Windows Security

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger
www.cse.psu.edu/~tjaeger/cse497b-s07/
Windows Security

• 0 to full speed
 – No protection system in early versions

• Advantage
 – Know the limits of the UNIX security model
 • What are these?

• Disadvantage
 – Legacy approaches from insecure environment
 • Will they conflict with new protection system?
Windows Protection System

• What we will discuss was designed for Windows 2000

• Protection State
 – Fine-grained access control model
 • Flexible, but complex
 – Flexible definition of subjects and objects
 – Extensible set of operations

• Enforcement Mechanism
 – Reference Monitor
 – Does it meet guarantees?

• Transitions
 – Discretionary Access Control
Subjects

• How would you define subjects?

• UNIX has users and groups
 – Keep these?

• Should users have multiple subjects that they can use?
 – Per program
 – Per ...?

• How broadly should subjects be recognized?
 – UNIX subjects applied to one machine
 – Should subjects be global?
Windows Subjects (Access Tokens)

• User SID (subject identifier)
 – Authenticated SID

• Group and Alias SIDs
 – Groups and Aliases that apply to this user

• Privileges
 – Ad hoc rights
 • E.g., Take ownership of files
 • Like POSIX capabilities in UNIX

• Defaults for New Objects
 – Access rights for new objects created (like umask)

• Miscellaneous
 – login session ID
 – token ID
Windows Services -- Domains

• An organization of machines
 – For single sign-on and centralized security administration

• Domain is a collection of machines sharing
 – common user accounts
 – security policy

• Designate one or more *domain controllers*
 – A trusted third party
 – Stores users and groups in a domain, including passwords
 – Centralized authentication
User Authentication

- Secure attention sequence
 - CRTL-ALT-DEL
- Trusted path to login process
 - winlogon
- User name and password
 - Passed to the Local Security Authority
 - local: LSA calls SAM which authenticates and returns user SID and group SIDs
 - domain: uses Kerberos where LSA on a DC does authentication
 - LSA obtains user SIDs, group SIDs and privileges of subject
- Start a shell for user
 - new *logon session* with
 - subject access tokens are attached to process
Tokens

• Like the UID/GID in a UNIX process
• Subsequent processes inherit access tokens
 – Different processes may have different rights
• To obtain access to remote services
 – Processes create
 • network logon sessions (Kerberos tickets)
 – No remote caching
• What about setuid equivalent?
 – Services
Windows Objects

• Many types
 – Executive (processes and threads)
 – Filesystem (files and directories)
 – Others (Registry keys and devices)

• Securable objects have a security descriptor
 – Owner SID
 • READ_CONTROL: read access to security descriptor
 • WRITE_DAC: write access to DACL
 – Primary group
 • Compliance
 – Discretionary ACL
 • Permissions
 – System ACL
 • Audit policy
Windows Objects -- Active Directory

- Tree of typed objects
 - Extensible set of object types

- Object Types
 - A set of “properties” (attributes)
 - A globally unique ID for each type
 - Even properties have GUIDs

- “Directories” are containers of objects
 - May contain objects of different types

- Access expressed on containers or objects
 - Objects inherit access rights of containers
 - Amazingly complex combinations!
Windows Permissions

• Permissions
 – To display permissions for a file
 • Select file, properties, security

• Standard access rights
 – Apply to most objects
 – Delete, write owner, synchronize, read control, and write dac

• Otherwise, specific access rights for each type (2000)
 – Some generic rights to build on (e.g., read, write, all)

• Access rights are stored in an access mask form
 – 32-bit consisting of
 • type-specific rights
 • standard rights (above)
 • generic rights (read, write, etc)
Access Checking

- Object types have *object managers*
 - create, store, control access

- Authorization
 - Object manager calls Security Reference Monitor
 - SRM returns policy decision
 - Object manager enforces decision

- Normally
 - Subject, object, operation, but not all are always required

- Reference monitor
 - Where is complete mediation defined?
 - Where is reference monitor implemented?
 - Which code do we depend upon for access control?
Access Control Entries

• DACL in the security descriptor of an object
 – List of *access control entries* (ACEs)

• ACE structure (proposed by Swift et al)
 – **Type** (grant or deny)
 – **Flags**
 – **Object Type**: global UID for type (limit ACEs checked)
 – **InheritedObjectType**: complex inheritance
 – **Access rights**: access mask
 – **Principal SID**: principal the ACE applies to

• Checking algorithm
 – ACE matches SID (user, group, alias, etc)
 – ACE denies access for specified right -- deny
 – ACE grants access for some rights -- need full coverage
Access Checking with ACEs

• Example

[Diagram showing access control with ACEs]
Windows vs. UNIX

• Let’s write some policies
• Is the additional expressive power of Windows worth it?
 – Who is supposed to use it?
Other Features

• Inheritance
 – InheritedObjectType of ACE
 • Only ACEs with a matching InheritedObjectType are copied
 – Inheritance Flags
 • E.g., ACE is only for inheritance

• Restricted Context
 – Implement a form of least privilege
 – Restricted tokens are used to remove privilege from process’s access token
 – Access only allowed if the two access tokens grant access

• Prevent the “Confused Deputy Problem”
• “Runas”
• Subject: User SID and group/alias SID
 – Multiple groups active
 – Attributes: can turn some off

• Files: ACL
 – Access Control Entry: SID, operations
 – Negative Access Tokens
 – First matching ACE is selected, may deny or grant

• Privileged users
 – Administrator
 – Anyone with Administrator group
 – Admin privileges on domain controller
 • Access throughout the domain
Windows Vulnerabilities

• Things that existed/evolved independently from security
 – E.g., Registry

• Some odd search semantics
 – Where should we find libraries and executables

• System Flexibility
 – Every application can execute remote code

• Administration model
 – Everything runs as user
 – User needs to install programs
 – Programs must run
 – User has admin privileges often
• Maps “Keys” to Values (not a crypto key)

• Example Keys:
 – File extension associations: extension to application
 – Current user info: user to configuration info
 – Local machine: local machine configuration

• Access to keys
 – Determines who can edit
 – Specified in terms of keys: Below for remote registry access
 – HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurePipeServers\Winreg
 – “Not specified” means no check

• Attacking the registry is a common problem (Spyware)
Search Issues

• The “.” issue
 – Windows searches for executables in the working directory before using the PATH environment
 – Attackers could get files written in the user’s directory tree

• PATH and other environment variables
 – Users can modify directories searched for executables
 – Attackers could place malicious logic in the user’s PATH

• Shortcut spoofing
 – Assign a different destination to a shortcut
 – Attacker can get another program to run

• Standard Extensions
 – Mapping of standard extensions to executables
 – Serves all users
Windows: Library Loads

• Search in directories for DLL of specified name
 – Program Directory: directory of executable
 – System Directory: “presumably protected” directory
 – Working Directory: directory of process (where user exec’d from)

• Problem: Attacker may get file in working directory
 – User likely does not even know the working directory of a process
 – Program Directory is always first

• SafeDllSearchMode
 – Load from working before system directory if 0
 – System before working if 1
 – Default value is 1 in Windows2003 and 0 in XP
Windows Execution

- Applications that can execute programs
 - Email clients
 - All kinds
 - Web browsers
 - Scripts
 - Java virtual machine
 - Applets, servlets
 - Microsoft Word
 - Macros
- Authenticode model
Windows 2000/3 vs. UNIX

• Least Privilege
 – Which can achieve more restrictive controls?
• Fail-Safe Defaults
 – How fail-safe are each?
• Economy of Mechanism
 – Complexity of mechanisms?
• Psychological Acceptability
 – Ease of use?