
Reference Monitor

Trent Jaeger
Systems and Internet Infrastructure Security Lab

Pennsylvania State University

Related Concepts

– Access control
– Access control policy
– Security kernel

Definition

A reference monitor concept defines a set of design requirements on a refer-
ence validation mechanism, which enforces an access control policy over subjects’
(e.g., processes and users) ability to perform operations (e.g., read and write)
on objects (e.g., files and sockets) on a system.

– The reference validation mechanism must always be invoked (complete me-
diation).

– The reference validation mechanism must be tamperproof (tamperproof).
– The reference validation mechanism must be small enough to be subject to

analysis and tests, the completeness of which can be assured (verifiable).

The claim is that a reference validation mechanism that satisfies the reference
monitor concept will correctly enforce a system’s access control policy, as it must
be invoked to mediate all security-sensitive operations, must not be tampered,
and has undergone complete analysis and testing to verify correctness.

Background

In 1972, James P. Anderson coordinated the Computer Security Technology
Planning Study with a panel of ten industry, government, and academic security
experts [2]. The goal of the panel was to determine the requirements for U.S.
government computer systems to execute securely in the presence of malicious
users. Contemporary systems assumed that all threats originated from external
attackers, but malicious users in control of processes running on the system
may also violate the system’s access control policy. For example, a malicious
programmer may steal information accessed by processes running her program
or a malicious user may steal other users’s data stored on the same system.

To prevent unauthorized access by malicious users, the panel recommended
that computing systems be designed in accordance with requirements embodied
by the reference monitor concept. The reference monitor concept envisions that a
system component, called a reference validation mechanism, will be responsible
for enforcing the system’s access control policy over user process operations.
The reference monitor concept defines the requirements for implementing such



a mechanism in a manner that ensures that malicious users cannot circumvent
policy enforcement.

Theory

The claim is that by implementing a reference validation mechanism in ac-
cordance with the reference monitor concept all accesses by user processes will
adhere to an access control policy enforced by the mechanism. This claim is based
on successful implementation of the three design requirements of the definition
above.

First, the complete mediation requirement specifies that the reference vali-
dation mechanism mediates all security-sensitive operations by user processes.
Complete mediation enables the reference validation mechanism to authorize
each security-sensitive operation against the access control policy. Since only
security-sensitive operations can violate the access control policy, such media-
tion ensures that user processes can only perform operations authorized by the
access control policy.

Second, the tamperproof requirement specifies that the reference validation
mechanism cannot be modified by user processes. This prevents a malicious
user from modifying the behavior of the reference validation, e.g., to approve
operations that are not allowed by the access control policy. In practice, the
tamperproof requirement also covers the access control policy itself. This pre-
vents a malicious user from gaining unauthorized access by modifying the access
control policy enforced by the reference validation mechanism.

Third, the verifiable requirement specifies that the reference validation mech-
anism be small enough to enable practical verification of correctness. A reference
validation mechanism is correct if it generates the correct access control query,
processes that query correctly against the access control policy, and correctly
implements the resultant decision (allow or deny). While not strictly implied
by the requirement, it is also desirable to determine whether the access control
policy is correctly specified relative to some goal.

Application

The Multics operating system [14] was the first one designed with compre-
hensive security enforcement, aiming to protect the secrecy of data and the
integrity of the operating system and trusted software. However, as the Mul-
tics project matured, it became clear that the Multics system was complex, and
this hindered the developers ability to determine whether the proposed security
guarantees were correctly enforced [13].

The development of the reference monitor concept aimed to remedy this
problem by defining the requirements for a correct and unbypassable reference
validation mechanism. Subsequently, several projects emerged to demonstrate
the efficacy of building reference validation mechanisms based on these design
requirements. These types of operating systems were called security kernels, as
they each contained a small, core component that included a reference validation
mechanism designed to satisfy the reference monitor concept [1]. Examples of
commercial security kernels were Scomp [4] and GEMSOS [12].



Since that time, the reference monitor concept has been considered a founda-
tion of secure system design. This is reflected in the U.S. Government’s criteria
for building secure systems, the Trusted Computer System Evaluation Crite-
ria [17] (the “Orange” book), where the reference monitor is used as a motiva-
tion for the choice of its security evaluation classes. Gasser’s seminal book [5],
“Building a Secure Computer System,” also based its design methodology on
the reference monitor concept. This book motivated a variety of researchers and
companies to leverage microkernel and hypervisor systems for security enforce-
ment, as their small size made them more amenable to verification. Finally, Irvine
suggested that the reference monitor concept be used as a guiding principle for
computer security education [6].

Despite this convergence on the reference monitor concept in the security
community [3,9,11], commercial operating system designs were largely unaf-
fected. Trusted Solaris [15] was an exception, as the Solaris system was forked
in the late 1980s to deploy an operating system for enforcing multilevel security.
However, this version of Solaris remained separate from mainstream Solaris until
2006. It was not until the early 2000s, when the fundamental security problems in
commercial systems were finally accepted [10], that a reference validation mecha-
nism aiming for the reference monitor concept was developed for a mainstream,
commercial operating system. The Linux Security Modules (LSM) framework
was implemented for Linux 2.6 [18], enabling the support of multiple reference
validation mechanism. That is, the LSM framework provides complete media-
tion, whereas the choice of module (and supporting system services) determines
how tamperproofing and verification are achieved. A similar design has been
applied to TrustedBSD, MAC OS X, the Xen hypervisor, and some user-space
programs, most notably X Windows.

Open problems

The main open problems in meeting the requirements of the reference mon-
itor concept involve verifying those requirements on implementations of refer-
ence validation mechanisms [7]. Each requirement has its own unique challenges.
Complete mediation requires that all security-sensitive operations are identified,
but often these operations are not precisely defined. Tools have been built to
verify complete mediation for the LSM framework [8,16,19], and several bugs
were found (since fixed). For tamperproofing, the problem is that most systems
have a trusted computing base that is too large to determine whether tamper-
ing is prevented. In many systems, several user-level processes are trusted with
the authority to modify the kernel (e.g., install modules), but many of these
processes themselves are vulnerable to tampering. However, verification is the
most difficult of the requirements to satisfy, as designing a general algorithm
to prove that an arbitrary program behaves correctly is tantamount to solving
the Halting problem. While current algorithms can prove correctness properties
of specific programs, the variety of reference validation code and the complex-
ity of correctness properties preclude verification for all but the smallest, most
specialized systems.



Recommended Readings

[1] S. A. Ames, M. Gasser, and R. R. Schell. Security kernel design and imple-
mentation: An introduction. IEEE Computer, 16(7):14–22, 1983.

[2] J. P. Anderson. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, http://seclab.cs.ucdavis.edu/projects/
history/, The Mitre Corporation, Air Force Electronic Systems Division,
Hanscom AFB, Badford, MA, 1972. Volumes I and II.

[3] M. Branstad, H. Tajalli, F. L. Mayer, and D. Dalva. Access mediation in
a message passing kernel. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, 1989.

[4] L. J. Fraim. SCOMP: A solution to the multilevel security problem. IEEE
Computer, 16(7):26–34, 1983.

[5] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold,
1988. http://cs.unomaha.edu/~stanw/gasserbook.pdf.

[6] C. Irvine. The reference monitor concept as a unifying principle in com-
puter security education. In Proceedings of the 1st World Conference on
Information Systems Security Education, June 1999.

[7] T. Jaeger. Operating System Security. Morgan & Claypool, 2008.
[8] T. Jaeger, A. Edwards, and X. Zhang. Consistency analysis of authorization

hook placement in the Linux security modules framework. ACM Transac-
tions on Information and System Security (TISSEC), 7(2):175–205, May
2004.

[9] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.
A retrospective on the VAX VMM security kernel. IEEE Transactions on
Software Engineering, 17(11):1147–1165, 1991.

[10] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner,
and J. F. Farrell. The Inevitability of Failure: The flawed assumption of
security in modern computing environments. In Proceedings of the 21st
National Information Systems Security Conference, pages 303–314, October
1998.

[11] S. E. Minear. Providing policy control over object operations in a Mach-
based system. In Proceedings of the 5th USENIX Security Symposium, pages
141–156, 1995.

[12] R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS security kernel
for security and performance. In Proceedings of the National Computer
Security Conference, 1985.

[13] M. D. Schroeder. Engineering a security kernel for Multics. In Proceedings of
the Fifth ACM Symposium on Operating Systems Principles, pages 25–32,
1975.

[14] M. D. Schroeder, D. D. Clark, J. H. Saltzer, and D. Wells. Final report of
the MULTICS kernel design project. Technical Report MIT-LCS-TR-196,
MIT, March 1978.

[15] Sun Microsystems. Trusted Solaris 8 Operating System. http://www.sun.
com/software/solaris/trustedsolaris/, February 2006.

http://seclab.cs.ucdavis.edu/projects/history/
http://seclab.cs.ucdavis.edu/projects/history/
http://cs.unomaha.edu/~stanw/gasserbook.pdf
http://www.sun.com/software/solaris/trustedsolaris/
http://www.sun.com/software/solaris/trustedsolaris/


[16] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou.
AutoISES: Automatically inferring security specifications and detecting vi-
olations. In Proceedings of the 17th USENIX Security Symposium, pages
379–394. USENIX Association, 2008.

[17] Trusted Computer System Evaluation Criteria (Orange Book). Technical
Report DoD 5200.28-STD, U.S. Department of Defense, December 1985.

[18] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux
Security Modules: General security support for the Linux kernel. In Pro-
ceedings of the 11th USENIX Security Symposium, pages 17–31, August
2002.

[19] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis of
authorization hook placement. In Proceedings of the 11th USENIX Security
Symposium, pages 33–48, San Francico, CA, USA, August 2002.


