What is Trust?

• dictionary.com
 – Firm reliance on the integrity, ability, or character of a person or thing.

• What do you trust?
 – Trust Exercise

• Do we trust our computers?
Trust

• “a system that you are forced to trust because you have no choice” -- US DoD

• “A ‘trusted’ computer does not mean a computer is trustworthy” -- B. Schneier
Trusted Computing Base

- Trusted Computing Base (TCB)
 - Hardware, Firmware, Operating System, etc
- There is always a level at which we must rely on trust
- How can we shrink the TCB?
Trustworthy Computing

- Microsoft Palladium (NGSCB)
Example of FUD

• Trusted Computing: An Animated Short

 - http://www.lafkon.net/tc/
Trusted Computing

• Components (according to Wikipedia)
 – Secure I/O
 – Memory Curtaining
 – Sealed Storage
 – Remote Attestation

• Requires hardware support
Trusted Platform Module

• The Trusted Platform Module (TPM) provides hardware support for *sealed storage* and *remote attestation*

• What else can it do?
 – www.trustedcomputinggroup.org
Where are the TPMs?
TPM Component Architecture

- Non-Volatile Storage
- Platform Configuration Register (PCR)
- Attestation Identity Key (AIK)
- Program Code

- I/O
- Random Number Generator
- SHA-1 Engine
- Key Generation
- RSA Engine
- Opt-In
- Exec Engine
TPM Discrete Components

- **Input/Output (I/O)**
 - Allows the TPM to communicate with the rest of the system

- **Non-Volatile Storage**
 - Stores long term keys for the TPM

- **Platform Configuration Registers (PCRs)**
 - Provide state storage

- **Attestation Identity Keys (AIKs)**
 - Public/Private keys used for remote attestation

- **Program Code**
 - Firmware for measuring platform devices

- **Random Number Generator (RNG)**
 - Used for key generation, nonce creation, etc
TPM Discrete Components

• SHA-1 Engine
 – Used for computing signatures, creating key Blobs, etc

• RSA Key Generation
 – Creates signing keys, storage keys, etc. (2048 bit)

• RSA Engine
 – Provides RSA functions for signing, encryption/decryption

• Opt-In
 – Allows the TPM to be disabled

• Execution Engine
 – Executes Program Code, performing TPM initialization and measurement taking
Tracking State

- Platform Configuration Registers (PCRs) maintain state values.
- A PCR can only be modified through the Extend operation:
 - \text{Extend}(\text{PCR}[i], \text{value}) :
 - \text{PCR}[i] = \text{SHA1}(\text{PCR}[i] \cdot \text{value})
- The only way to place a PCR into a state is to extend it a certain number of times with specific values

Measurement Flow (Transitive Trust)

- BIOS Self Measurement
- OS Loader Code
- OS Code
- Application Code
Secure vs. Authenticated Boot

• Secure boot *stops execution* if measurements are not correct

• Authenticated boot measures each boot state and lets *remote systems determine if it is correct*

• The Trusted Computing Group architecture uses *authenticated boot*
Protected Storage

• The TPM has limited storage capacity
 – Key pairs are commonly stored on the system, but are encrypted by a storage key

• Users can protect data by allowing the TPM to control access to the symmetric key

• Access to keys can be sealed to a particular PCR state
Public/Private Keys

• Endorsement Key (EK)
 – Only one EK pair for the lifetime of the TPM
 – Usually set by manufacturer
 – Private portion *never* leaves the TPM

• Storage Root Key (SRK)
 – Created as part of creating a new platform owner
 – Used for protected storage
 – Manages other keys, e.g., storage keys
 – Private portion *never* leaves the TPM

• Attestation Identity Keys (AIKs)
 – Used for remote attestation
 – The TPM may have multiple AIKs
Key Distribution

- Before remote attestation can occur, the challenger must have either knowledge of the public portion of an AIK, or a CA’s public key.
- Old standards required the Privacy CA to know the TPM’s PUBlic Endorsement Key (PUBEK).
- Direct Anonymous Attestation (DAA), added to the latest specifications, uses a zero-knowledge proof to ensure the TPM is real.
Using TCG

• Justify System Integrity

• Approaches
 – Trusted Platform on Demand (TPoD)
 • IBM Research Tokyo
 – Linux Integrity Measurement Architecture
 • Sailer et. al. (USENIX Security 2004)
 – BIND: A Fine-grained Attestation Service for Secure Distributed Systems
 • Shi et. al. (IEEE S&P 2005)

• Network Authentication
 – Trusted Network Connect (TNC)
 • www.trustedcomputinggroup.org
Integrity Measurement Problem

- IPsec and SSL provide secure communication
 - But with whom am I talking?

Secure Channel

On-Demand / Grid
Secure Domains
B2B Application
Thin-Client
Integrity Measurement Architecture

Execution Flow

Measurement Flow

TCG-based Integrity Measurement Architecture

Defined by Grub (IBM Tokyo Research Lab)

Defined by TCG (Platform specific)

Platform Configuration Registers 0-23

0-7
4-7
>= 8
Basic Idea

System-Representation

Signed TPM Aggregate

SHA1(Boot Process)
SHA1(Kernel)
SHA1(Kernel Modules)
SHA1(Program)
SHA1(Libraries)
SHA1(Configurations)
SHA1(Structured data)
...

Analysis

Known Fingerprints

Attested System

Measurement

System Properties

ext. Information
(CERT,...)
Some Details

• Kernel Measures
 – Executables, Libraries, Modules

• At
 – Load time only

• Applications May Measure Also
 – Critical input

• Issues Addressed:
 • Prevents writing on actively measured files
 – Cannot open for write while file is open
 • Non-deterministic loading
 – Need measurement list
Measurement List

/bin/bash

SHA1

Memory Map

Execution path:
- Execve
- Integrity Value
- Measurement List (Kernel-held)

Linux Security Module

Traditional execution path

Schedule
Using TCG

- Many claim TCG will aid DRM

- How might one use the TPM for DRM?
 - Discuss

- Trusted Computing is a *double-edged sword*
 - so is cryptography
False Claims

• Having a TPM will keep me from using opensource software
 – No, the TCG architecture only specifies authenticated boot. This simply records each step, but does not, and cannot, stop the use of opensource operating systems, e.g. Linux

• TPM, Palladium/NGSCB, and DRM are all the same
 – No, the TPM is only one of the components required for NGSCB to function

• Loss of Internet Anonymity
 – The addition of DAA allows Privacy CAs to function with zero-knowledge proofs

• Others?