Lecture 4 - Authentication and Access

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger
www.cse.psu.edu/~tjaeger/cse497b-s07/
Why authenticate?

• Why do we want to verify the identity of a user?
Control Access

• An identity permits access to resources
• In computer security this is called
 – *Access control*
 – *Authorization*

• In authorization, we talk about:
 – Subjects (for whom an action is performed)
 – Objects (upon what an action is performed)
 – Operations (the type of action performed)

• Authorization limits a *subject’s* access perform an *operation* on an *object*
 – The combination of object and operations allowed are called a *permission*
“Project” 1

- Login to Playpen VM
 - We will send you your username, password, IP

- Change your password
 - Do *not* change the root password

- Need to do some minor Linux administration

- Customize your VM
 - You have sudo privilege
 - You are the administrator

- Posted on the calendar (due next Th, Feb 1)
 - If it’s good enough for the President...
A Brief History

• Early computing systems had no isolation
 – Shared memory space
 – Shared file space

• Some physical limitations made this OK
 – Batch processing
 – Load the tape/disk for the application
 – Network? What network?

• In the mid-60s people started to work on ‘multiuser’ or ‘time-sharing’ systems
 – What about a bug?
 – What about my data?

• Mostly about protection
Multiprogrammed Systems

- **Multics project**
 - AT&T, MIT, Honeywell, etc.
 - General purpose, multi-user system
 - Comprehensive security
 - Hardware protection
 - Subject labeling
 - Permission management

- **UNIX project**
 - Arose from the ashes of Multics
 - A stripped-down multiuser system
Authentication and Access

- Authenticate user
 - E.g., login and ssh
 - Verify password or ...

- Create processes with appropriate identity (subject)
 - E.g., UNIX user id

- Limit access of these processes using subject
 - E.g., Access control of files based on subject

- Protect one user from another

Q: Is that enough for enforcing security?
Security vs. Protection

• Protection
 – Focus on process isolation and user separation

• Security Requires
 – Confidentiality: Don’t leak your secret files
 – Integrity: Don’t overwrite your important data
 – Availability: Don’t prevent an operation

• System Protection Mechanisms are Not Enough!
 – Do NOT ensure security of user’s data against an attacker
 – Functional demands result in system compromise
 – Does not scale beyond a single system

• Current access control mechanisms fail to enforce security goals
Your Programs

• What permissions are available to programs that you run?
 – Email
 – Web browser
 – Game
 – A little program that you downloaded from the web

• What can these programs do with your permissions?
Your Programs

• They can do anything that you can
 – Use any permission that you have
 – Including the owner permission
 • They can give anyone access to your files

• Worse yet, traditional access control is not comprehensive
 – A program can send a file anywhere

• What does this mean to the secrecy of your data?

• And it gets even worse…
Security Model

• Adversaries
 – Who?

• Threats
 – What can they do?

• Vulnerabilities
 – What vulnerabilities can the adversaries leverage?

• Trust model
 – What are you trusting (implicit in the discussion so far)?
Security Model

• Adversaries
 – Other system users
 – Program developers
 – Web responses, emails
 – Remote parties

• Threats
 – Code running on same system
 – Input malicious code

• Vulnerabilities
 – User can be tricked
 • Lots of applications enable the user to run downloaded code
 – Application vulnerabilities
 – Misconfigured policy
Email Clients

• In addition to reading emails,
 – Execute attachments (run with your privileges)
 – May even run a malicious script w/o opening an attachment (run with your privileges)

• What kind of attachments can you open?
 – From Granny: May be a forged address
 – Word or Excel: May contain viruses

• But, I’ve really gotta see it
 – Plain text
 – Signed emails
 – Anti-virus may catch some, but no guarantee
Access Matrix

• Describe all possible accesses
 – Operations of (S_2, O_2)
 – E.g., read, write, execute

• Specify which users’ processes can access which files

• Necessary to specify policy to protect users

<table>
<thead>
<tr>
<th></th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S_3</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Manage the Access Matrix

• How do you give someone access to your file?
• Access matrix also has management permissions
 – owner permission
• A subject with owner permission can
 – Give another user permissions to an object
 – Even the owner permission itself
• This seems necessary, right?

<table>
<thead>
<tr>
<th></th>
<th>O₁</th>
<th>O₂</th>
<th>O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S₂</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S₃</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
The Door Is Open

- Suppose that you want to download new software
 - Or a software update
- Typically, users lack the permissions to overwrite system files
 - Why update a system file?
 - “Penetrate and patch”
- For convenience, users run with administrative privileges (e.g., Windows)
 - Now, the downloaded code (and the email attachment) runs with full privilege
Tip of the Iceberg

- Viruses
- Worms
- Spyware
- Keyloggers
- What’s next?
Remote Access

• Suppose you are building a service for remote clients
 – E.g., a web application
• How are you going to authenticate identity?
• What rights are you going to assign to which identity?

• Q: What are your vulnerabilities now?
 – Consider the network and the remote computer

![Diagram]
Client ➔ Name/Password ➔ Your Server ➔ Services

CSE497b Introduction to Computer and Network Security - Spring 2007 - Professor Jaeger
Remote Access

- Client selects a name and password
 - How does the client protect the password?
- Server stores state on client for ease of use (cookies)
 - How do we ensure that attacker can’t use this state?
- What other forms of authentication are used in e-commerce?
Single Signon

- Nice feature for users:
 - Login once, then use any number of remote services

- A centralized service provides authenticated users with tokens
Single Signon

• As a remote service provider
 – What is the basis for trust for the single signon?
 – Can you trust the token?
• Can we run a business-to-business on such trust?
 – Is there a second-factor for authentication?
Take Away

• We have just looked at the most common mechanisms
 – Passwords
 – User-based Access Control

• There are a slew of problems with each

• But, this is what the world uses
 – What can we do?

That Is the Topic of This Course