A Method for Obtaining Digital Signatures and Public-Key Cryptosystems – Part 2

Authors: R.L. Rivest, A. Shamir, and L. Adleman

Presented by Bing-Rong Lin
Scope

- The focus is on "Efficient Algorithm" and "Security" of RSA

- Ignore the proof of the referenced theorems, but
 - (a) Theorems are given
 - (b) Welcome to discuss with me after the class
Outline

- Efficient algorithm
 - Encrypt & Decrypt
 - Find Large Prime Numbers (Primality Test)
 - Determine d & e
- Security of the Method
 - Factor n
 - Compute $\Phi(n)$ without (a)
 - Compute d without (a) & (b)
 - Compute D in some other way
Encrypt & Decrypt

- D(M) = M^d (mod n)
 - d = d_k d_{k-1}…d_1 (binary representation)
 - M^d = (((…((A_k)^2 \times A_{k-1})^2 \times … \times A_1
 - If (d_k==1) A_k = M else A_k = 1
 - Ex. Y^{11} = Y^{1011} = (((Y)^2 \times 1)^2 \times Y)^2 \times Y
 - M^d (mod n)
 = (((…((A_k (mod n))^2 \times A_{k-1} (mod n))^2 \times … \times A_1 (mod n)
 - Hint: a*b mod c = (a mod c)*b mod c
Primality test

- \(\text{Gcd}(a,b) = 1 \) & \(J(a,b) = a^{(b-1)/2} \)
 - If \(b \) is prime, it is always TRUE
 - \(0 < a < b \)
 - Euler's criterion
 - \(p \) is an odd prime, \(a \) is coprime to \(p \)
 - if \(a \) is quadratic residue modulo \(p \) (i.e. there exists a number \(k \) such that \(k^2 \equiv a \pmod{p} \)), then \(a^{(p-1)/2} \equiv 1 \pmod{p} \)
 - Else \(a^{(p-1)/2} \equiv -1 \pmod{p} \)
 - Jacobi symbol – \(J(a,b) \)
 - =0, if \(b \) divides \(a \)
 - =1, if \(a \) is quadratic residue modulo \(b \)
 - =-1, others
Primality test (cont.)

- $J(a,b)$
 - $= 1$, if $a = 1$
 - $= J(a/2,b)^*(-1)^{(b+b^{-1})/8}$, if a is even
 - $= J(b(mod\ a\ ,\ a) *(-1)^{(a^{-1}b^{-1})/4}$, others

- Hint: quadratic reciprocity
Determine d & e

- Choose d
 - Relatively prime to φ(n)
 - d should be chosen from a large enough set
- Compute \(e \equiv d^{-1} \mod \phi(n) \)
 - Above equation is identical to \(a \cdot \phi(n) + e \cdot d = 1 \)
 - Based on Euclid’s algorithm
 - \(X_0 = \phi(n), X_1 = d \)
 - \(X_{i+1} \equiv X_{i-1} \pmod{X_i} \)
 - Compute \(a_i \) and \(b_i \) such that \(X_i = a_i \times X_0 + b_i \times X_1 \)
 - If \(X_k = 1 \) then \(e = b_k \)
Example

- $X_0 = \phi(n) = 2668$, $X_1 = d = 157$
 - $X_{i+1} \equiv X_{i-1} \pmod{X_i}$
 - $X_2 = 2668 \mod 157 = 156$
 - $X_3 = 157 \mod 156 = 1$
 - $X_i = a_i \times X_0 + b_i \times X_1$
 - $X_2 = 156 = 2668 - 16 \times 157 = X_0 + 16 \times X_1$
 - $X_3 = 1 = 157 - 1 \times 156 = X_1 + 1 \times X_2$
 - $= X_1 + 1 \times (X_0 + 16 \times X_1)$
 - $= X_0 + 17 \times X_1$
 - $e = 17$
Security of the Method

- No techniques exist to prove that an encryption scheme is secure.
- Factoring large number is a well-known problem that has been worked on for 300 years.
- Show breaking the system is equivalent to factoring problem.
How to break?

- **Input**
 - n, e

- **Possible breaking approaches**
 - (a) Factor n
 - Well-known problem, hard
 - (b) Compute $\phi(n)$ without (a)
 - Equivalent to factoring
 - (c) Compute d/d’ without (a)&(b)
 - Equivalent to factoring
 - (d) Compute D in some other way
 - “May” equivalent to factoring
Compute $\phi(n)$ without (a)

- If it is possible, then n can be easily factored
 - $\phi(n) = (p-1)(q-1) = n - (p+q) + 1$
 - $(p-q)^2 = (p+q)^2 - 4n$
 - $q = (p+q) + (p-q)$
Compute d/d' without (a) & (b)

- d
 - If it is possible, then n can be easily factored
 - $e^d - 1 = k \phi(n)$
 - [6] “Reimann’s hypothesis and tests for primality” shows n can be factored by using any multiple of $\phi(n)$

- d' (find a key equivalent to d)
 - If it is possible, then n can be easily factored
 - $d' = d + k\phi(n)$
 - Finding one enables n to be factored.
Conclusions

- The authors show the efficient algorithms of
 - encrypt & decrypt
 - Primality test -- has been largely superseded by the Miller-Rabin primality test
 - Compute e
- The security of the method is based on factoring problem