Trustworthy Computing

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger

www.cse.psu.edu/~tjaeger/cse497b-s07/
Trust

• “a system that you are forced to trust because you have no choice” -- US DoD

• “A ‘trusted’ computer does not mean a computer is trustworthy” -- B. Schneier
What is Trust?

• dictionary.com
 – Firm reliance on the integrity, ability, or character of a person or thing.

• What do you trust?
 – Trust Exercise

• Do we trust our computers?
Trusted Computing Base

• Trusted Computing Base (TCB)
 – Hardware, Firmware, Operating System, etc
• There is always a level at which we must rely on trust
• How can we shrink the TCB?
Building Trust

• To build trust in software
 – What do we need to know about it?

• What if we had hardware to measure this?
 – What would it need to do?
 – How would we build systems differently?
Trustworthy Computing

- Microsoft Palladium (NGSCB)
Example of FUD

• Trusted Computing: An Animated Short
 - http://www.lafkon.net/tc/
Trusted Computing

• Components (according to Wikipedia)
 – Secure I/O
 – Memory Curtaining
 – Sealed Storage
 – Remote Attestation

• Requires hardware support
Trusted Platform Module

• The Trusted Platform Module (TPM) provides hardware support for *sealed storage* and *remote attestation*

• What else can it do?
 – www.trustedcomputinggroup.org
Where are the TPMs?
TPM Component Architecture

- Non-Volatile Storage
- Platform Configuration Register (PCR)
- Attestation Identity Key (AIK)
- Program Code
- I/O
- Random Number Generator
- SHA-1 Engine
- Key Generation
- RSA Engine
- Opt-In
- Exec Engine
TPM Discrete Components

- **Input/Output (I/O)**
 - Allows the TPM to communicate with the rest of the system
- **Non-Volatile Storage**
 - Stores long term keys for the TPM
- **Platform Configuration Registers (PCRs)**
 - Provide state storage
- **Attestation Identity Keys (AIKs)**
 - Public/Private keys used for remote attestation
- **Program Code**
 - Firmware for measuring platform devices
- **Random Number Generator (RNG)**
 - Used for key generation, nonce creation, etc
TPM Discrete Components

• SHA-1 Engine
 – Used for computing signatures, creating key Blobs, etc

• RSA Key Generation
 – Creates signing keys, storage keys, etc. (2048 bit)

• RSA Engine
 – Provides RSA functions for signing, encryption/decryption

• Opt-In
 – Allows the TPM to be disabled

• Execution Engine
 – Executes Program Code, performing TPM initialization and measurement taking
Tracking State

• Platform Configuration Registers (PCRs) maintain state values.

• A PCR can only be modified through the Extend operation
 – Extend(PCR[i], value):
 • PCR[i] = SHA1(PCR[i] · value)

• The only way to place a PCR into a state is to extend it a certain number of times with specific values

Measurement Flow
(Transitive Trust)

- BIOS Self Measurement
- OS Loader Code
- OS Code
- Application Code
Secure vs. Authenticated Boot

- Secure boot *stops execution* if measurements are not correct

- Authenticated boot measures each boot state and lets *remote systems determine if it is correct*

- The Trusted Computing Group architecture uses *authenticated boot*
Public/Private Keys

- **Endorsement Key (EK)**
 - Only one EK pair for the lifetime of the TPM
 - Usually set by manufacturer
 - Private portion *never* leaves the TPM

- **Storage Root Key (SRK)**
 - Created as part of creating a new platform owner
 - Used for protected storage
 - Manages other keys, e.g., storage keys
 - Private portion *never* leaves the TPM

- **Attestation Identity Keys (AIKs)**
 - Used for remote attestation
 - The TPM may have multiple AIKs
Protected Storage

- The TPM has limited storage capacity
 - Key pairs are commonly stored on the system, but are encrypted by a storage key
- Users can protect data by allowing the TPM to control access to the symmetric key
- Access to keys can be sealed to a particular PCR state
Remote Attestation

• Before remote attestation can occur, the challenger must have either knowledge of the public portion of an AIK, or a CA’s public key
• Old standards required the Privacy CA to know the TPM’s PUBlic Endorsement Key (PUBEK)
• Direct Anonymous Attestation (DAA), added to the latest specifications, uses a zero-knowledge proof to ensure the TPM is real
• Measure all software and static configuration files.
Using TCG

• Many claim TCG will aid DRM

• How might one use the TPM for DRM?
 – Discuss

• Trusted Computing is a
 double-edged sword
 – so is cryptography
False Claims

• Having a TPM will keep me from using opensource software
 – No, the TCG architecture only specifies authenticated boot. This simply records each step, but does not, and cannot, stop the use of opensource operating systems, e.g. Linux

• TCG, Palladium/NGSCB, and DRM are all the same
 – No, the TPM and TCG are only one of the components required for NGSCB to function

• Loss of Internet Anonymity
 – The addition of DAA allows Privacy CAs to function with zero-knowledge proofs
Challenges

• What is the correct OS state?
 – How do you verify this state in a heterogeneous environment?
 – Do security updates keep me from functioning?

• Administrative overhead
 – Must they know the state of my machine?

• How do we take benefit of the TPM and Trusted Computing?