Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services

Nuno Santos1, Rodrigo Rodrigues2, Krishna P. Gummadi1, Stefan Saroiu3

MPI-SWS1, CITI / Universidade Nova Lisboa2, Microsoft Research3
Managing the Cloud is Complex & Error-Prone

Cloud software admins. can compromise customers’ data

Is my data properly managed?

Data

Cloud Provider

Cloud Software Administrator

Customer
1. Newer hypervisors can offer protection from SW admins.
 - e.g., nested virtualization: CloudVisor [SOSP’11], Credo [MSR-TR]

2. Trusted computing can attest cloud node runs “correct” hypervisor
 - Trusted Platform Module (TPM)

But, TPMs alone ill-suited for the cloud
TPMs Alone Are Ill-Suited for the Cloud

1. **Stifle VM and data migration across cloud nodes**
 - TPMs root-of-trust not transferable from one node to another

2. **Cloud providers hesitant to reveal low-level cloud details**
 - TPMs abstractions can reveal node’s identity and details of the node’s entire software stack

3. **Commodity TPMs can hinder the cloud’s ability to scale**
 - TPMs’ poor performance may introduce bottlenecks
Our Contributions

1. **Policy-sealed data abstraction**
 - Data is handled only by nodes satisfying customer-chosen policy
 - Examples:
 - Handle data only by nodes running CloudVisor
 - Handle data only by nodes located in the EU

2. **Use attribute-based encryption (CP-ABE) to implement abstraction efficiently**
 - Binds policies and node attributes to node configurations
 - Ciphertext-Policy Attribute-Based Encryption [Bethencourt07]

Excalibur incorporates both contributions
Excalibur Addresses TPM Limitations in Cloud

Policy-sealed data

- Enables flexible data migration across cloud nodes
 - Customer data accessible to any node that satisfies the customer policy

- Hides node’s identities and low-level details of the software
 - Only high-level attributes are revealed

Attribute-based encryption

- Masks TPMs’ poor performance
 - Enforcing policies does not require direct calls to TPMs

Policy-sealed data

Attribute-based encryption
Outline

- Introduction
- Threat model
- Policy-sealed data
- Design
 - Monitor
 - CP-ABE
- Evaluation
Threat Model

The attacker can...
- configure nodes remotely
- reboot nodes
- install software platform
- access disk
- eavesdrop network

The attacker cannot...
- perform physical attacks
 - e.g., scrape TPMs to learn its secrets
- compromise system’s TCB
 - monitor
 - secure hypervisor
- compromise CP-ABE
Outline

- Introduction
- Threat model
- Policy-sealed data
- Design
 - Monitor
 - CP-ABE
- Evaluation
Policy-Sealed Data

Seal
encrypt and bind data to policy

Customer

Seal to:
visor = “secure visor”

Policy-Sealed Data

Unseal
decrypt data iff node meets policy

Provider

Hypervisors
- Secure
- Commodity
Policy-Sealed Data: Attributes & Policies

- Node configurations expressed as set of attributes
- Attributes mapped to nodes’ identities and software config
 - node id → hardware attributes
 - software config → software attributes
- Customers select trusted node configurations in policies
 - Logic expressions over attributes

Node Attributes

- service : “EC2”
- hypervz : “CloudVisor”
- version : “1”
- country : “Germany”
- zone : “z1”

Data Policy

service = “EC2”
and
hypervz = “CloudVisor”
and
version >= “1”
and
(country = “Germany”
or
country = “UK”)
Outline

- Introduction
- Threat model
- Policy-sealed data
- Design
 - Monitor
 - CP-ABE
- Evaluation
Excalibur Architecture

- Check node configurations
 - Monitor attests nodes in background

- Scalable policy enforcement
 - CP-ABE operations at client-side lib

[Diagram showing a Monitor and Datacenter connected with arrows indicating seal, attest & send credential, and unseal processes]
Excalibur Mediates TPM Access w/ Monitor

Monitor goals:

- Track node ids + TPM-based attestations
 - Hides low-level details from users

- Track nodes’ attributes that cannot be attested via today’s TPMs
 - e.g., nodes’ locations (EU vs. US)

- Form the cloud’s root of trust
 - Customers only need to attest the monitor’s software configuration
Attribute-based Encryption Is Key to Scalability

Customers seal data to a policy with a CP-ABE encryption key

Once each node attests its configuration, monitor hands CP-ABE decryption key

- Ciphertext-Policy Attribute-Based Encryption [Bethencourt07]
Outline

- Introduction
- Threat model
- Policy-sealed data
- Design
 - Monitor
 - CP-ABE
- Evaluation
Two questions:
- What is the overhead of policy-sealed data?
- Is the monitor a scalability bottleneck?

Implemented cloud service akin to EC2
- Based on Eucalyptus / Xen cloud platform
- Supports location attribute
- Interposed seal / unseal in VM management operations

Testbed: single monitor and five nodes
- Intel Xeon, 2.83Ghz 8-core CPU, 1.6 GB RAM, TPM v1.2
What Is the Overhead of Seal / Unseal?

Overhead of CP-ABE in Eucalyptus / Xen platform

CP-ABE’s overhead could be significant
However, VM operations are infrequent
Is the Monitor a Scalability Bottleneck?

- Monitor can attest a large number of nodes
 - Max throughput: 630 attestation-verifications/sec
 - E.g., 10K node cluster attests in ~15 seconds

- Monitor can serve many attestation requests from customers
 - Max throughput: 4800 attestation-requests/sec
 - Increases throughput of standard TPM attestation
 - Batches multiple attestation requests into single TPM call
 - Speedup orders of magnitude over standard TPM attestation
Excalibur overcomes TPM’s limitations in the cloud

Policy-sealed data: new trusted computing primitive
- Flexible sealed storage
- Reduce overexposure

CP-ABE makes Excalibur scale
- Masks low performance of TPMs

Evaluation indicates that the system is practical