Lecture 11 - Network Security

CSE497b - Spring 2007
Introduction Computer and Network Security
Professor Jaeger

www.cse.psu.edu/~tjaeger/cse497b-s07/
Internet Services

• Internet Protocol (IP)
 • Really refers to a whole collection of protocols making up the vast majority of the Internet

• *Routing*
 • How these packets move from place to place?

• *Network management*
 • Administrators have to maintain the services and infrastructure supporting everyone’s daily activities

• *Quality of service*
 • How do we ensure that we get our fair share of network resources, e.g., bandwidth?
Reality

- Networks are not secure..
- Never meant to be....

- Designers of Internet saw security as largely orthogonal to network services..
Protocol used to map IP address onto the physical layer addresses (MAC)

1) ARP request: who has x.x.x.x?
2) ARP response: me!

Policy: last one in wins

Used to forward packets on the appropriate interfaces by network devices (e.g., bridges)

Attack: replace good entries with your own

Leads to

- Session hijacking
- Man-in-the-middle attacks
- Denial of service, etc.

Q: Why would you want to spoof an IP address?
TCP/IP uses a *three-way handshake* to establish a connection

1. C -> S: Q_C where sequence numbers Q_C
2. S -> C: Q_S, ack(Q_C) and Q_S are nonces
3. C -> S: ack(Q_S) ... then send data

However assume the bad guy does not hear msg 2, if he can guess Q_S, then he can get S to accept whatever data it wants (useful if doing IP authentication, e.g., "rsh")

![Diagram](image)
• RIP - routing information protocol
 • Distance vector routing protocol used for local network
 • Routers exchange reachability and “distance” vectors for all the sub-networks within (a typically small) domain
 • Use vectors to decide which is best, notification of changes is propagated quickly
• So, the big problem is that you receive vast amounts of data that a router uses to form the routing table
 • So, just forge that, and the game is up
 • Manipulate paths, DOS, hijack connections, etc.
• Solutions:
 • Authenticate data, but this is less than obvious how to do this efficiently (a whole lot of people are trying)
ICMP is used as a control plane for IP messages

- Ping (connectivity probe)
- Destination Unreachable (error notification)
- Time-to-live exceeded (error notification)

These are used for good purposes, and are largely indispensable tools for network management and control

- Error notification codes can be used to reset connections without any

Solution: verify/sanity check sources and content

- ICMP “returned packets”

Real solution: filter most of ICMP, ignore it
• In 1996, someone discovered that many operating systems, routers, etc. could be crash/rebooted by sending a single malformed packet

• It turns out that you can send an IP packet larger than 65,535 (2^{16}), it would crash many things

• The real reason lies in the way fragmentation works
 • It allows somebody to send a packet bigger than IP allows
 • Which blows up most fixed buffer size implementations
 • … and dumps core, blue screen of death, etc.

• Note: this is not really ICMP specific, but easy (try it)

 % ping -l 65510 your.host.ip.address

• This was a popular pastime of early hackers

• Solution: patch the implementations
• Post office protocol - mail retrieval
 • Passwords passed in the clear (duh)
 • Solution: SSL, SSH, Kerberos

• Simple mail transport protocol (SMTP) - email
 • Nothing authenticated: SPAM
 • Nothing hidden: eavesdropping
 • Solution: your guess is as good as mine

• File Transfer protocol - file retrieval
 • Passwords passed in the clear (duh)
 • Solution: SSL, SSH, Kerberos
DNS - The domain name system

- DNS maps between IP address (12.1.1.3) and domain and host names (ada.cse.psu.edu)

- How it works: the “root” servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively

- Note: there are 13 “root” servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)
DNS Vulnerabilities

- Nothing is authenticated, so really the game is over
 - You can not really trust what you hear …
 - But, many applications are doing just that.
 - Spoofing of DNS is really dangerous

- Moreover, DNS is a catalog of resources
 - Zone-transfers allow bulk acquisition of DNS data
 - … and hence provide a map for attacking the network

- Lots of opportunity to abuse the system
 - Relies heavily on caching for efficiency -- cache pollution
 - Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
DNSSEC

• A standard-based (IETF) solution to security in DNS
 • Prevents data spoofing and corruption
 • Public key based solution to verifying DNS data
 • Authenticates
 • Communication between servers
 • DNS data
 • Public keys (a bootstrap for PKI?)
DNSSEC Mechanisms

• Securing the DNS records
 • Each domain signs their “zone” with a private key
 • Public keys published via DNS
 • *Indirectly* signed by parent zones
 • Ideally, you only need to self-signed root, and follow keys down the hierarchy

![Diagram showing DNSSEC signing process]

- root Signs .edu
- .edu Signs psu.edu
- psu.edu Signs cse.psu.edu
DNSSEC challenges

- Incremental deployability
 - Everyone has DNS, can’t assume a flag day
- Resource imbalances
 - Some devices can’t afford real authentication
- Cultural
 - Most people don’t have any strong reason to have secure DNS ($$$ not justified in most environments)
 - Lots of transitive trust assumptions (you have no idea how the middlemen do business)

- Take away: DNSsec will be deployed, but it is unclear whether it will be used appropriately/widely
Filtering: Firewalls

- Filtering traffic based on *policy*
 - Policy determines what is acceptable traffic
 - Access control over traffic
 - *Accept* or *deny* policy

- May perform other duties
 - Logging (forensics, SLA)
 - Flagging (intrusion detection)
 - QOS (differentiated services)
• **Blacklisting** - specifying specific connectivity that is explicitly disallowed
 - E.g., prevent connections from badguys.com

• **Whitelisting** - specifying specific connectivity that explicitly allowed
 - E.g., allow connections from goodguys.com

• These is useful for IP filtering, SPAM mitigation, …

• Q: What access control policies do these represent?
Stateful, Proxy, and Transparent

- Single packet contains insufficient data to make access control decision
- State allows historical context consideration
- Firewall collects data over time
 - e.g., TCP packet is part of established session
- Firewalls can affect network traffic
 - Transparent: appear as a single router (network)
 - Proxy: receives, interprets, and reinitiates communication (application)
 - Transparent good for speed (routers), proxies good for complex state (applications)
Example Server Firewall

TCP
1 2 3 25... 216... 80
UDP
1 2 3 42... 216..............
IP
Sendmail
Apache
named
Interface
Example Server Firewall

TCP
1 2 3 25... 216... 80
UDP
1 2 3 42... 216..............
IP
Sendmail
Apache
named
Interface
Firewall Policy

- Specifies what traffic is (not) allowed
 - Maps attributes to address and ports
 - Example: HTTP should be allowed to any external host, but inbound only to web-server

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Flags</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1.1.1.1</td>
<td>TCP</td>
<td>SYN</td>
<td>Accept</td>
</tr>
<tr>
<td>1.1.1.*</td>
<td>*</td>
<td>TCP</td>
<td>SYN</td>
<td>Accept</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>TCP</td>
<td></td>
<td>Accept</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>TCP</td>
<td></td>
<td>Deny</td>
</tr>
</tbody>
</table>