Advanced Systems Security: Virtual Machine Systems

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

March 18, 2010
Two Directions

- OS Security from Reference Monitor perspective
 - Mediation
 - LSM
 - Tamperproof
 - Linux and TCB
 - Simple enough to verify
 - Correct code
 - Correct policy
Basis for OS Security

• Isolation
 ‣ A protection domain defines a boundary of isolation

• Based on
 ‣ Rings
 ‣ Address spaces
 ‣ Access control policy

• Do these work in modern OSes?
Virtual Machine Systems

- Protection domain is extended to operating systems on one physical platform
 - Invented for resource utilization
- But, also provide a potential security benefit due to default
 - ISOLATION
- How does VM isolation differ from OS isolation?
Virtual Machines

- Instead of using system software to enable sharing, use system software to enable isolation

Virtualization

- “a technique for hiding the physical characteristics of computing resources from the way in which others systems, applications, and end users interact with those resources”

Virtual Machines

- Single physical resource can appear as multiple logical resources
Virtual Machine Architectures

- **Full system simulation**
 - CPU can be simulated

- **Paravirtualization (Xen)**
 - VM has a special API
 - Requires OS changes

- **Native virtualization (VMWare)**
 - Simulate enough HW to run OS
 - OS is for same CPU

- **Application virtualization (JVM)**
 - Application API
Virtual Machine Types

• **Type I**
 - Lowest layer of software is VMM
 - E.g., Xen, VAX VMM, etc.

• **Type II**
 - Runs on a host operating system
 - E.g., VMWare, JVM, etc.

• Q: What are the trust model issues with Type II compared to Type I?
VM Systems and Ref Monitor

• How does a VM System improve ability to achieve reference monitor guarantees?

• Mediation
 ‣ Mediation between VM interactions

• Tamperproof
 ‣ Protection boundaries between OS

• Simple Enough to Verify
 ‣ Code that needs to be correct?
 ‣ Policy
VAX VMM

- A1-assured VMM system
- Carefully crafted VMM
- Mediation
 - VM interaction
- Tamperproof
 - Minimal TCB
- Simple enough to verify
 - Code assurance
 - Policy assurance: MLS policy, Biba policy, privileges
VAX VMM Design

The diagram illustrates the VAX VMM (Virtual Machine Monitor) design, showing the relationship between different levels of access and security:

- **Applications (Top Secret)**: Ultras OS
- **Applications (Secret)**: VMS OS
- **Applications (Unclassified)**: VMS OS

These applications are secured by the VMM Security Kernel, which communicates with several device drivers:

- Memory Device
- Disk Device
- Print Device
- Display Device

The diagram indicates a hierarchical security model with varying levels of access and protection.
VAX VMM Reference Monitor

• Key design tasks
 ‣ Virtualize processor
 • Make all sensitive instructions privileged
 ‣ More rings
 • Need a new ring for the VMM
 ‣ I/O emulation
 ‣ Self-virtualizable

• What components constitute the VAX VMM reference monitor?
VAX VMM Policy

- MLS
 - Control secrecy
- Biba
 - Control integrity
- Privileges
 - Exceptional accesses
 - Audited
 - There are more of these than meets the eye!
- How is the protection state modified?
VAX VMM Evaluation

- **Mediation**: ensure all security-sensitive operations are mediated?
 - Virtualizing instructions, I/O emulation
 - VM-level operations? Privileges

- **Mediation**: mediate all resources?
 - VMM level

- **Mediation**: verify complete mediation?
 - A1-assured at VMM level
VAX VMM Evaluation

- **Tamperproof**: protect VMM?
 - Similar to Multics (no gatekeepers, but some kind of filters); authentication in VMM; protection system ops in VMM; fixed system?

- **Tamperproof**: protect TCB?
 - All trusted code at ring 0; trusted path from VMs for admin;

- **Verification**: verify code?
 - A1-assured at VMM level

- **Verification**: verify policy?
 - MLS and Biba express goals and policy; Privileges are ad hoc
VAX VMM Tasks

• Despite A1 assurance still several challenges in VAX VMM system
 ‣ Device driver management; no network
 ‣ Amount of assembler code
 ‣ Covert channel countermeasures
 ‣ Implications of ‘privileges’

• Nonetheless, interesting mechanisms
 ‣ Trusted path administration
 ‣ Architecture of VMM
 ‣ Virtualization for security
Modern VM Systems

- The development of a virtual machine monitor for x86 systems unleashed VMs on the masses
 - Why did this take so long?
- VMware, Xen, KVM, NetTop, …
 - Everyone is a virtual machine monitor now
- How do we implement a reference validation mechanism for these systems?
 - What granularity of control?
Isolation and Network

- VMware and NetTop assume that the VMM (and privileged VM) will isolate guest VMs
- Then, the problem is to control inter-VM communication
 - Only other communication is via the network
- VMware uses firewall
- NetTop is built on VMware where only VMs of the same label may communicate
VMs as Processes

- Type II VM systems can treat VMs as processes
- **KVM** uses SELinux to control access of VMs as if they are a process
 - VMs are processes to the host OS
 - VMs can access host OS resources (files)
- Uses SELinux to control VM access
Control of VMM Resources

- There are many virtual machine monitor resources that may be used to communicate
 - Memory, devices, IPC, …

- sHype adds reference monitor for some objects (IPC) and the privileged VM uses for networking

- Xen Security Modules (XSM) adds reference validation on the Xen hypervisor’s distribution of these resources
 - Less trust in privileged VMs, so finer-grained policy results

- Minimizing TCB versus simplicity
Xen as a Reference Monitor?

- Reference Monitor
 - XSM in Xen
 - Scope includes dom0 Linux and user-level

- Mediation
 - XSM to control VMM operations
 - SELinux in dom0; use network to communicate

- Tamperproof
 - Xen has a much larger TCB, and more flexible

- Verification
 - Code – lots
 - Policy – SELinux style
Trusted VMs

- VMware and NetTop assume that the privileged VM (there is only one in these systems) prevents information flow (like a kernel)

- Thus, the only information flows between VMs are via networking
 - Privileged VM controls inter-VM communication via networking

- sHype controls IPC and networking at hypervisor level
 - Privileged VM uses hypervisor as policy store
Take Away

• VM Systems provide isolation
 ▸ Between OSes/apps that may be untrusted

• VM Systems enable a small TCB
 ▸ Type 1 VMMs
 ▸ A1-Assured, like VAX VMM

• VM Systems can mediate inter-VM actions
 ▸ Virtualized operations
 ▸ Inter-VM operations