Operating Systems
CMPSC 473
Introduction
January 13, 2009 - Lecture 1
Instructor: Trent Jaeger
About Me

• Trent Jaeger (PhD, University of Michigan)
• Associate Professor, CSE -- after 9 years at IBM Research
• Research: Operating System Security
• Example Projects
 – L4 Microkernel -- minimal, high performance OS
 – Linux -- Open source, UNIX variant
 – Xen hypervisor -- Open source, virtual machine platform
• Office Hours: Tu 4-5, W 1-2, or by appointment
• Office: 346A IST Bldg
• Email: tjaeger@cse.psu.edu
Teaching Assistant

• Manu Shantharam
 • Office: 350 IST
 • Office Hours: MF 10-11, or by appointment
 • Email: shanthar@cse.psu.edu
Preliminaries
Course Requirements

• CMPSC 311
 – Intro to Systems Programming
 • C programming
 • Programming support tools
 • Common system functions

• CMPSC 331
 – Computer Organization
 • Major components of a computer system
 • How a program is executed

• ‘C’ or better grade in both
Online Resources and Textbook

- Course Web Page
 - http://www.cse.psu.edu/~tjaeger/cse473-s09/
- Course Calendar
 - http://www.cse.psu.edu/~tjaeger/cse473-s09/calendar.html
- Textbook
 Silberschatz, Galvin, and Gagne
- Calendar lists required readings, course slides, projects
 - Some readings will only be accessible via ANGEL (end of semester)
Course Mailing List

- Via ANGEL
 - Use with care
- I will send a test email
 - Please reply if you do not receive by Fr
 - May need to forward to your CSE account
- Can use to email me or the TA
 - Please use “473” in the subject
Grading

• Midterms (2): 30%
• Projects (4): 35%
• Final Exam: 25%
• Quizzes and Participation (?): 10%
Grading

- Projects
 - Individual

- Exams
 - 2 midterms (non-comprehensive*)
 - Final exam (comprehensive)
 - All are closed book and notes
Late Policy

• **Strict Deadline!**
 – Due at *beginning* of class (1pm)
• For projects: Loss @ 20% per day
• Inform TA in advance for late project submission
• Inform TA of exam conflicts
Projects

• 70-85% grade on how functional your project is
• The other 15-30% on your write-up
 – We will give instructions on what we expect when we make the projects available
• Computing Environment
 – Test in Linux
 – Email me or the TA if you don’t have an account or have any doubts/problems
Academic Honesty

• Do all assignments on your own
 – Projects, exams, quizzes
• We will use software to compare project source code
Background

• First course on algorithms and data structures
• Comfortable programming in C
 • Comfortable with a UNIX debugger like gdb
• Preliminary understanding of computer architecture
• We will cover some basics in this course
 • Talk to me if you have doubts
Before We Begin…

Some Advice

• Speak up in class, ask questions
• Attend all classes
 – Slides are only an outline
• Bring printouts to class and take notes on them
• Read text-book soon after class
 – Sections to read will be made available on the Web site alongside lecture notes
 – Even better: read before class and ask questions
Operating Systems:
Introduction
Operating System Views

• User view
 – *How do you view an OS?*

• System view
 – Manage the resources
 – For the processes
Computer System
Operating System Definition

• What does it do?
 – Provides user processes access to resources
 – Controls multiple processes’ access to resources
 – Provides services for using the system (program start)

• Where does it start?
 – After the bootloader

• Where does it end?
 – Kernel? Trusted services? Even some untrusted services?

• Microsoft Definition
Operating System History

- **1950s**: Simplify operators’ job
- **1960s**: Structure, concepts, everything
- **1970s**: Small and flexible (UNIX)
- **1980s**: Individual user systems (PCs)
- **1990s**: Internet, Windows
- **2000s**: Security
Operating Systems
1950s

• Primitive systems
 – Little memory, programs stored on tape

• Single user
 – Batch processing
 – Computer executes one function at a time

• No overlap of I/O and computation
Operating Systems
1960s

• Multiprogramming
 – Timesharing
 – Multiple programs run *concurrently*

• Many operating systems concepts invented
 – Virtual memory, Hierarchical File Systems, Synchronization, Security and many more

• End up with slow, complex systems on limited hardware (Multics)
Operating Systems
1970s

- Becoming more available
 - **UNIX**
 - First OS written in a high-level language
- Becoming more flexible
 - Extensible system
 - Community forms beyond developers
- Performance focus
 - Optimization of algorithms from 1960s
Operating Systems
1980s

• **Critical Mass Reached**
 – A variety of well-known systems, concepts
 – UNIX fragments

• **PC Emerges**
 – Simple, single user, no network
 – Simple OSes: DOS

• **Graphical User Interfaces**
 – X Windows and Apple Macintosh
Operating Systems
1990s

• Connect to Internet
 – “Real OSes” for PCs
 • NT/2000+, Linux, eventually Mac OS X
• Server Systems Galore
 – Mainframes even reemerge
• Complex Systems and Requirements
 – Parallel, Real-time, Distributed, etc.
Operating Systems
2000s

• Challenges facing us now include
 – Security
 – Multicore
 – Ubiquitous
 – Virtual Machines
 – Embedded
Operating System Functions

• What does it do?
 – Mostly behind the scenes…

• Example
 – **Page Fault Handling**
Page Fault Handling

- **Cause**: Access a virtual memory location not backed by a physical page
- **Trap** generated by hardware
- **Handler** in OS determines how to obtain memory
- If page is still on *disk*, then *handler*
 - allocates physical page
 - makes I/O request to disk via *file system* and *driver*
- **Driver** copies page from *disk* into new physical page
- OS restarts the process at the trapped instruction
Page Fault Handling

- There are multiple processes, so the OS has to make *trade-offs*
 - What is there are no physical pages available?
 - The disk is slower than memory access, so how to process?
 - There may be multiple outstanding disk requests, so what order should they be processed?
 - How does the OS interact with hardware effectively?
 - Many others…
Learning About Operating Systems

- OS has a zillion protocols like page fault handling
 - You will need to know them
- OS designers add layers of indirection concepts to simplify programming (e.g., virtual memory)
 - You will need to understand these concepts
- The design of protocols using these concepts involves trade-offs (e.g., optimize disk read performance)
 - You will need to understand why OS protocols are written the way that they are
Some Basics
Storage Hierarchy

<table>
<thead>
<tr>
<th>Registers</th>
<th>Fast</th>
<th>Expensive</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU cache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on-board cache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slow secondary memory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Volatile
- Non-Volatile
Device Input/Output

CPU

Memory: Data and Instructions

Device

I/O Request

Data

Interrupt

Data: DMA
Scheduling

• Determine *which task to perform* given that there are:
 – Multiple user processes
 – Multiple hardware components
• Provide effective performance
 – Responsive to users, CPU utilization
• Provide fairness
 – Do not starve low priority processes
Security

• Control access to shared resources
 – E.g., Files

• Ensure that only authorized processes can access a file
 – User’s process can access user’s files
 – Most file systems enable sharing among users
 – Some operating systems represent devices as files
Outline of the Course
Course Topics

• Computer Systems
• Processes
• Threads
• Scheduling
• Synchronization
• Memory Management
• Virtual Memory
• Files and File Systems
• I/O
• Protection and Security

1st Midterm

2nd Midterm

Final
Next Time

• Next class
 – Background on Computer Systems

• Do the following this week:
 – Reply to me/TA if you don’t receive a “welcome” email via ANGEL by Friday
 – Talk to the TA if problem with ANGEL account or with CSE Solaris/Linux accounts