Topics in Systems and Program Security

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

August 29, 2008
Systems Enable Interaction

- If it was solely about isolating processes, security would be easy
- However, process interaction is fundamental to operating systems
 - How can processes interact?
 - For what purposes?

- Challenge: ensure security goals are met given all means of interaction
Secure Operating System

• Provides security mechanisms that ensure that the system’s security goals are enforce despite threats from attackers
 ‣ Security mechanisms?
 ‣ Security goals?
 ‣ Threats?
 ‣ Attackers?

• Can we build a truly secure operating system?
Security Goals

- Lots of unsatisfying definitions
 - Users can perform only authorized operations (safety)
 - Processes perform only their necessary operations (least privilege)
 - Operations can only permit information to be written to more secret levels (MLS)

- We’ll discuss these
 - Defining practical and achievable security goals is a difficult task
Trust Model

• For operating system
 ‣ Trust model == TCB

• What’s in a TCB?

• What are we trusting?
Threat Model

• Threats are means that an attacker can use to violate security goals
 ‣ Where do threats come from?
 ‣ What mechanisms enable threats?
 ‣ What do threats threaten?

• Secure OS must protect TCB against threats
 ‣ Why is this sufficient?
Security Model

- Composed from Trust Model and Threat Model
- Can we state a security model for an idealized system?
 - Two processes
 - One root process
 - OS provides information flow (interaction) mechanisms
 - OS depends on the root process to identify the subjects for the processes
Protection System

- Manages the access control policy for a system
 - Security goal
- It presents
 - Protection state
 - Protection state operations
- It describes what operations each subject (via their processes) can perform on each object
The Access Matrix

- An access matrix is one way to represent policy.
 - Frequently used mechanism for describing policy
- Columns are objects, subjects are rows.
- To determine if S_i has right to access object O_j, find the appropriate entry.
- Succinct descriptor for O (ISI*|OI) entries
- Matrix for each right.

<table>
<thead>
<tr>
<th></th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S_3</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Protection State

• Using an access matrix representation
 ‣ Current state of matrix

• Can modify the protection state
 ‣ Via protection state operations
 ‣ E.g., can create subjects and objects
 ‣ E.g., owner can add a subject, operation mapping for their objects
Protection Domain

• Specifies the objects that a subject can access and the operations the subject can perform upon those objects
 ▸ What is this in the access matrix?

• Capabilities and Access Control Lists
 ▸ How do these define domains?
Mandatory Protection System

• Is a protection system that can be modified only by trusted administration that consists of
 ‣ A mandatory protection state where the protection state is defined in terms of a set of labels associated with subjects and objects
 • Label set is defined by trusted administration
 ‣ A labeling state that assigns system subjects and objects to those labels in the mandatory protection state
 ‣ A transition state that determines the legal ways that subjects and objects may be relabeled
Example

• 2 subjects

• Mandatory protection state
 ‣ Subject secret has a secret file
 ‣ Subject public has a public file

• What happens when subject secret creates a new file?
 ‣ What happens to the access matrix?
 ‣ What if the subject public creates a file?

• What happens when subject public executes a new process?
 ‣ Suppose the process is trusted to access secret files
 ‣ How does it obtain its label?
Mandatory Protection System

```
<table>
<thead>
<tr>
<th></th>
<th>secret</th>
<th>unclassified</th>
<th>trusted</th>
<th>untrusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>trusted</td>
<td>write</td>
<td>read</td>
<td>write</td>
<td></td>
</tr>
<tr>
<td>untrusted</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td>write</td>
</tr>
</tbody>
</table>
```

Labeling State
File: newfile
File: acct
Transition State
Protection State

Process: newproc
Process: other
Reference Monitor

- Components
 - Reference monitor interface (e.g., LSM)
 - Authorization module (e.g., SELinux)
 - Policy store (e.g., policy binary)
Reference Monitor

- Purpose: Ensure enforcement of security goals
 - Mandatory protection state defines goals
 - Guarantees ensure enforcement
Secure Operating System

• Possible?
• Ideally, satisfies the reference monitor guarantees
 ‣ Is that so hard?
• Mediation
 ‣ Challenges: what’s an operation?
• Tamperproof
 ‣ Challenges: Trust is rampant
• Verifiable:
 ‣ Challenges: Code verification? What’s the goal?
Evaluation

- **Mediation**: Does interface mediate correctly?
- **Mediation**: On all resources?
- **Mediation**: Verifably?
- **Tamperproof**: Is reference monitor protected?
- **Tamperproof**: Is system TCB protected?
- **Verifiable**: Is TCB code base correct?
- **Verifiable**: Does the protection system enforce the system’s security goals?
Take Away

• Identify core security approach
 ‣ Goals, trust model, threat model, security model

• Secure OS analogues
 ‣ Goals == protection system
 ‣ Trust model == TCB
 ‣ Threat model -- Mediated by Reference Monitor
 ‣ Security model -- how the reference monitor of the TCB enforces the mandatory protection system