length m)

(First call site c_{i_1} removed from incoming call string and call site c_a attached)
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

\[\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_1 \rangle \]

C_a

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_1 \rangle \quad \langle C_{j_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_2 \rangle
\]

C_a

R_a
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

\[
\langle C_{i_1} \cdots C_{i_m} \mid x_1 \rangle \quad \langle C_{j_1} \cdots C_{i_m} \mid x_2 \rangle
\]
\[\quad \downarrow C_a \]
\[\langle C_{i_2} \cdots C_{i_m} \cdot C_a \mid x_1 \cap x_2 \rangle\]

\[
\text{Ra}
\]
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

\[
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_1 \rangle \quad \langle C_{j_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_2 \rangle
\]

\[
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid x_1 \sqcap x_2 \rangle
\]

\[
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid y \rangle
\]
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

$$
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_1 \rangle \quad \langle C_{j_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_2 \rangle
$$

$$
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid x_1 \sqcap x_2 \rangle
$$

$$
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid y \rangle
$$

$$
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid y \rangle \quad \langle C_{j_1} \cdot C_{i_2} \ldots C_{i_m} \mid y \rangle
$$
Classical Approximate Approach

- Maintain call string suffixes of up to a given length m.

$$
\langle C_{i_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_1 \rangle \quad \langle C_{j_1} \cdot C_{i_2} \ldots C_{i_m} \mid x_2 \rangle
$$

$$
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid x_1 \cap x_2 \rangle
$$

$$
\langle C_{i_2} \cdot C_{i_3} \ldots C_{i_m} \cdot C_a \mid y \rangle
$$

- Practical choices of m have been 1 or 2.
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[\langle C_b \mid x_1 \rangle \]

[Diagram showing C_a and R_a]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

$\langle C_b \mid x_1 \rangle$

C_a

$\langle C_b \cdot C_a \mid x_1 \rangle$

R_a
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

$$
\langle C_b | x_1 \rangle \quad \langle C_b \cdot C_a | x_2 \rangle
$$

$$
\langle C_b \cdot C_a | x_1 \rangle
$$

$$
R_a
$$
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle \quad \langle C_b \cdot C_a \mid x_2 \rangle
\]

\[
\langle C_b \cdot C_a \mid x_1 \rangle, \langle C_a \cdot C_a \mid x_2 \rangle
\]

\[
R_a
\]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle, \langle C_b \cdot C_a \mid x_2 \rangle, \langle C_a \cdot C_a \mid x_3 \rangle
\]

\[
\langle C_b \cdot C_a \mid x_1 \rangle, \langle C_a \cdot C_a \mid x_2 \rangle
\]

\[
R_a
\]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\langle C_b | x_1 \rangle \quad \langle C_b \cdot C_a | x_2 \rangle, \quad \langle C_a \cdot C_a | x_3 \rangle
\]

Diagram:

\[
C_a
\]

\[
\langle C_b \cdot C_a | x_1 \rangle, \quad \langle C_a \cdot C_a | x_2 \sqcap x_3 \rangle
\]

\[
R_a
\]
Approximate Call Strings in Presence of Recursion

• For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle, \quad \langle C_b \cdot C_a \mid x_2 \rangle, \quad \langle C_a \cdot C_a \mid x_4 \rangle
\]

\[
\langle C_b \cdot C_a \mid x_1 \rangle, \quad \langle C_a \cdot C_a \mid x_2 \cap x_3 \rangle
\]

$\langle C_a \rangle$
Approximate Call Strings in Presence of Recursion

• For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle, \langle C_b \cdot C_a \mid x_2 \rangle, \langle C_a \cdot C_a \mid x_4 \rangle
\]

\[\langle C_b \cdot C_a \mid x_1 \rangle, \langle C_a \cdot C_a \mid x_5 \rangle\]

\[\text{Ra}\]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\begin{align*}
\langle C_b \mid x_1 \rangle & \quad \langle C_b \cdot C_a \mid x_2 \rangle, \quad \langle C_a \cdot C_a \mid x_4 \rangle \\
\langle C_b \cdot C_a \mid x_1 \rangle, \quad \langle C_a \cdot C_a \mid x_5 \rangle \\
\langle C_b \cdot C_a \mid y_1 \rangle, \quad \langle C_a \cdot C_a \mid y_2 \rangle
\end{align*}
\]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle, \langle C_b \cdot C_a \mid x_2 \rangle, \langle C_a \cdot C_a \mid x_4 \rangle
\]

\[
\langle C_a \rangle
\]

\[
\langle C_b \cdot C_a \mid x_1 \rangle, \langle C_a \cdot C_a \mid x_5 \rangle
\]

\[
\langle C_a \rangle
\]

\[
\langle C_b \cdot C_a \mid y_1 \rangle, \langle C_a \cdot C_a \mid y_2 \rangle
\]

\[
\langle C_a \rangle
\]

\[
\langle C_b \mid y_1 \rangle, \langle C_b \cdot C_a \mid y_2 \rangle, \langle C_a \cdot C_a \mid y_2 \rangle
\]
Approximate Call Strings in Presence of Recursion

- For simplicity, assume $m = 2$

\[
\langle C_b \mid x_1 \rangle \quad \langle C_b \cdot C_a \mid x_2 \rangle, \langle C_a \cdot C_a \mid x_4 \rangle
\]

\[
\begin{array}{c}
\langle C_b \cdot C_a \mid x_1 \rangle, \langle C_a \cdot C_a \mid x_5 \rangle \\
\langle C_b \cdot C_a \mid y_1 \rangle, \langle C_a \cdot C_a \mid y_2 \rangle
\end{array}
\]

\[
\langle C_b \mid y_1 \rangle \quad \langle C_b \cdot C_a \mid y_2 \rangle, \langle C_a \cdot C_a \mid y_2 \rangle
\]
Part 6

Modified Call Strings Method
An Overview

- Clearly identifies the exact set of call strings required.
An Overview

- Clearly identifies the exact set of call strings required.
- Value based termination of call string construction. No need to construct call strings upto a fixed length.
An Overview

- Clearly identifies the exact set of call strings required.
- Value based termination of call string construction. No need to construct call strings up to a fixed length.
- Only as many call strings are constructed as are required.
An Overview

- Clearly identifies the exact set of call strings required.
- Value based termination of call string construction. No need to construct call strings up to a fixed length.
- Only as many call strings are constructed as are required.
- Significant reduction in space and time.
An Overview

- Clearly identifies the exact set of call strings required.
- Value based termination of call string construction. No need to construct call strings upto a fixed length.
- Only as many call strings are constructed as are required.
- Significant reduction in space and time.
- Worst case call string length becomes linear in the size of the lattice instead of the original quadratic.
An Overview

• Clearly identifies the exact set of call strings required.
• Value based termination of call string construction. No need to construct call strings up to a fixed length.
• Only as many call strings are constructed as are required.
• Significant reduction in space and time.
• Worst case call string length becomes linear in the size of the lattice instead of the original quadratic.

All this is achieved by a simple change without compromising on the precision, simplicity, and generality of the classical method.
The Limitation of the Classical Call Strings Method

Required length of the call string is:

- K for non-recursive programs
- $K \cdot (|L| + 1)^2$ for recursive programs
The Modified Algorithm

- Use exactly the same method with this small change:
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
The Modified Algorithm

• Use exactly the same method with this small change:
 ▶ discard redundant call strings at the start of every procedure, and
 ▶ simulate regeneration of call strings at the end of every procedure.
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
 - simulate regeneration of call strings at the end of every procedure.
- Intuition:
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
 - simulate regeneration of call strings at the end of every procedure.
- Intuition:
 - If σ_1 and σ_2 have equal values at S_p,
The Modified Algorithm

• Use exactly the same method with this small change:
 ▶ discard redundant call strings at the start of every procedure, and
 ▶ simulate regeneration of call strings at the end of every procedure.

• Intuition:
 ▶ If σ_1 and σ_2 have equal values at S_p,
 ▶ Then, since σ_1 and σ_2 are transformed in the same manner by traversing the same set of paths,
The Modified Algorithm

• Use exactly the same method with this small change:
 ▶ discard redundant call strings at the start of every procedure, and
 ▶ simulate regeneration of call strings at the end of every procedure.

• Intuition:
 ▶ If σ_1 and σ_2 have equal values at S_p,
 ▶ Then, since σ_1 and σ_2 are transformed in the same manner by traversing the same set of paths,
 ▶ The values associated with them will also be transformed in the same manner and will continue to remain equal at E_p.
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
 - simulate regeneration of call strings at the end of every procedure.

- Intuition:
 - If σ_1 and σ_2 have equal values at S_p,
 - Then, since σ_1 and σ_2 are transformed in the same manner by traversing the same set of paths,
 - The values associated with them will also be transformed in the same manner and will continue to remain equal at E_p.

- Can equivalence classes change?
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
 - simulate regeneration of call strings at the end of every procedure.

- Intuition:
 - If σ_1 and σ_2 have equal values at S_p,
 - Then, since σ_1 and σ_2 are transformed in the same manner by traversing the same set of paths,
 - The values associated with them will also be transformed in the same manner and will continue to remain equal at E_p.

- Can equivalence classes change?
 - During the analysis, equivalence classes may change in the sense that some call strings may move out of one class and may belong to some other class.
The Modified Algorithm

- Use exactly the same method with this small change:
 - discard redundant call strings at the start of every procedure, and
 - simulate regeneration of call strings at the end of every procedure.

- Intuition:
 - If σ_1 and σ_2 have equal values at S_p,
 - Then, since σ_1 and σ_2 are transformed in the same manner by traversing the same set of paths,
 - The values associated with them will also be transformed in the same manner and will continue to remain equal at E_p.

- Can equivalence classes change?
 - During the analysis, equivalence classes may change in the sense that some call strings may move out of one class and may belong to some other class.
 - However, the invariant that the equivalence classes are same at S_p and E_p still holds.
Representation and Regeneration of Call Strings

- Let $\text{shortest}(\sigma, u)$ denote the shortest call string which has the same value as σ at u.

\[
\begin{align*}
\text{represent}(\langle \sigma, x \rangle, S_p) &= \langle \text{shortest}(\sigma, S_p), x \rangle \\
\text{regenerate}(\langle \sigma, y \rangle, E_p) &= \{ \langle \sigma', y \rangle \mid \sigma \text{ and } \sigma' \text{ have the same value at } S_p \}
\end{align*}
\]

- Correctness requirement: Whenever representation is performed at S_p, E_p must be added to the work list

- Efficiency consideration: Desirable order of processing of nodes
 Intraprocedural nodes → call nodes → return nodes
Safety and Precision of Representation and Regeneration

\[
\langle \sigma \cdot \sigma^\omega_c \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^{\omega+1}_c \mid x_\omega \rangle
\]
Safety and Precision of Representation and Regeneration

\[
\langle \sigma \cdot \sigma_c^\omega \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid x_\omega \rangle
\]

\[
\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \cdot c_i \mid x_\omega \rangle
\]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega + 1 \mid x_\omega \rangle \]

\[S_p \]

\[\langle \sigma \cdot \sigma^\omega \cdot c_i \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^{\omega + 1} \cdot c_i \mid x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega \cdot c_i \mid z_m \rangle \quad \langle \sigma \cdot \sigma^{\omega + 1} \cdot c_i \mid z_m \rangle \]

\[E_p \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c | x \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} | x \rangle \]

\[\langle \sigma \cdot \sigma^\omega_{c} \cdot c_i | x \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i | x \rangle \]

\[\langle \sigma \cdot \sigma^\omega_{c} \cdot c_i | Z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i | Z_m \rangle \]

\[\langle \sigma \cdot \sigma^\omega_{c} | Z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} | Z_m \rangle \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \mid x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i \mid x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i \mid z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i \mid z_m \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \mid z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \mid z_m \rangle \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c \ | \ x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \ | \ x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i \ | \ x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i \ | \ x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i \ | \ z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \cdot c_i \ | \ z_m \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \ | \ z_m \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \ | \ z_m \rangle \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma_c^\omega \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid x_\omega \rangle \]

Represent

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \cdot c_i \mid x_\omega \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \mid z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid z_m \rangle \]

Regenerate

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \cdot c_i \mid z_m \rangle \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma_c^\omega | \chi_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} | \chi_\omega \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i | \chi_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \cdot c_i | \chi_\omega \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega | Z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} | Z_m \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i | Z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \cdot c_i | Z_m \rangle \]

Represent

Regenerate
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma_c^\omega \mid \chi_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid \chi_\omega \rangle \]

Represent

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid \chi_\omega \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid Z_m \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \mid Z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid Z_m \rangle \]

Regenerate
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma_c^\omega \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid x_\omega \rangle \]

Represent

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid x_\omega \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \cdot c_i \mid z_m \cap g(z_m) \rangle \]

\[\langle \sigma \cdot \sigma_c^\omega \mid z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} \mid z_m \rangle \]

Regenerate
Safety and Precision of Representation and Regeneration

\[
\langle \sigma \cdot \sigma_c^\omega | \chi_\omega \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} | \chi_\omega \rangle
\]

\[
\langle \sigma \cdot \sigma_c^\omega \cdot c_i | \chi_\omega \rangle \quad \langle \sigma \cdot \sigma_c^\omega \cdot c_i | z_m \cap g(z_m) \rangle
\]

\[
z_{m-1} = z_m \cap g(z_m)
\]

\[
\langle \sigma \cdot \sigma_c^\omega | Z_m \rangle \quad \langle \sigma \cdot \sigma_c^{\omega+1} | Z_m \rangle
\]
Safety and Precision of Representation and Regeneration

\[
\langle \sigma \cdot \sigma^c \cdot c_i \mid \chi_\omega \rangle \quad \langle \sigma \cdot \sigma^c + 1 \mid \chi_\omega \rangle
\]

\[
S_p
\]

Represent

\[
\langle \sigma \cdot \sigma^c \cdot c_i \mid z_m \cap g(z_m) \rangle
\]

\[
E_p
\]

Regenerate

\[
z_{m-1} = z_m \cap g(z_m)
\]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c | x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_c^{+1} | x_\omega \rangle \]

Represent

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i | x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i | z_m \cap g(z_m) \rangle \]

\[z_{m-1} = z_m \cap g(z_m) \]

Regenerate

\[\langle \sigma \cdot \sigma^\omega_c , Z_{m-1} \rangle \quad \langle \sigma \cdot \sigma^\omega_c^{+1} , Z_{m-1} \rangle \]
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c | x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} | x_\omega \rangle \]

Represent

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i | x_\omega \rangle \]

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i | Z_{m-2} \rangle \]

\[z_{m-2} = z_m \sqcap g(z_{m-1}) \]

Regenerate

\[\langle \sigma \cdot \sigma^\omega_c | Z_{m-2} \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} | Z_{m-2} \rangle \]
Safety and Precision of Representation and Regeneration

These values are identical to the values computed by the full call strings method.

\[z_{m-i} = z_m \cap g(z_{m-(i+1)}) \]

Apr 2009

IIT Bombay
Safety and Precision of Representation and Regeneration

\[\langle \sigma \cdot \sigma^\omega_c \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \mid x_\omega \rangle \]

\[S_p \]

Represent

\[\langle \sigma \cdot \sigma^\omega_c \cdot c_i \mid x_\omega \rangle \quad \langle \sigma \cdot \sigma^\omega_c \cdot c_i \mid Z_{m-i} \rangle \]

\[E_p \]

Other values are computed with smaller call strings similar to the full call strings method

\[z_{m-i} = z_m \sqcap g(z_{m-(i+1)}) \]

Stop regeneration after the values converge

\[\langle \sigma \cdot \sigma^\omega_c \mid Z_{m-i} \rangle \quad \langle \sigma \cdot \sigma^\omega_{c+1} \mid Z_{m-i} \rangle \]
Equivalence of The Two Methods

- For non-recursive programs, equivalence is obvious
- For recursive program, we prove equivalence using staircase diagrams
Call Strings for Recursive Contexts

Let
- $\sigma_c \equiv c_j c_r c_k c_p c_i c_q$
- $\sigma_r \equiv r_q r_i r_p r_k r_r r_j$

Assume that we allow up to m occurrences of σ_c
Computing Data Flow Values along Recursive Paths

\[x_1 = f(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_2 = f^2(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_m = h(x_m) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-1} = h(x_{m-1}) \cap g(z_m) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-2} = h(x_{m-2}) \cap g(z_{m-1}) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-j} = h(x_{m-j}) \cap g(z_{m-j+1}) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-j} = h(x_{m-j}) \cap g(z_{m-j+1}) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-j} = h(x_{m-j}) \cap g(z_{m-j+1}) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \quad z_{m-j} = h(x_{m-j}) \cap g(z_{m-j+1}) \]
Computing Data Flow Values along Recursive Paths

\[x_i = f^i(x_0) \]

\[z_{m-j} = h(x_{m-j}) \sqcap g(z_{m-j+1}) \]
Fixed Bound Closure Bound of Flow Function

- $n > 0$ is the fixed point closure bound of $h : L \mapsto L$ if it is the smallest number such that

\[
\forall x \in L, \ h^{n+1}(x) = h^n(x)
\]
Computation of Data Flow Values along Recursive Paths

\[x_1 = f(x_0) \]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

$x_2 = f^2(x_0)$
FP closure bound of f

$x_\omega = f^{\omega}(x_0)$
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

\[x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases} \]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

$$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$$
Computation of Data Flow Values along Recursive Paths

$\sigma_c \ x_\omega$ $\sigma_c \ x_\omega$

ω

$\omega + 1$

$\omega + 2$

$m - 1$

\cdots

$x_i = \begin{cases} f^i(x_0) & \text{if } i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

$$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}$$
Computation of Data Flow Values along Recursive Paths

FP closure bound of \(f \)

\[
x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}
\]

\[z_m = h(x_\omega) \]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

\[x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases} \]

\[z_{m-1} = h(x_\omega) \cap g(z_m) \]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

FP closure bound of g

$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}$

$z_{m-\eta} = h(x_\omega) \cap g(z_{m-\eta+1})$
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

FP closure bound of g

\[x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases} \]

\[z_{m-j} = \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases} \]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

FP closure bound of g

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

FP closure bound of g

$$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$$

$$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$$
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

$\text{FP closure bound of } g$

\[
x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}
\]

\[
z_{m-j} = \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\]
Computation of Data Flow Values along Recursive Paths

FP closure bound of f

$z_m = \{ (x_0 \cap g(z_{m-\eta})) \} \cup \{ (x_{j-\eta} \cap g(z_{m-j+1})) \} \cup \{ (h(x_\omega) \cap g(z_{m-j+1})) \} \cup \{ (h(x_j) \cap g(z_{m-j+1})) \}

\begin{align*}
 x_i &= \begin{cases}
 f^i(x_0) & i < \omega \\
 f^{\omega}(x_0) & \text{otherwise}
 \end{cases} \\
 z_{m-j} &= \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_{j-\eta}) \cap g(z_{m-j+1}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
 \end{cases}
\end{align*}
The Moral of the Story

• In the cyclic call sequence, computation begins from the first call string and influences successive call strings.
The Moral of the Story

• In the cyclic call sequence, computation begins from the first call string and influences successive call strings.

• In the cyclic return sequence, computation begins from the last call string and influences the preceding call strings.
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

FP closure bound of g

$$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}$$

$$z_{m-j} = \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}$$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation: $z_{m-(i+1)} \sqsubseteq z_{m-i}$, $0 \leq i \leq \omega$

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation: $z_{m-(i+1)} \sqsubseteq z_{m-i}$ \hspace{1cm} $0 \leq i \leq \omega$

Basis: $z_{m-1} = h(x_m) \sqcap g(z_m)$

$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}

z_{m-j} = \begin{cases}
 h(x_{\omega}) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_{\omega}) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation: $z_{m-(i+1)} \sqsubseteq z_{m-i}$, $0 \leq i \leq \omega$

Basis: $z_{m-1} = h(x_m) \cap g(z_m) = z_m \cap g(z_m)$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values \(z_{m-i}, 0 \leq i \leq \omega \) (computed along \(\sigma_r \)) follow a strictly descending chain.

Proof Obligation:

\[
\begin{align*}
 z_{m-(i+1)} & \sqsubseteq z_{m-i} & 0 \leq i \leq \omega \\
 \text{Basis:} & \quad z_{m-1} = h(x_m) \sqcap g(z_m) \\
 & = z_m \sqcap g(z_m) \\
 & \sqsubseteq z_m
\end{align*}
\]

\[
x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases} \\

z_{m-j} = \begin{cases}
 h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\]

Apr 2009
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values \(z_{m-i}, 0 \leq i \leq \omega \) (computed along \(\sigma_r \)) follow a strictly descending chain.

Proof Obligation:

\[
\begin{align*}
\text{Basis:} & \quad z_{m-1} = h(x_m) \cap g(z_m) = z_m \cap g(z_m) \\
\text{Inductive step:} & \quad z_{m-k} \sqsubseteq z_{m-(k-1)} \quad (\text{hypothesis})
\end{align*}
\]

\[
\begin{align*}
x_i &= \begin{cases}
 f^i(x_0) & i < \omega \\
 f^{\omega}(x_0) & \text{otherwise}
\end{cases} \\

z_{m-j} &= \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\end{align*}
\]
Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation: $z_{m-(i+1)} \sqsubseteq z_{m-i}$, $0 \leq i \leq \omega$

Basis: $z_{m-1} = h(x_m) \sqcap g(z_m) = z_m \sqcap g(z_m) \sqsubseteq z_m$

Inductive step: $z_{m-k} \sqsubseteq z_{m-(k-1)}$ (hypothesis)

$\Rightarrow g(z_{m-k}) \sqsubseteq g(z_{m-(k-1)})$ (monotonicity)

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation: $z_{m-(i+1)} \sqsubseteq z_{m-i}$ \hspace{1cm} $0 \leq i \leq \omega$

Basis: $z_{m-1} = h(x_m) \cap g(z_m)$

Inductive step: $z_{m-k} \sqsubseteq z_{m-(k-1)}$ (hypothesis)

$\Rightarrow g(z_{m-k}) \sqsubseteq g(z_{m-(k-1)})$ (monotonicity)

$z_{m-k} = z_m \cap g(z_{m-(k-1)})$

$z_{m-(k+1)} = z_m \cap g(z_{m-k})$

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_m = \begin{cases} h(x_\omega) \cap g(z_{m+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-1}) & \text{otherwise} \end{cases}$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Proof Obligation:

- **Basis:**

 $z_{m-1} = h(x_m) \cap g(z_m) = z_m \cap g(z_m) \sqsubseteq z_m$

- **Inductive step:**

 $z_{m-k} \sqsubseteq z_{m-(k-1)}$ (hypothesis)

 $\Rightarrow g(z_{m-k}) \sqsubseteq g(z_{m-(k-1)})$ (monotonicity)

 $z_{m-k} = z_m \cap g(z_{m-(k-1)})$

 $z_{m-(k+1)} = z_m \cap g(z_{m-k})$

 $\Rightarrow z_{m-(k+1)} \sqsubseteq z_{m-k}$

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-j}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Bounding the Call String Length Using Data Flow Values

Theorem: Data flow values z_{m-i}, $0 \leq i \leq \omega$ (computed along σ_r) follow a strictly descending chain.

Conclusion: It is possible to compute these values iteratively by overwriting earlier values. There is no need of constructing call string beyond $\omega + 1$ occurrences of σ.

$$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$$

$$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$$
Bounding the Call String Length Using Data Flow Values

FP closure bound of \(f \)

FP closure bound of \(g \)

\[
x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}
\]

\[
z_{m-j} = \begin{cases}
 h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\]
Bounding the Call String Length Using Data Flow Values

\[\begin{align*}
\sigma_c &= \{ f^i(x_0) \mid i < \omega \} \\
\sigma_r &= \{ h(x_j) \mid \eta < j \leq (m-\omega) \}
\end{align*} \]

\[\begin{align*}
x_i &= \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}
\end{align*}\]

\[\begin{align*}
z_{m-j} &= \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\end{align*}\]
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}$

$z_{m-j} = \begin{cases}
 h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise}
\end{cases}$
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

$$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$$

$$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$$
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

$$x_i = \begin{cases} f^{i}(x_0) & i < \omega \\ f^{\omega}(x_0) & \text{otherwise} \end{cases}$$

$$z_{m-j} = \begin{cases} h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \cap g(z_{m-j+1}) & \text{otherwise} \end{cases}$$
Bounding the Call String Length Using Data Flow Values

FP closure bound of \(f \)

\[
\begin{align*}
x_i &= \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
 \end{cases} \\

 z_{m-j} &= \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
 \end{cases}
\end{align*}
\]
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

$x_i = \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases}$

$z_{m-j} = \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}$
Bounding the Call String Length Using Data Flow Values

FP closure bound of \(f \)

\[
\begin{align*}
x_i &= \begin{cases}
 f^i(x_0) & i < \omega \\
 f^\omega(x_0) & \text{otherwise}
\end{cases} \\
\end{align*}
\]

\[
\begin{align*}
z_{m-j} &= \begin{cases}
 h(x_\omega) \cap g(z_{m-j+1}) & 0 \leq j \leq \eta \\
 h(x_\omega) \cap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\
 h(x_j) \cap g(z_{m-j+1}) & \text{otherwise}
\end{cases}
\end{align*}
\]
Bounding the Call String Length Using Data Flow Values

FP closure bound of f

$x_i = \begin{cases} f^i(x_0) & i < \omega \\ f^\omega(x_0) & \text{otherwise} \end{cases}$

$z_{m-j} = \begin{cases} h(x_\omega) \sqcap g(z_{m-j+1}) & 0 \leq j \leq \eta \\ h(x_\omega) \sqcap g(z_{m-\eta}) & \eta < j \leq (m-\omega) \\ h(x_j) \sqcap g(z_{m-j+1}) & \text{otherwise} \end{cases}$
Worst Case Length Bound

- Consider a call string $\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots$

 Let $j \geq |L| + 1$
 Let C_i call procedure p
Worst Case Length Bound

• Consider a call string $\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots$
 Let $j \geq |L| + 1$
 Let C_i call procedure p

• All call string ending with C_i reach entry S_p
Worst Case Length Bound

- Consider a call string $\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots$
- Let $j \geq |L| + 1$
- Let C_i call procedure p
- All call string ending with C_i reach entry S_p
- Since only $|L|$ distinct values are possible, by the pigeon hole principle, at least two prefixes ending with C_i will carry the same data flow value to S_p.
Worst Case Length Bound

- Consider a call string \(\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \)

 Let \(j \geq |L| + 1 \)

 Let \(C_i \) call procedure \(p \)

- All call string ending with \(C_i \) reach entry \(S_p \)

- Since only \(|L| \) distinct values are possible, by the pigeon hole principle, at least two prefixes ending with \(C_i \) will carry the same data flow value to \(S_p \).

 The longer prefix will get represented by the shorter prefix
Worst Case Length Bound

- Consider a call string \(\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \)
- Let \(j \geq |L| + 1 \)
- Let \(C_i \) call procedure \(p \)
- All call string ending with \(C_i \) reach entry \(S_p \)
- Since only \(|L|\) distinct values are possible, by the pigeon hole principle, at least two prefixes ending with \(C_i \) will carry the same data flow value to \(S_p \).
 - The longer prefix will get represented by the shorter prefix
 - Since one more \(C_i \) is may be suffixed to discover fixed point, \(j \leq |L| + 1 \)
Worst Case Length Bound

- Consider a call string $\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots$
 - Let $j \geq |L| + 1$
 - Let C_i call procedure p

- All call string ending with C_i reach entry S_p

- Since only $|L|$ distinct values are possible, by the pigeon hole principle, at least two prefixes ending with C_i will carry the same data flow value to S_p.
 - The longer prefix will get represented by the shorter prefix
 - Since one more C_i is may be suffixed to discover fixed point, $j \leq |L| + 1$

- Worst case length in the proposed variant $= K \times (|L| + 1)$
Worst Case Length Bound

- Consider a call string $\sigma = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots$
 Let $j \geq |L| + 1$
 Let C_i call procedure p
- All call string ending with C_i reach entry S_p
- Since only $|L|$ distinct values are possible, by the pigeon hole principle, at least two prefixes ending with C_i will carry the same data flow value to S_p.
 - The longer prefix will get represented by the shorter prefix
 - Since one more C_i is may be suffixed to discover fixed point, $j \leq |L| + 1$
- Worst case length in the proposed variant $= K \times (|L| + 1)$
- Original required length $= K \times (|L| + 1)^2$
Approximate Version

- For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.
Approximate Version

• For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.

• Use a demand driven approach:
 ▶ After a dynamically definable limit (say a number j),
 ▶ Start merging the values and associate them with the last call string
Approximate Version

- For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.
- Use a demand driven approach:
 - After a dynamically definable limit (say a number j),
 - Start merging the values and associate them with the last call string
 - Let
 \[
 \sigma_j = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \\
 \sigma_{j+1} = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots (C_i)^{j+1} \ldots
 \]
Approximate Version

- For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.

- Use a demand driven approach:
 - After a dynamically definable limit (say a number \(j \)),
 - Start merging the values and associate them with the last call string
 - Let
 \[
 \sigma_j = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \\
 \sigma_{j+1} = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots (C_i)^{j+1} \ldots \\
 \]
 - Represent \(\langle \sigma_j \mid x_j \rangle \) and \(\langle \sigma_{j+1} \mid x_{j+1} \rangle \)
 by \(\langle \sigma_j \mid x_j \sqcap x_{j+1} \rangle \)
Approximate Version

- For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.

- Use a demand driven approach:
 - After a dynamically definable limit (say a number j),
 - Start merging the values and associate them with the last call string
 - Let
 \[
 \sigma_j = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \\
 \sigma_{j+1} = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots (C_i)^{j+1} \ldots
 \]
 - Represent $\langle \sigma_j \mid x_j \rangle$ and $\langle \sigma_{j+1} \mid x_{j+1} \rangle$
 by $\langle \sigma^j \mid x_j \sqcap x_{j+1} \rangle$

- Context sensitive for a depth j of recursion. Context insensitive beyond that.
Approximate Version

- For framework with infinite lattices, a fixed point for cyclic call sequence may not exist.

- Use a demand driven approach:
 - After a dynamically definable limit (say a number j),
 - Start merging the values and associate them with the last call string
 - Let
 \[
 \sigma_j = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots \\
 \sigma_{j+1} = \ldots (C_i)^1 \ldots (C_i)^2 \ldots (C_i)^3 \ldots (C_i)^j \ldots (C_i)^{j+1} \ldots
 \]
 - Represent $\langle \sigma_j \mid x_j \rangle$ and $\langle \sigma_{j+1} \mid x_{j+1} \rangle$
 by $\langle \sigma^j \mid x_j \sqcap x_{j+1} \rangle$

- Context sensitive for a depth j of recursion.
 Context insensitive beyond that.

- Assumption: Height of the lattice is finite.
Reaching Definitions Analysis in GCC 4.0

<table>
<thead>
<tr>
<th>Program</th>
<th>LoC</th>
<th>#F</th>
<th>#C</th>
<th>3K length bound</th>
<th>Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>#CS</td>
<td>Max</td>
<td>Time</td>
<td>#CS</td>
</tr>
<tr>
<td>hanoi</td>
<td>33</td>
<td>2</td>
<td>4</td>
<td>4 100000+</td>
<td>9922</td>
</tr>
<tr>
<td>bit_gray</td>
<td>53</td>
<td>5</td>
<td>11</td>
<td>7 100000+</td>
<td>31374</td>
</tr>
<tr>
<td>analyzer</td>
<td>288</td>
<td>14</td>
<td>20</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>distract</td>
<td>331</td>
<td>9</td>
<td>21</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>mason</td>
<td>350</td>
<td>9</td>
<td>13</td>
<td>8 100000+</td>
<td>22143</td>
</tr>
<tr>
<td>fourinarow</td>
<td>676</td>
<td>17</td>
<td>45</td>
<td>5</td>
<td>510</td>
</tr>
<tr>
<td>sim</td>
<td>1146</td>
<td>13</td>
<td>45</td>
<td>8 100000+</td>
<td>33546</td>
</tr>
<tr>
<td>181_mcf</td>
<td>1299</td>
<td>17</td>
<td>24</td>
<td>6</td>
<td>32789</td>
</tr>
<tr>
<td>256_bzip2</td>
<td>3320</td>
<td>63</td>
<td>198</td>
<td>7</td>
<td>492</td>
</tr>
</tbody>
</table>

- LoC is the number of lines of code,
- #F is the number of procedures,
- #C is the number of call sites,
- #CS is the number of call strings
- Max denotes the maximum number of call strings reaching any node.
- Analysis time is in milliseconds.

(Implementation was carried out by Seema Ravandale.)
Some Observations

• Compromising on precision may not be necessary for efficiency.
• Separating the necessary information from redundant information is much more significant.
• Data flow propagation in real programs seems to involve only a small subset of all possible values. Much fewer changes than the theoretically possible worst case number of changes.
• A precise modelling of the process of analysis is often an eye opener.
Tutorial Problem

Perform may points-to analysis using modified call strings method. Make conservative assumptions about must points-to information.

```c
main()
{  x = &y;
   z = &x;
   y = &z;
   p(); /* C1 */
}

p()
{  if (...) 
   {  p(); /* C2 */
      x = *x;
   }
}
```

- Number of distinct call sites in a call chain $K = 2$.
- Number of variables: 3
- Number of distinct points-to pairs: $3 \times 3 = 9$
- L is powerset of all points-to pairs
- $|L| = 2^9$
- Length of the longest call string in Sharir-Pnueli method
 $2 \times (|L| + 1)^2 = 2^{19} + 2^{10} + 1 = 5, 25, 313$
- All call strings up to this length must be constructed by the Sharir-Pnueli method!
Tutorial Problem

Perform may points-to analysis using modified call strings method. Make conservative assumptions about must points-to information.

```c
main()
{  x = &y;
    z = &x;
    y = &z;
    p(); /* C1 */
}

p()
{  if (...)
    {  p(); /* C2 */
        x = *x;
    }
}
```

- Modified call strings method requires only three call strings: λ, c_1, and c_1c_2