Access Control

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger
www.cse.psu.edu/~tjaeger/cse497b-s07/
Access Control

• Describe the permissions available to computing processes
 – Originally, all permissions were available

• Clearly, some controls are necessary
 – Prevent bugs in one process from breaking another

• But, what should determine access?
Permissions for Processes

• What permissions should be granted to...
 – An editor process?
 – An editor process that you run?
 – An editor process that someone else runs?
 – An editor process that contains malware?
 – An editor process used to edit a password file?

• Q: How do we determine/describe the permissions available to processes?

• Q: How are they enforced?

• Q: How might they change over time?
Protection System

• Any “system” that provides resources to multiple subjects needs to control access among them
 – Operating system
 – Servers

• Consists of:
 – Protection state
 • Description of permission assignments (i.e., policy)
 • Determines how security goals are met
 – Enforcement mechanism
 • Enforce protection state on “system”
Protection State

- Describes the conditions under which the system is **secure**
 - Secrecy
 - Integrity
 - Availability

- Described in terms of
 - **Subjects:** Users and processes
 - **Objects:** Files and sockets
 - **Operations:** Read and write
Secure Protection State

• Set of all protection states P
• Set of secure protection states Q
 – Subjects access to objects to perform operations
 – Meets secrecy, integrity, availability goal
• Example: Protect access to your private key file
 – Only protection states in which only you can read the private key file are secure
 – Protection states in which only you may write the public key file are secure
• Not all processes are necessarily secure
 – Recall programs running on your behalf
 • *Hey, even some programs running on your behalf are not to be trusted with the private key!*
Access Matrix

- Subjects
- Objects
- Operations
- Can determine
 - Who can access an object
 - What objects can be accessed by a subject
 - What operations a subject can perform on an object
Access Control

- Suppose the private key file for J is object O_1
 - Only J can read
- Suppose the public key file for J is object O_2
 - All can read, only J can modify
- Suppose all can read and write from object O_3
- What’s the access matrix?
Secrecy

• Does the following protection state ensure the secrecy of J’s private key in O₁?

<table>
<thead>
<tr>
<th></th>
<th>O₁</th>
<th>O₂</th>
<th>O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>S₂</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>W</td>
</tr>
</tbody>
</table>
Integrity

- Does the following access matrix protect the integrity of J’s public key file O_2?

```
<table>
<thead>
<tr>
<th></th>
<th>$O_1$</th>
<th>$O_2$</th>
<th>$O_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>$S_2$</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>$S_3$</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>
```
Trusted Processes

- Does it matter if we do not trust some of J’s processes?

<table>
<thead>
<tr>
<th></th>
<th>O₁</th>
<th>O₂</th>
<th>O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>J</td>
<td>R</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>S₂</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>S₂</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>S₃</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>S₃</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>
Protection vs Security

• Protection
 – Security goals met under *trusted* processes
 – Protects against an error by a non-malicious entity

• Security
 – Security goals met under *potentially malicious* processes
 – Protects against any malicious entity

• For J:
 – Non-malicious process shouldn’t leak the private key by writing it to \(O_3 \)
 – A potentially malicious process may contain a Trojan horse that can write the private key to \(O_3 \)
Least Privilege

- Limit permissions to those required and no more
- Consider three processes for user J
 - Restrict privilege of the process J_1 to prevent leaks

<table>
<thead>
<tr>
<th></th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1</td>
<td>R</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>J_2</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>J_3</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
Options for Subjects

• Possible subjects
Role-Based Access Control

• Associate permissions with job functions
 – Each job defines a set of tasks
 – The tasks need permissions
 – The permissions define a role

• Bank Teller
 – Read/Write to client accounts
 – Cannot create new accounts
 – Cannot create a loan
 – Role defines only the permissions allowed for the job

• What kind of jobs can we define permission sets for?
Role-based Access Control

• Model consists of two relationships
 – Role-permission assignments
 – User-role assignments

• Assign permissions to roles
 – These are largely fixed

• Assign a user to the roles they can assume
 – These change with each user
 – Administrators must manage this relationship
Enforcement Mechanism

- Every system needs to enforce its protection state
- \textbf{Q}: What is required of such an enforcement mechanism?
Reference Monitor

• Properties
 – Complete Mediation of all security-sensitive operations
 – Tamperproof
 – Simple enough for verification of correctness

• Reference Monitor Structure
 – Interface
 • Where is it called to mediate (authorize)?
 – Mechanism
 • How are authorization queries processed?
 – Policy
 • How are authorization decisions expressed?
Reference Monitor

Loadable Authorization Module

Authorization Mechanism

Policy Server

User

Trap

Kernel
Protection State Transitions

• Transition
 – From one access matrix state to another
 – Add/delete subject, object, operation assignment

• Transition semantics
 – Owner-driven
 – Delegation
 – Administrator-driven
 – Administrative permissions

• Attenuation of Rights Principle
 – Can’t grant a right that you do not possess
Protection State Transitions

• Owner
 – Implicitly has all rights to owned objects
 – Grants at will
 – Reader can copy object to self-owned object and distribute

• Delegation
 – Copy flag
 • Presence of copy flag permits granting of one’s rights to that object

• Administrators
 – Implicitly have all rights
 – Grant to subjects as necessary (w/i security goals)

• Administrative permissions
 – Permissions to perform administrative operations on objects
 – Distinction between active and administrative rights
Safety Problem

• Is there a general algorithm that enables us to determine whether a permission may be leaked to an unauthorized user from any future protection state?

• Intuition:
 – From a protection state, users can administer permissions for the objects that they own
 – Enable other subjects to access those objects

• For typical access control models (UNIX)
 – Problem is Undecidable
 – Can also extend representation (new users, objects)

• Practice:
 – Check current protection state for “safety”
Take Away

- Access Control is expressed in terms of Protection Systems
 - Protection Systems consist of
 - Protection State representation (e.g., access matrix)
 - Enforcement Mechanisms (e.g., reference monitor)
- Protection States
 - Challenge to choose subjects (RBAC)
 - Must to ensure security goals in spite of state transitions
- Enforcement Mechanism
 - Reference Monitor
 - Ensures protection state is enforced
- Transitions
 - Cannot prove safety for future protection states