Lecture 6 - Cryptography

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger
www.cse.psu.edu/~tjaeger/cse497b-s07
Question

Setup: Assume you and I don’t know anything about each other, but we want to communicate securely. We want to establish a key that we can encrypt communication with each other.

Q: Is this possible?
Diffie-Hellman Key Agreement

• The DH paper really started the modern age of cryptography, and indirectly the security community
 – Negotiate a secret over an insecure media
 – E.g., “in the clear” (seems impossible)
 – Idea: participants exchange intractable puzzles that can be solved easily with additional information.

• Mathematics are very deep
 – Working in multiplicative group G
 – Use the hardness of computing discrete logarithms in finite field to make secure
 – Things like RSA are variants that exploit similar properties
Diffie-Hellman Protocol

• For two participants p^1 and p^2
• Setup: We pick a prime number p and a base $g (<p)$
 – This information is public
 – E.g., $p=13$, $g=4$
• Step 1: Each principal picks a private value $x (<p-1)$
• Step 2: Each principal generates and communicates a new value

$$ y = g^x \mod p $$

• Step 3: Each principal generates the secret shared key z

$$ z = y^x \mod p $$

Where y is the value received from the other party.
A protocol run ...

\(p=17, \ g=6 \)

Step 1)
- Alice picks \(x=4 \)
- Bob picks \(x=5 \)

Step 2)
- Alice's \(y = 6^4 \mod 17 = 1296 \mod 17 = 4 \)
- Bob's \(y = 6^5 \mod 17 = 7776 \mod 17 = 7 \)

Step 3)
- Alice's \(z = 7^4 \mod 17 = 2401 \mod 17 = 4 \)
- Bob's \(z = 4^5 \mod 17 = 1024 \mod 17 = 4 \)
Attacks on Diffie-Hellman

- This is key exchange, not authentication.
 - You really don’t know anything about who you have exchanged keys with
 - The man in the middle …

- Alice and Bob think they are talking *directly* to each other, but Mallory is actually performing two separate exchanges

- You need to have an authenticated DH exchange
 - The parties sign the exchanges (more or less)
 - See Schneier for a intuitive description
Public Key Cryptography

• Public Key cryptography
 – Each key pair consists of a public and private component:
 \(k^+ \) (public key), \(k^- \) (private key)
 \[
 D(k^+, E(k^-, p)) = p \\
 D(k^-, E(k^+, p)) = p
 \]

• Public keys are distributed (typically) through public key certificates
 – Anyone can communicate secretly with you if they have your certificate
 – E.g., SSL-based web commerce
RSA (Rivest, Shamir, Adelman)

- A dominant public key algorithm
 - The algorithm itself is conceptually simple
 - Why it is secure is very deep (number theory)
 - Use properties of exponentiation modulo a product of large primes

RSA Key Generation

- Pick two large primes p and q
- Calculate $n = pq$
- Pick e such that it is relatively prime to $\phi(n) = (q-1)(p-1)$
 - “Euler’s Totient Function”
- $d \sim e^{-1} \mod \phi(n)$

 or

 $de \mod \phi(n) = 1$

1. $p=3$, $q=11$
2. $n = 3 \times 11 = 33$
3. $\phi(n) = (2 \times 10) = 20$
4. $e = 7 \mid \text{GCD}(20, 7) = 1$

 “Euclid’s Algorithm”
5. $d = 7 - 1 \mod 20$

 $d = 7 \mod 20 = 1$

 $d = 3$
RSA Encryption/Decryption

- Public key k^+ is \{e, n\} and private key k^- is \{d, n\}
- Encryption and Decryption
 - $E(k^+, P) : \text{ciphertext} = \text{plaintext}^e \mod n$
 - $D(k^-, C) : \text{plaintext} = \text{ciphertext}^d \mod n$
- Example
 - Public key (7, 33), Private Key (3, 33)
 - Data “4” (encoding of actual data)
 - $E(\{7, 33\}, 4) = 4^7 \mod 33 = 16384 \mod 33 = 16$
 - $D(\{3, 33\}, 16) = 16^3 \mod 33 = 4096 \mod 33 = 4$
Encryption using private key ...

• Encryption and Decryption

\[E(k^-, P) : \text{ciphertext} = \text{plaintext}^d \mod n \]
\[D(k^+, C) : \text{plaintext} = \text{ciphertext}^e \mod n \]

• E.g.,

- \(E(\{3,33\},4) = 4^3 \mod 33 = 64 \mod 33 = 31 \)
- \(D(\{7,33\},19) = 31^7 \mod 33 = 27,512,614,111 \mod 33 = 4 \)

• Q: Why encrypt with private key?
The symmetric/asymmetric key tradeoff

• Symmetric (shared) key systems
 – Efficient (Many MB/sec throughput)
 – Difficult key management
 • Kerberos
 • Key agreement protocols

• Asymmetric (public) key systems
 – Slow algorithms (so far …)
 – Easy key management
 • PKI - public key infrastructures
 • Webs of trust (PGP)
Hash Algorithms (aka crypto checksums)

• Hash algorithm \(h() \)
 – In general algorithmic use, generates succinct representation of some data, fixed output size
 – Used for binning items in collections
 – A “funneling algorithm”

• Pigeonhole Principle
 – If you have \(n \) bins, and \(n+1 \) items, at least one bin will contain more than one item
 – Implication: there will be \textit{collisions} in any hash algorithm
 • i.e., \(h(x) == h(y) \), for some infinite number of \(x \) and \(y \)
Hash Algorithms (aka crypto checkssums)

• Hash algorithm
 – Compression of data into a hash value
 – E.g., \(h(d) = \text{parity}(d) \)
 – Such algorithms are generally useful in programs

• … as used in cryptosystems
 – One-way - (computationally) hard to invert \(h() \), i.e., compute \(h^{-1}(y) \), where \(y = h(d) \)
 – Collision resistant hard to find two data \(x_1 \) and \(x_2 \) such that \(h(x_1) = h(x_2) \)

• Q: What can you do with these constructs?
Birthday Attack

• A birthday attack is a name used to refer to a class of brute-force attacks.
 – birthday paradox: the probability that two or more people in a group of 23 share the same birthday is > than 50%

• General formulation
 – function f() whose output is uniformly distributed
 – On repeated random inputs \(n = \{ n_1, n_2, \ldots, n_k \} \)
 • \(\Pr(n_i = n_j) = 1.2k^{1/2} \), for some \(1 \leq i,j \leq k, \ 1 \leq j < k, \ i \neq j \)
 • E.g., \(1.2(365^{1/2}) \approx 23 \)

• Q: Why is resilience to birthday attacks important?
Basic truths of cryptography ...

• Cryptography is not frequently the source of security problems
 – Algorithms are well known and widely studied
 • Use of crypto commonly is … (e.g., WEP)
 – Vetted through crypto community
 – Avoid any “proprietary” encryption
 – Claims of “new technology” or “perfect security” are almost assuredly snake oil
Important principles

• Don’t design your own crypto algorithm
 – Use standards whenever possible
• Make sure you understand parameter choices
• Make sure you understand algorithm interactions
 – E.g. the order of encryption and authentication
 • Turns out that authenticate then encrypt is risky
• Be open with your design
 – Solicit feedback
 – Use open algorithms and protocols
 – Open code? (jury is still out)
Common issues that lead to pitfalls

- Generating randomness
- Storage of secret keys
- Virtual memory (pages secrets onto disk)
- Protocol interactions
- Poor user interface
- Poor choice of key length, prime length, using parameters from one algorithm in another
Review: secret vs. public key crypto.

- Secret key cryptography
 - Symmetric keys, where a single key (k) is used for E and D
 \[D(k, E(k, p)) = p \]
 - All (intended) receivers have access to key
 - Note: Management of keys determines who has access to encrypted data
 - E.g., password encrypted email
 - Also known as symmetric key cryptography

- Public key cryptography
 - Each key pair consists of a public and private component: k^+ (public key), k^- (private key)
 \[D(k^-, E(k^+, p)) = p \]
 \[D(k^+, E(k, -p)) = p \]
 - Public keys are distributed (typically) through public key certificates
 - Anyone can communicate secretly with you if they have your certificate
 - E.g., SSL-base web commerce
A really good book on the topic