
Protecting Web Services from Remote Exploit Code: A
Static Analysis Approach

Xinran Wang, Yoon-Chan Jhi,
Sencun Zhu

Dept. of Computer Science and Engineering,
Pennsylvania State University,

State College, PA

xinrwang, jhi, szhu@cse.psu.edu

Peng Liu
College of Information Sciences and Technology,
Pennsylvania State University, State College, PA

pliu@ist.psu.edu

ABSTRACT

We propose STILL, a signature-free remote exploit binary
code injection attack blocker to protect web servers and web
applications. STILL is robust to almost all anti-signature,
anti-static-analysis and anti-emulation obfuscation.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General - Security and protec-
tion.

General Terms: Security.

Keywords: HTTP, Code Injection Attack, Static Analysis.

1. INTRODUCTION
A great number of remote binary execution vulnerabilities

including buffer overflow and format string vulnerabilities
have been found in web servers and web applications [1].
This type of vulnerabilities allow attackers to use a crafted
HTTP request to inject a piece of exploit binary code into
the “body” of the web servers and applications. Once such
exploit binary code injection attacks succeed, the attacker
may gain full control of the victim machine. In different
attacks, exploit code may be either a piece of shellcode to
break into web servers or an infection vector for worms.

We propose STILL, a real-time, out-of-the-box, signature-
free, remote exploit binary code injection attack blocker to
protect web servers. STILL is motivated by an important
observation that the request messages to web servers are ex-
clusively data and not binary executable code. Since remote
exploits are typically binary executable code, this observa-
tion indicates that if we can precisely distinguish (service re-
questing) messages that contain binary code from those that
do not contain any binary code, we can protect web servers
as well as other Internet services (which accept data only)
from binary code-injection attacks by blocking the messages
that contain binary code. Figure 1 shows that an applica-
tion layer proxy-based STILL is deployed between the web
server and the corresponding firewall to protect web servers.

STILL (including static taint analysis and initialization

analysis) detect not only unobfuscated exploit code, tra-
ditional polymorphic and metamorphic exploit code, but
also self-modifying and indirect jump obfuscation code that
could easily defeat previous static analysis approaches. In-
deed, STILL is robust to almost all anti-signature, anti-

Copyright is held by the author/owner(s).
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

static-analysis and anti-emulation obfuscation. STILL is
signature free, thus it can block new and unknown remote
code injection attacks such as zero-day exploit code. STILL
is also good for economical Internet wide deployment with
very low deployment cost.

Firewall

Http

Requests

 Web Server(Application Layer)
Proxy-based STILL

Figure 1: Deployment of STILL.

2. RELATEDWORK
This paper is mainly relevant to the previous static anal-

ysis exploit code detection approaches [3, 4, 6]. One benefit
of these static analysis approaches is that they can detect
both foreseen exploit code exploiting known vulnerabilities
and zero-day exploit code exploiting unknown vulnerabili-
ties. In addition, they are in general more resilient to poly-
morphism and metamorphism (than string-matching signa-
tures). However, Polychronakis et al. [5] demonstrated that
some anti-static-analysis techniques such as self-modifying
can easily thwart these existing static analysis techniques.

Polychronakis et al. [5] firstly proposed a CPU emulator
to detect polymorphic shellcode. The emulators, being a
dynamic analyzer, are immune to most anti-static-analysis
techniques. However, dynamic analysis is vulnerable to sev-
eral anti-emulation techniques, which have existed in virus
writer community for many years. Motivated by [5], we pro-
posed STILL, which is robust to both anti-static-analysis
and anti-emulation techniques.

3. PROPOSED METHOD
Figure 2 depicts how STILL works. We next briefly de-

scribe its working flow. It works as a proxy-based blocker
in the application layer. When it captures a data stream, it
disassembles the data stream and generates a control flow
graph. It analyzes the disassembled result in two stages.
First, STILL detects self-modifying and indirect jump obfus-
cation code. Although the real exploit code may be hidden
by self-modifying and indirect jump, the obfuscation code it-
self provides some strong evidences of self-modifying and/or

1139

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

Data Stream
Self-modifying or
indirect jump

obfuscation code ?

 Plain exploit code,
metamorphic code,

etc ?
Pass

Block/Alert Block/Alert

No

Yes Yes

NoDisassembly and
control flow
generation

Figure 2: The activity diagram of STILL system

indirect jump behaviors. STILL detects these behaviors by
static taint analysis and initialization analysis. Since poly-
morphism is a kind of self-modifying, STILL can also detect
polymorphic code in this stage. However, attackers may use
neither self-modifying nor indirect jump obfuscation. In the
second stage, STILL detects the plain exploit code based on
system calls and/or function calls that could even have been
obfuscated by metamorphism. STILL also exploits static
analysis and initialization analysis in this stage to combat
other obfuscation techniques. Below we will describe the
mechanisms in greater details.

3.1 Disassembly and Control Flow Graph
Generation

We exploit the O(N) disassembly algorithm used in SigFree
[6] to disassemble the input data stream and generate a con-
trol flow graph. Here N is the length of the data stream.
It first decodes all possible instructions and finds all pos-
sible transfer of control in a data stream, and then cre-
ates a control flow graph based on these instructions and
transfers of control. We note that in the presence of indi-
rect jump and self-modifying obfuscation, it is impossible to
completely and statically disassemble the entire body of the
exploit code embedded in a data stream using the recursive
traversal algorithm. Fortunately, the partially disassembled
result may already provide some strong evidences of self-
modifying and/or indirect jump behavior.

3.2 Detection of Self-modifying and Indirect
Jump Obfuscation Code

The new techniques we propose to detect self-modifying
and indirect jump exploit code are called static taint analysis

and initialization analysis. We observe that self-modifying
and indirect jump exploit code first need acquire the abso-
lute address of payload. Accordingly, we first try to find the
piece of code which acquires the absolute address of pay-
load at runtime from an instruction sequence. The variable
which holds the absolute address will be marked tainted.

Then, we use the static taint analysis approach to track
the tainted values and detect whether tainted data are used
in the ways that could indicate the presence of self-modifying
and indirect jump exploit code. A tainted variable is propa-
gated to a new tainted variable by data transfer instructions
that move data (e.g., push, pop, move) and data operation
instructions that perform arithmetic or bit-logic operations
on data (e.g., add, sub, xor). For data transfer instructions,
the destination operand will be tainted if and only if the
source operand is tainted. For data operation instructions,
the destination operand will be tainted if and only if either
source or destination operand is tainted.

Finally, we use initialization analysis to reduce false pos-
itives. We observed that the operands of self-modifying
and indirect jump code must be initialized. Specifically,

the jump target of indirect jump should be initialized; the
operands of memory updating or writing instructions in self-
modifying code should be initialized. If they are uninitial-
ized, we will not consider them as attacks.

4. EXPERIMENTAL RESULTS
To evaluate the detection effectiveness of STILL, we col-

lected 12,000 polymorphic attack messages from 10 publicly
available polymorphic engines, all of which encrypt the orig-
inal shellcode. Among these ten, seven engines are from the
Metasploit framework [2], including Countdown, Alpha2,
JumpCallAdditive, Pex, PexFnstenvMov, PexFnstenvSub,
and ShikataGaNai. The other three engines are CLET , AD-
Mmutate, and JempiScodes . ShikataGaNai, CLET, AD-
Mmutate, and JempiScodes are advanced polymorphic en-
gines, which also obfuscate the decryption routine by meta-
morphism such as instruction replacement and garbage in-
sertion. CLET also uses spectrum analysis to defeat data
mining methods.

We generated 1,000 different attack messages per each
of ADMmutate and CLET. For JempiScodes, we generated
3,000 different attack messages, 1,000 per each of its three
obfuscation algorithms. We also generated 7,000 different
attack messages using the Metasploit Framework, 1,000 per
each of the following engines, Alpha2, JumpCallAdditive,
Countdown, Pex, PexFnstenvMov, PexFnstenvSub, and Shikata-
GaNai. We tested the stand-alone prototype of STILL using
these 12,000 attack messages. All of these messages are suc-
cessfully detected.

5. CONCLUSION
We proposed STILL, a novel static taint and initialization

analysis approach, to protect web servers from binary code-
injection attacks. Our experiments show that STILL detect
self-modifying code or indirect jumps with a high accuracy.

Acknowledgments This research was supported by
the National Science Foundation (CAREER NSF-0643906).

6. REFERENCES
[1] Computer emergency response team (cert).

http://www.cert.org.

[2] The metasploit project. http://www.metasploit.com.

[3] Ramkumar Chinchani and Eric Van Den Berg. A fast static
analysis approach to detect exploit code inside network flows.
In RAID, 2005.

[4] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. In RAID, 2005.

[5] Michalis Polychronakis, Kostas G. Anagnostakis, and
Evangelos P. Markatos. Network-level polymorphic shellcode
detection using emulation. In DIMVA, 2006.

[6] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu.
Sigfree: A signature-free buffer overflow attack blocker. In 15th
Usenix Security Symposium, July 2006.

1140

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

