CSE 543 - Computer Security

Lecture 8 - PKI
September 20, 2007
URL: http://www.cse.psu.edu/~tjaeger/cse543-f07/
Meeting Someone New

• Anywhere in the Internet
Public Key Infrastructure

• System to “securely distribute public keys”
 – Q: Why is that hard?

• Terminology:
 – Alice signs a certificate for Bob’s name and key
 • Alice is issuer, and Bob is subject
 – Alice wants to find a path to Bob’s key
 • Alice is verifier, and Bob is target
 – Anything that has a public key is a principal
 – Anything trusted to sign certificates is a trust anchor
 • Its certificate is a root certificate
What is a certificate?

• A certificate …
 – … makes an association between a user identity/job/attribute and a private key
 – … contains public key information \{e,n\}
 – … has a validity period
 – … is signed by some certificate authority (CA)

• Issued by CA for some purpose
 – Verisign is in the business of issuing certificates
 – People trust Verisign to vet identity
Why do I trust the certificate?

• A collections of “root” CA certificates
 – … baked into your browser
 – … vetted by the browser manufacturer
 – … supposedly closely guarded (yeah, right)

• Root certificates used to validate certificate
 – Vouches for certificate’s authenticity

```
CA (signs) Certificate
  Signature
```
What is a PKI?

• Rooted tree of CAs
• Cascading issuance
 – Any CA can issue cert
 – CAs issue certs for children
Certificate Validation

Certificate Validation Diagram:

- **Root**
 - **CA1**
 - **CA11**
 - **Cert11a**
 - **Cert11b**
 - **Cert11c**
 - **CA12**
 - **...**
 - **CA1n**
 - **CA2**
 - **CA3**
 - **CA21**
 - **CA22**
 - **...**

- Certificate
- Signature

The diagram illustrates the certificate validation process where each certificate is signed by its respective certificate authority (CA). The root certificate is at the top, and each level down the tree represents a lower-level CA. The final nodes represent the certificates that are validated.
PKI and Revocation

• Certificate may be revoked before expiration
 – Lost private key
 – Compromised
 – Owner no longer authorized

• Revocation is hard …
 – The “anti-matter” problem
 – Verifiers need to check revocation state
 • Loses the advantage of off-line verification
 – Revocation state must be authenticated
Trust

• What is trust?
 – Is the belief that someone or something will behave as expected or in your best interest?
 – Is is constant?
 – Is is transferable?
 – Is it transitive?
 – Is is reflexive?
10 Risks of PKI

• This is an overview of one of many perspectives of PKI technologies
 – PKI was, like many security technologies, claimed to be a panacea
 – It was intended to solve a very hard problem: build trust on a global level
 – Running a CA -- “license to print money”

• Basic premise:
 – Assertion #1 - e-commerce does not need PKI
 – Assertion #2 - PKI needs e-commerce

• Really talking about a full PKI (everyone has certs.)
Risk 1 - Who do we trust, and for what?

• Argument: CA is not inherently trustworthy
 – Why do/should you trust a CA?
 – In reality, they defer all legal liability for running a bad CA
 – Risk in the hands of the certificate holder

• Counter-Argument: Incentives
 – Any CA caught misbehaving is going to be out of business tomorrow
 – This scenario is much worse than getting sued
 – Risk held by everybody, which is what you want
 • Everyone has reason to be diligent
Risk 2 - Who is using my key?

• Argument: key is basically insecure
 – Your key is vulnerable, deal with it
 – In some places, you are being held responsible after a compromise

• Counter-Argument: this is the price of technology
 – You have to accept some responsibility in order to get benefit
 – Will encourage people to use only safe technology

• Q: what would happen is same law applied to VISA?
Risk 3 - How secure is the verifier?

• Argument: the things that verify your credential are fundamentally vulnerable
 – Everything is based on the legitimacy of the verifier root public key
 – Browsers transparently use certificates

• Counter-Argument: this is the price of technology
 – You have to accept some risk in order to get benefit
 – Will encourage people to use only safe technology

• Q: What’s in your browser?
Risk 4 - Which John Robinson is he?

• Argument: identity in PKI is really too loosely defined
 – No standards for getting credential
 – No publicly known unique identifiers for people
 – So, how do you tell people apart
 – Think about Microsoft certificate

• Counter-Argument: due diligence
 – Only use certificates in well known circumstances
 – When in doubt, use other channels to help

• Q: Is this true of other valued items (checks?)
Risk 5 - Is the CA an authority?

• Argument: there are things in certificates that claim authenticity and authorization of which they have no dominion
 – “rights” (such as the right to perform SSL) - this confuses authorization authority with authentication authority
 – DNS, attributes -- the CA is no the arbiter of these things

• Counter-Argument: this is OK, because it is part of the implicit charge we give our CA -- we implicitly accept the CA as authority in several domains
Risks 6 and 7

• 6 : Is the user part of the design?
 – Argument: too many things hidden in use, user has no ability to affect or see what is going on
 – Counter-Argument: Users would screw it up anyway, too sophisticated

• 7 : Was it one CA or CA+RA?
 – Argument: separation of registration from issuance allows forgery
 – Counter-Argument: this is an artifact of organization, only a problem when CA is bad (in which case you are doomed anyway)
Risks 8 and 9

• 8 : How was the user authenticated?
 – Argument: CAs do not have good information to work with, so real identification is poor (as VISA)
 – Counter-Argument: It has worked well in the physical work, why not here?

• 9 : How secure are the certificate practices?
 – Argument: people don’t use them correctly, and don’t know the implications of what they do use
 • Point in fact: revocation and expiration are largely ignored in real system deployments
 – Counter-Argument: most are pretty good now, probably won’t burn us anytime soon
Risk 9 - How secure is the verifier?

• Argument: the things that verify your credential are fundamentally vulnerable
 – Everything is based on the legitimacy of the verifier root public key
 – Browsers transparently use certificates

• Counter-Argument: this is the price of technology
 – You have to accept some risk in order to get benefit
 – Will encourage people to use only safe technology

• Q: What’s in your browser?
Risk 10 - Why are we using CAs?

• Argument: We are trying to solve a painful problem: authenticating users.
 – However, certificates don’t really solve the problem, just give you another tool to implement it
 – Hence, it is not a panacea
 – No delivered on it promises

• Counter-argument?
Single Sign On

• What do Schneier and Ellison say about SSO?