Advanced Systems Security: Principles

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

January 21, 2010
XSS Problems

- Web application/Media player
 - Failure to identify malicious input
 - Failure to filter malice from input
- Operating system
 - Failure to confine media player (HTTPS backdoor)
 - Failure to limit access to TCB processes
- TCB process
 - Failure to filter malicious input
- Failure to prevent malicious function
Authorization and Authentication

- **Authentication**
 - Def: Verifying someone or something’s identity
 - E.g., XSS content

- **Authorization**
 - Def: Deciding whether a subject can perform a requested operation on an object
 - Deciding whether the media player can read content

- **Combination**
 - Authentication is performed for authorization
Protection System

- Manages the access control policy for a system
 - Security goal
- It represents
 - *Protection state*
 - *Protection state operations*
- It describes what operations each subject (via their processes) can perform on each object
The Access Matrix

- An access matrix is one way to represent policy.
 - Frequently used mechanism for describing policy
- Columns are objects, subjects are rows.
- To determine if S_i has right to access object O_j, find the appropriate entry.
- Succinct descriptor for O ($|S|*|O|)$ entries
- Matrix for each right.
Access Matrix Protection System

- Protection State
 - Current state of matrix
- Can modify the protection state
 - Via protection state operations
 - E.g., can create subjects and objects
 - E.g., owner can add a subject, operation mapping for their objects
- Lampson’s “Protection” paper
 - Can even delegate authority to perform protection state ops
XSS Problems

- Web application/Media player
 - Failure to identify malicious input (labeling)
 - Failure to filter malice from input (mediation)

- Operating system
 - Failure to confine media player (protection state ops)
 - Failure to limit access to TCB processes (transition)

- What do we need to achieve necessary controls?
Define and Enforce Goals

• Claim: *If we can define and enforce a security policy that ensures security goals, then we can prevent such attacks*

• How do we know the policy is expresses effective goals?
 ‣ Will look into this in depth later

• How should such a policy be represented/managed?

• How can we ensure its enforcement?

• How do we know the enforcement mechanism will behave as expected?
Mandatory Protection System

• Is a *protection system* that can be modified only by *trusted administration* that consists of
 ▸ A *mandatory protection state* where the protection state is defined in terms of a set of *labels* associated with subjects and objects
 • Label set is defined by trusted administration
 ▸ A *labeling state* that assigns system subjects and objects to those labels in the mandatory protection state
 ▸ A *transition state* that determines the legal ways that subjects and objects may be relabeled
Mandatory Protection System

![Diagram of mandatory protection system]

<table>
<thead>
<tr>
<th></th>
<th>secret</th>
<th>unclassified</th>
<th>trusted</th>
<th>untrusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>trusted</td>
<td>write</td>
<td>read</td>
<td>read</td>
<td>write</td>
</tr>
<tr>
<td>untrusted</td>
<td>read</td>
<td>write</td>
<td>read</td>
<td>write</td>
</tr>
</tbody>
</table>
Mandatory Protection State

- Immutable table of
 - Subject labels
 - Object labels
 - Operations authorized for former upon latter

- MPS for OS
 - Allow media player to communicate with browser, exec certain files
 - No network access

- MPS for media player
 - Play only trusted input

- Why is it **immutable**?
Labeling State

- Immutable rules mapping
 - Processes to subject labels
 - IPC to object labels

- Labeling State of OS
 - Browser, Media Player for user label
 - Programs with trusted labels
 - Outputs from media player to a trusted program

- Labeling State of Web Application
 - Content – untrusted
Transition State

- Immutable rules mapping
 - Processes to conditions that change their subject labels
 - IPC to conditions that change their object labels

- Transition State of OS
 - Change label of processes that receive untrusted input
 - Change label of outputs of these processes

- Transition State of Objects
 - Server, Browser, Media Player change their label on untrusted processing
 - Server, Browser, Media Player change label of IPC channel
Managing MPS

• Challenge
 ‣ Determining how to set and manage an MPS in a complex system involving several parties

• Parties
 ‣ What does programmer know about deploying their program securely?
 ‣ What does an OS distributor know about running a program in the context of their system?
 ‣ What does an administrator know about programs and OS?
Reference Monitor

• Purpose: Ensure enforcement of security goals
 ‣ Mandatory protection state defines goals
 ‣ Reference monitor ensures enforcement
Reference Monitor

- Components
 - Reference monitor interface (e.g., LSM)
 - Authorization module (e.g., SELinux)
 - Policy store (e.g., policy binary)
Reference Monitor Guarantees

- **Complete Mediation**
 - The reference validation mechanism must always be invoked

- **Tamperproof**
 - The reference validation mechanism must be tamperproof

- **Verifiable**
 - The reference validation mechanism must be subject to analysis and tests, the completeness of which must be assured
Complete Mediation

• Every security-sensitive operation must be mediated
 ‣ What’s a “security-sensitive operation”?
 ‣ Operation that enables a subject of one label to access an object that may be a different label

• How do we validate complete mediation?
 ‣ Every such operation must be identified
 ‣ Then we can check for dominance of mediation

• **Mediation**: Does interface mediate correctly?

• **Mediation**: On all resources?

• **Mediation**: Verifiably?
Tamperproof

- Prevent modification by untrusted entities
 - Interface, mechanism, policy of reference monitor
 - Code and policy that can affect reference monitor mods

- How to detect tamperproofing?
 - Transitive closure of operations
 - Challenge: Often some operations are present

- **Tamperproof**: Is reference monitor protected?

- **Tamperproof**: Is system TCB protected?
Verification

• Test and analyze reference validation mechanism
 ‣ And tamperproof dependencies
 ‣ And what security goals the system enforces

• Determine correctness of code and policy
 ‣ What defines correct code?
 ‣ What defines a correct policy?

• **Verifiable**: Is TCB code base correct?

• **Verifiable**: Does the protection system enforce the system’s security goals?
Evaluation

• **Mediation**: Does interface mediate correctly?
• **Mediation**: On all resources?
• **Mediation**: Verifably?
• **Tamperproof**: Is reference monitor protected?
• **Tamperproof**: Is system TCB protected?
• **Verifiable**: Is TCB code base correct?
• **Verifiable**: Does the protection system enforce the system’s security goals?
Multiple Reference Monitors

- The reference monitor concept approach was designed with a centralized reference validation mechanism in mind
 - What about the case where there are several such mechanisms grouped together?
Take Away

- Mandatory Protection System
 - Means to define security goals that applications cannot impact

- Reference Monitor Concept
 - Requirements for a reference validation mechanism that can correctly enforce an MPS
 - NOTE: This will be a major focus of this course

- Until we come up with coherent approach to defining MPS and validating reference monitor guarantees, we will continue to have insecure systems
 - That is the challenge of systems security research