Secure Trust Metadata Management For Mobile
Ad-Hoc Networks T

Vivek Natarajan®, Yi Yang?, and Sencun Zhu'

! Department of Computer Science and Engineering
Pennsylvania State University
{vnataraj,szhu}@cse.psu.edu

2 Department of Electrical Engineering and Computer Science
Catholic University of America
yangy@cua.edu

Abstract. A trust management framework is useful to ensure proper
functioning of a mobile ad-hoc network (MANET). Trust metadata cre-
ated by individual nodes, based on their observation of the behavior
of other nodes in their vicinity, is required to be accessible to a trust
authority (TA) (e.g., the network administrator) for prompt decision
making (e.g., revoking malicious nodes). In this work, for security and
scalability reasons, we propose a secure semantics-aware trust metadata
management scheme to partition and store an information network of
trust metadata of nodes in a MANET. That is, trust metadata is se-
curely propagated to and stored at certain geographic locations inside
the network itself, based on its semantics. The TA can send queries of
various types in the network to obtain the trust metadata of its interest.
This scheme is robust to several security attacks that attempt to disrupt
the availability of trust metadata in the network. Our analysis shows
that the proposed scheme provides desirable security and functionality
properties with low query overhead.

Keywords: Mobile Ad-Hoc Network ; Trust Metadata Management ; Semantics-
Aware ; Attribute-Based Encryption

1 Introduction

A trust management framework [1-5] is useful to ensure proper functioning of a
mobile ad-hoc network (MANET). Nodes in a MANET generally lack hardware
support for tamper resistance. Thus, an adversary could compromise some nodes
and program them to display malicious behavior. In order to address malicious
behavior, trust metadata (i.e., structural data regarding the trustiness of nodes)
could be created by nodes, based on their direct interaction with other nodes

T This work was supported by the NS-CTA grant from the Army Research Laboratory.
The views and conclusions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
express or implied, of ARL.

or by using an intrusion detection system to monitor the behavior of nodes in
their radio range [6]. Trust metadata created by individual nodes is required to
be accessible to a network entity (e.g., the network administrator) for prompt
decision making (e.g., revoking malicious nodes).

Trust metadata created by nodes could be propagated to a network entity
that has a fixed location. However, since nodes geographically close to the entity
could be involved in routing all packets containing trust metadata, their battery
power could be used up excessively, that could lead to them being unable to
participate in other network tasks. Also, since the entity is a centralized one, it
would be unavailable to store trust metadata, if it crashes or is compromised
by an adversary. Alternatively, nodes could create and store trust metadata in
their own buffers. However, since a misbehaving node is aware of the identifiers
of the nodes that come in its vicinity (the nodes that could have created trust
metadata for its misbehavior), it could attempt to attack those nodes, resulting
in either the loss of trust metadata stored in their buffers or trust metadata not
being accessible to other nodes.

Because of the aforementioned concerns, in this work, we propose to use in-
network storage for storing trust metadata. Based on its semantics, trust meta-
data created by a node will be propagated to and stored at a certain geographic
location within the network itself. The propagation to the storage location could
be done using a geographic routing algorithm (e.g., GPSR [7] routes the trust
metadata to the node closest to the storage location, namely the storage node).
If the storage node changes due to mobility, all trust metadata in the buffer of
the old storage node could be transferred to the new storage node. Trust meta-
data would then always be available at its storage location in the network. A
network entity such as a mobile trust authority (TA) could be assigned to per-
form trust aggregation [8], to evaluate the behavior of the nodes in the network.
For this purpose, the TA could be online at certain times and issue queries in
the network requesting for trust metadata. The requested trust metadata could
be sent to the TA by the storage nodes.

However, there are security issues that interfere with the normal functioning
of such a trust metadata management scheme. An adversary controlling the be-
havior of certain nodes (after node compromise), could attempt to prevent the
trust metadata created for their misbehavior from being accessible to the TA.
The compromised nodes could make trust metadata unavailable at a storage
location (if the storage location of trust metadata is known to them). The com-
promised nodes could be present in the vicinity of a node to discover the storage
location of the trust metadata that node propagates in the network. Packets con-
taining trust metadata could also be dropped while routing, during propagation
or retrieval of trust metadata, to or from a storage location, respectively.

In this paper, for security and scalability reasons, we propose a secure trust
metadata management scheme to partition and store an information network
of trust metadata of nodes in a MANET. That is, trust metadata is securely
propagated to and stored at certain geographic locations inside the network,
based on its semantics. The TA could then send different queries in the network

to obtain the trust metadata of its interest. This scheme uses attribute-based
encryption (ABE) [9,10] for encryption/decryption of trust metadata, and is
robust to several security attacks that attempt to disrupt the availability of
trust metadata in the network. Our analysis shows that the proposed scheme
provides desirable security and functionality properties with low query overhead.

The remainder of this paper is structured as follows. In Section 2, we present
the system model and the background for trust metadata management in a
MANET. In Section 3, we present two preliminary schemes and the proposed
trust metadata management scheme. In Section 4, we analyze the simulation
results of evaluation of the performance and robustness of the proposed scheme
in comparison to the preliminary schemes. We then discuss the related work in
Section 5 and finally, in Section 6, we state our conclusion and discuss future
work.

2 System Model and Background
2.1 Network Model

We assume that the MANET area is divided into a set of equal sized regions in
two dimensional space. For each region, the geographic location at its center is
the storage location for trust metadata. Trust metadata is mapped to a storage
location using a hash function that takes a location mapping key as input.

— Trust Authority : We assume the existence of a mobile trust authority (TA)
in the MANET. The TA could be online at certain times and issue queries
in the network to obtain the trust metadata of its interest, to evaluate the
behavior of the nodes in the network.

— Routing : GPSR [7], a geographic routing algorithm, is used to propagate
and retrieve trust metadata. A node involved in GPSR routing is required
to be aware of its location (e.g., using a GPS) and the locations of the nodes
in its radio range (a node sends periodic beacon messages with its location
to its 1-hop neighbors). Additionally, a source node includes the destination
location in any packet it sends.

2.2 Trust Metadata Management

We now introduce the concept of an in-network trust metadata management
scheme. A node in a MANET could monitor the behavior of other nodes in its
vicinity, e.g., using an intrusion detection system (IDS) [6], and map its observa-
tions into corresponding trust metadata. Trust metadata created by a node could
include several components, namely, the category of misbehavior (e.g., jamming,
packet dropping, etc.), the observation region (i.e., the region of the MANET in
which misbehavior was observed), the interval (i.e., the time interval in which
misbehavior was observed), the evaluated node identifier (i.e., the identifier of
the misbehaving node), the creating node identifier (i.e., the identifier of the
node that created the trust metadata), the trust score (e.g., a value between
-1 and 1, where -1 denotes the least level of trust, 0 is neutral and 1 denotes

the highest level of trust) [11,12], the evidence (i.e., data to support the trust
score, that could include the identifiers of a set of other witness nodes) and a
digital signature (computed by the creating node over all the other components
for authenticity and integrity). The category, observation region, interval, eval-
uated node identifier and creating node identifier are the components of trust
metadata based on which the TA constructs its queries. We shall refer to these
as the query components henceforth in this paper. We shall refer to the other
components, namely the trust score, evidence and digital signature, as the data
components.

A node could periodically create trust metadata for other nodes and prop-
agate them in a message (an update) to a corresponding storage location in
the network, determined based on the semantics of the trust metadata. Time
could be divided into a set of intervals and trust metadata could be created and
propagated at the beginning of each interval based on the observations during
the previous interval. Trust metadata propagated to a storage location could
be stored at the node closest to the storage location (the storage node). Trust
metadata could also be propagated to multiple storage locations, if it is consid-
ered to be important (e.g., trust metadata for a node that is causing a serious
denial-of-service attack), to improve its availability.

A storage node at a storage location could continuously monitor the locations
of the nodes in its radio range. As soon as it detects that it no longer is the node
closest to the storage location, the node closest to the storage location could
become the new storage node. All trust metadata in the buffer of the storage
node could be transferred to the new storage node in a set of messages. Thus,
trust metadata would always be available at its storage location in the network.
The TA could send a message (a query) to a storage location requesting for
trust metadata. The storage node at the storage location could then send the
requested trust metadata that it stores in its buffer in a set of messages (replies)
to the TA. Different queries (see Section 2.3) could be issued by the TA, and the
query communication overhead is required to be minimized.

2.3 Representative Queries

We now list some common representative queries that the TA could issue to
obtain trust metadata :

— @1 : All trust metadata for a particular category of misbehavior, e.g., the
list of nodes that performed jamming.

— @2 : All trust metadata for a particular category of misbehavior on a partic-
ular day (a set of intervals), e.g., the list of nodes that performed jamming
in intervals 0 and 1.

— @38 : All trust metadata for a particular category of misbehavior on a par-
ticular day and in some areas of the network, e.g., the list of nodes that
performed jamming in intervals 0 and 1 and in regions 0 and 1.

— @4 : All trust metadata for a particular node, e.g., all trust metadata created
for the misbehavior of node Ns.

— @5 : All trust metadata by a particular node, e.g., all trust metadata created
by node Np.

2.4 Security Model

We assume that all nodes compromised by an adversary collude with one an-
other and are able to eavesdrop only on the packets in their radio range. We
assume that the TA has access to all the location mapping keys and is a trusted
entity. The legitimates nodes could create and propagate trust metadata in the
network for the misbehavior of the compromised nodes in their radio ranges. We
term such legitimate nodes observation nodes. We assume that the goal of the
adversary is to prevent the trust metadata created by the observation nodes for
the misbehavior of the compromised nodes from eventually reaching the TA. In
general, the compromised nodes could launch the following types of attacks :

— Location control attack : If the storage locations of the trust metadata created
by an observation node are known to the adversary, it might attempt to make
the trust metadata unavailable at those locations. At the time of propagation
of trust metadata, the adversary attempts to ensure that the storage nodes at
those storage locations are compromised nodes (e.g., a different compromised
node stays close to each of the storage locations). The storage nodes then
drop all the updates they receive.

— Tuailgating attack : The compromised nodes are present in the radio range of
an observation node at the time of propagation of trust metadata, eavesdrop
on the packets forwarded by the observation node, attempt to identify the
storage locations of the trust metadata in those packets and then launch
location control attacks at those locations.

— Selective dropping attack : The compromised nodes selectively drop packets
with trust metadata while routing, during propagation or retrieval of trust
metadata. Also, the compromised nodes selectively drop trust metadata from
their buffers when they become storage nodes.

— Random dropping attack : The compromised nodes randomly drop packets
with trust metadata and trust metadata from their buffers with a certain
probability.

2.5 Design Goals

We now present the design goals for a trust metadata management scheme in
a MANET. The TA should be able to verify that the node that claims to have
created some trust metadata actually created it (authenticity) and that the trust
metadata is not modified subsequently (integrity). Only the TA and the creating
node should be able to access trust metadata (confidentiality) and the identifier
of the creating node should be known only to the TA (source anonymity). The
TA should be able to receive replies to a query for trust metadata (availability).
Different types of queries for trust metadata should be supported (functionality)
and the query communication overhead should be minimized (efficiency).

3 Proposed Schemes

In this section, we first introduce two preliminary schemes and identify their
drawbacks. We then present an overview, the details and security analysis of our
secure trust metadata management scheme.

3.1 Preliminary Schemes

Scheme I : In this scheme, all trust metadata for a particular category of mis-
behavior is stored at the same storage location. The input to the hash function
H() that maps trust metadata for a category ¢ to a storage location, is a location
mapping key K., known to all the nodes in the network. Queries are issued to
storage locations based on the categories of the requested trust metadata. Thus,
propagation and retrieval of trust metadata is straightforward. Among the rep-
resentative queries (Section 2.3), (Q1-Q3) are only sent to a particular storage
location (they are requests for only a particular category of trust metadata) and
(Q4-Q5) are sent to all the storage locations.

This scheme has several drawbacks. If a storage node crashes, all trust meta-
data for a particular category is lost. The location mapping keys are also known
to an adversary. The adversary is also aware of the categories of trust metadata
that could be created, since they are based on the misbehavior of the compro-
mised nodes in its control. Thus, the storage locations of the trust metadata
created by the observation nodes are known to the adversary and location con-
trol attacks could be launched at those locations. Tailgating attacks are effective
by noting the storage location of trust metadata in headers of packets during
propagation. Selective dropping attacks are effective since trust metadata is in
clear text format in packets. Random dropping attacks are also effective, al-
though multiple storage locations for a category of trust metadata could be used
for robustness.

Scheme II : In this scheme, all trust metadata created by a particular node
is stored at the same storage location. The input to the hash function H() that
maps trust metadata created by a node N; to a storage location, is a location
mapping key K, known only to node INV; and the TA. Thus, location control
attacks due to knowledge of the location mapping keys are not possible. Trust
metadata is encrypted for confidentiality. The query and the data components
of trust metadata are separately encrypted by the creating node with its sym-
metric key shared with the TA. To send a query to a storage location, the TA
creates the set of all tuples of the query components of the trust metadata it is
requesting. It then encrypts each tuple in the set multiple times, each time with
the symmetric key it shares with a node whose trust metadata is stored at the
storage location, for all such nodes. When a storage node receives a query, it
searches in its buffer for the encrypted tuples in the query, and returns all trust
metadata for which there are matches to the TA.

Among the representative queries (Section 2.3), (Q1-Q4) are sent to all the
storage locations, since the TA does not know which nodes have created trust

metadata. Q5 is sent only to a particular storage location (it is a request for
trust metadata created only by a particular node). The query overhead of this
scheme is prohibitively high (as shown in Section 4.3), since the size of a query
is very big and a query is sent to all the storage locations (except Q5).

3.2 Overview

Fig. 1. Proposed Scheme Overview : U1 and Ui 2 are updates created by node S1 and
Us,1 and Us,»> are updates created by node Ss. @) is a query by the TA that is broadcast
in the network and R; and Ra are the sets of replies to @ from storage nodes D; and
D> respectively.

We now present an overview of the proposed scheme. To achieve confidential-
ity, trust metadata is encrypted by the creating nodes. A storage node is required
to search in its buffer for the trust metadata requested in a query and send the
trust metadata for which there are matches to the TA. However, a storage node
is unable to access the encrypted trust metadata in its buffer. A storage node
could send all trust metadata it stores to the TA, irrespective of which query
it receives, a clearly inefficient solution. Including all encrypted tuples of the
query components of requested trust metadata in a query (preliminary scheme
IT) is also inefficient, due to very high query size. To meet the seemingly con-
tradictory requirements of being able to process a query without access to trust
metadata simultaneously, we propose the notion of decryption on-demand for
query processing. This requires support for a different type of encryption, i.e.,
attribute-based encryption (ABE) [9,10]. In ABE, encrypted data has some de-
scriptive attributes and a decryption key is associated with an access structure.
Decryption is possible only if the attributes of the encrypted data match the ac-
cess structure of the key. The values of the query components of trust metadata
could be chosen as the attributes.

Specifically, a creating node first encrypts trust metadata with its symmetric
key shared with the TA and then encrypts further with ABE. A node period-

ically encloses such encrypted trust metadata it creates for other nodes in an
update and propagates it to its storage location. The digital signature compo-
nent of trust metadata provides authenticity and integrity. Symmetric encryption
of trust metadata provides confidentiality. The source node identifier is not in-
cluded in the headers of packets with trust metadata during propagation. Due to
this and symmetric encryption of trust metadata, source anonymity is achieved
and selective dropping attacks are prevented. The header of a packet with trust
metadata is encrypted hop-by-hop during propagation, to hide the storage lo-
cation and thus prevent tailgating attacks. Each node uses a private location
mapping key (shared with the TA), thereby preventing location control attacks.
Additionally, techniques such as hop-by-hop payload shuffle [13] could be used
to prevent matching of contents of packets to determine the mapping of trust
metadata created by nodes to their storage locations. Availability is affected only
by random dropping attacks. However, we show in Section 4.3 that this scheme
is robust even to random dropping attacks, if redundant storage locations are
used for updates.

The TA broadcasts a query in the network with an ABE decryption key
(along with a digital signature that is verified by the storage node), that would
only decrypt the trust metadata it is requesting. If a storage node is able to
decrypt a set of trust metadata in its buffer with the key (it is possible to
determine if decryption is successful or not, as we note in Section 3.3), it sends
them in replies to the TA (each trust metadata in the set is still encrypted with
symmetric encryption). Note that the storage node would not know what trust
metadata was requested in the query, even if it is able to process it. The TA
is then able to decrypt (with its symmetric key shared with the creating node)
and verify the digital signature of all trust metadata in the replies. Note that
with just a single broadcast query, all the storage nodes are able to check if they
store the trust metadata requested in the query and send them to the TA if they
do. The TA is able to create specific decryption keys for the trust metadata it
is requesting (see Section 3.3) and thus, functionality is achieved. Among the
representative queries (see Section 2.3), (Q1-Q4) are broadcast in the network
and Qb is sent only to a particular storage location (it is a request for trust
metadata created only by a particular node). The query overhead of this scheme
is much lower and thus the efficiency is much higher compared to preliminary
scheme II, since the average size of a query is much lower. Figure 1 illustrates
the overall working of the proposed scheme.

3.3 Detalils of Proposed Scheme

We now discuss the details of encryption and decryption using ABE in the pro-
posed scheme. We use the construction for access-trees for ABE proposed in [9].
In the access-tree construction, encrypted data is labeled with some attributes.
A decryption key is identified by a tree-access structure in which each interior
node of the tree is a threshold gate (a t-of-n threshold gate returns TRUE if and
only if at least t of the n inputs are TRUE, OR is a 1-of-n gate and AND is an
n-of-n gate) and the leaves are associated with attributes. Decryption is possible

if and only if there is an assignment of the attributes from the encrypted data to
the nodes of the tree such that the tree is satisfied. For details of the access-tree
construction for ABE, please refer to [9].

Preliminaries We define the following functions related to access-trees. num/(z)
of a node x in the tree is its number of children. The children of a node z are
numbered from 1 to num(z) in an arbitrary manner. index(z) of a node z is
such a number associated with node x (denoting its number for its parent node).
parent(z) of a node x is its parent node. att(x) of a leaf node z is the attribute
associated with node z. k(z), a threshold value, of a leaf node z is 1, and of a
non-leaf node x is ¢, if the node is a t-of-num(x) threshold gate.

We now present some facts about groups with efficiently computable bilinear
maps. Let G; and Gy be two multiplicative cyclic groups of prime order p. Let
g be a generator of G; and e be a bilinear map, e : G; X G; — Gs. The bilinear
map e has the following properties:

1. Bilinearity: for all u,v € G; and a,b € Z,, e(u®,v®) = e(u,v)®
2. Non-degeneracy: e(g,g) # 1

We say that G is a bilinear group if the group operation in G; and the bilinear
map e : G; X G; — Go are both efficiently computable.

Algorithm 1 Creation of the Public Parameters and the Master Key by the TA

: procedure setup(U)
for each attribute ¢ € U do

choose a number ¢; uniformly at random from Z,
end for
choose a number y uniformly at random from Z,
the public parameters PK are

T :gt17"'7,1_'\l/{\ :gt‘m7YZe(g7g)y

7: the master key MK is
t17"'7t\lxl\7y

8: end procedure

Setup Let G; be a bilinear group of prime order p, and let g be a generator
of Gy. Let e : G; x G; — Gy denote the bilinear map. Define the universe
of attributes of trust metadata U = {1,2,---,n}. The TA creates the public
parameters and the master key for ABE at setup. Algorithm 1 lists the steps.

Trust Metadata Creation Algorithm 2 lists the steps for trust metadata cre-
ation and encryption. A node N; creates trust metadata T'M and encrypts it with
its symmetric key shared with the TA to obtain TM'=E(TM, Ky,). Node
N; then encrypts TM' (T'M’ € G2) with ABE, based on the set of attributes
~. The values of the query components of T'M are chosen as the attributes that
belong to . The number of exponentiations for encryption is about the same as
the number of attributes in ~ [9].

Algorithm 2 Encryption of Trust Metadata by the Creating Node

1: procedure encryption(TM,~, PK, KN, TA)
2:

TM' = E(TM,Kn, 14)

3: choose a number s uniformly at random from Z,
4: the encrypted trust metadata is

ETM = (v, E' = TM'Y* {E; = T} }ic,).

5: end procedure

Algorithm 3 Creation of a Decryption Key by the TA

procedure decryption_key(T, MK, x)
degree d; of a polynomial ¢, for node z «— k(z) — 1
if x is the root node of 7 then
32(0) <y
else
qx (O) = dparent(x) (1ndex(x))
end if
choose d, other points of ¢, at random to define it completely
if x is a leaf node of 7 then

[

92 (0)
D, « glett(@)
11: end if
12: for each node z € 7 such that parent(z) = = do
13: call decryption_key(T, MK, z)
14: end for
15: end procedure

Query Creation The TA creates a decryption key based on the access-tree for
the trust metadata it is requesting by applying the recursive procedure shown
in Algorithm 3 with the access-tree, its root node and the master key as inputs.
The procedure calculates a secret value D, for each leaf node = in the tree. The
set of such secret values is the decryption key D. Figure 2 shows examples of
the access-trees for the representative queries defined in Section 2.3.

Query Processing To process a query by the TA, a storage node applies the
recursive procedure shown in Algorithm 4 with an encrypted trust metadata in
its buffer, the decryption key in the query and the root of the access-tree as
inputs (we assume that the access-tree 7 is embedded in the decryption key).
The procedure returns a group element of Ga, e(g,g)¥® = Y*, if decryption is
successful. In this case, TM’, the trust metadata encrypted with the symmetric
key shared by the creating node and the TA, is obtained by dividing E’ (a part of
ETM) by Y?, and is sent by the storage node to the TA. The procedure returns
L if decryption is unsuccessful and in this case, nothing is sent by the storage
node. The number of pairing computations and exponentiations for decryption

10

Algorithm 4 Processing of a Query by a Storage Node

1: procedure decryption(ETM, D, x)
2: if z is a leaf node of 7 then

3: if att(z) € v then

4: return 6(979)3'%(0)
5: else

6: return L

7: end if

8: else

9: count <0
10: for each node z € 7 such that parent(z) = x do

11: res = decryption(ETM, D, z)
12: if res # | then

13: count < count + 1
14: end if

15: end for

16: if count > k(z) then
17: return e(g, g)*%(©
18: else

19: return L

20: end if

21: end if

22: end procedure

could be reduced from the number of nodes in the access-tree to a minimal set
of its leaf nodes [9].

Example of ABE Encryption/Decryption Let us consider an example of
ABE encryption/decryption. Let U be {1,2,---,18}. Let the query components
of trust metadata T My created by a node Ny be (jamming, 0,0, No, Ny) and the
corresponding set of attributes vo be {1,3,7,13,15}. Let the query components
of TM; by Ny be (jamming, 1,2, No, N1) and v, be {1,4,9,13,16}. Consider
the access-tree for query Q3 in Figure 2. In general, an internal node z in the
access-tree that is a k(x)-of-num(z) gate does not return L if at least k(z) of its
children do not return L. For T'M, the Decryption function returns L for the
node Interval:1 and the node Observation Region:1 but does not return L for
any of the other nodes including the root node and thus, decryption is possible
with the decryption key associated with the access-tree. However for T' M, the
Decryption function returns L for the node Interval:0, the node Interval:1, their
parent node (the OR gate), the node Observation Region:0 and the root node
and thus, decryption is not possible with the decryption key associated with the
access-tree. Recall that each trust metadata is still encrypted with symmetric
encryption even after ABE decryption and a storage node is unable to access
trust metadata. Also, a storage node does not know what trust metadata is
requested in a query, even if it is able to process it.

11

Category :
jamming

Category :
jamming

Category :
jamming

Observation Observation

Interval : 0 Interval :1 [|"2 cion 0 Region : 1

Interval : 0

Evaluated Creating
Interval : 1 Node Node
Identifier : N Identifier : N

Fig. 2. Examples of Access-Trees for Representative Queries (Q1-Q5)

Table 1. Security Analysis

Security Property/Attack

Comments

Authenticity and Integrity

Digital signature component of trust metadata

Confidentiality

Symmetric encryption of trust metadata

Source Anonymity

Symmetric encryption of trust metadata and not in-
cluding the source node identifier in headers of packets
with trust metadata during propagation

Availability

Security property satisfied by the same way robustness
to all the attacks listed below is achieved

Location control attacks

Private location mapping keys for nodes

Tailgating attacks

Hop-by-hop encryption of headers of packets with
trust metadata during propagation

Selective dropping attacks

Robustness achieved by the same way source
anonymity is satisfied

Random dropping attacks

Redundant storage locations for updates

3.4 Security Analysis

In this section, we evaluate the performance and robustness to random dropping

We summarize how the security properties are satisfied and robustness to attacks
is achieved by the proposed scheme in Table 1.

4 Performance Evaluation

attacks of the proposed trust metadata management scheme in comparison to the

two preliminary schemes. Note that none of the other possible attacks discussed
in Section 2.4 are effective in our proposed scheme, whereas they are effective
in the two preliminary schemes. However, we evaluate only the effect of random
dropping attacks on these schemes for comparison.

12

4.1 Experiment Setup

We perform our evaluation using the GloMoSim [14] simulator. The geographic
routing algorithm we use for our evaluation is GPSR [7], that we have imple-
mented in GloMoSim. We have also implemented a trust management framework
at the application layer. The network area is divided into 9 regions and the node
closest to the center of each region (that changes based on mobility) is assigned
to store trust metadata. We simulate 50 nodes (each with a 802.11 radio range
of 100m) in a 300x300m network following the random waypoint mobility model
with minimum speed 1m/s, maximum speed 20m/s and pause time 60s.

The TA sends a query in the network, at a random time during each interval,
to obtain trust metadata. We assume that a query by the TA is either Q1 or
Q4 (Q2 and Q3 are subsets of Q1 and Q5 is not a broadcast query in the
proposed scheme, the representative queries are defined in Section 2.3). The
size of an ABE decryption key depends on the number of leaf nodes in the
corresponding access-tree. For queries Q1 and Q4, there is just a single leaf node.
We simulate 2 categories of trust metadata. We randomly assign C percent of
all nodes to be compromised nodes that participate in random dropping attacks,
with a probability of random dropping p. Each point in the figures is the mean
of the results obtained using 25 different randomly generated motion patterns
with different seed values.

4.2 Metrics
We define the following metrics to evaluate a trust metadata management scheme:

— Accessibility of trust metadata at the TA (A) : The fraction of all trust
metadata requested by the TA in a query that it obtains, averaged over all
times when queries are issued. Ideally, the value of A should be close to 1.

— Query communication overhead in bytes (B): The number of bytes trans-
mitted in the network for trust metadata queries by the TA. The value of B
should be minimized.

4.3 Simulation Results

Figure 3(a) shows the variation of the accessibility of trust metadata at the TA
(A) with the percentage of compromised nodes (C). Here, the C' compromised
nodes perform random dropping attacks with a certain probability p = 0.2. As
C increases, A decreases for all three schemes. This trend is expected since the
more the number of compromised nodes launching random dropping attacks, the
more the chances of trust metadata requested by the TA not reaching it. Note
that A for the proposed scheme is higher compared to the preliminary schemes.
This is so since a query is broadcast in the network in the proposed scheme and
thus, the likelihood of a query reaching a storage location is high. On the other
hand, in the preliminary schemes, if a unicast query is dropped or is lost in the
network before it reaches a storage location, the TA would not obtain any replies
to the query from the storage location.

13

—e—Preliminary Scheme |
—e—Preliminary Scheme Il
—m—Proposed Scheme

—e— Preliminary Scheme |
—e— Preliminary Scheme II

—m— Proposed Scheme

0.8 1 0.8

0.6

0.6

0.4 1

0.4 -

0.2 - 0.2 4

Accessibility of Trust Metadata at the TA (A)
Accessibility of Trust Metadata at the TA (A)

o o
10 20 30 0.1 0.2 0.3 0.4
Percentage of Compromised Nodes (C) Pr ility of Random Di ing (P>
(a) (b)

Fig. 3. (a) Variation of the Accessibility of Trust Metadata at the TA (A) with the
Percentage of Compromised Nodes (C'), the Probability of Random Dropping (p) =
0.2 (b) Variation of A with p, C' = 20%

Figure 3(b) shows the variation of A with the probability of random dropping
(p). Here, C = 20%. As p increases, A decreases for all three schemes. This trend
is expected since the more the probability of random dropping, the more the
chances of trust metadata requested by the TA not reaching it. Note that once

again, A for the proposed scheme is higher compared to the preliminary schemes,
due to the usage of broadcast queries.

1 1.0E+08

1.0E+07 -
0.8
1.0E+06

0.6 | 1.0E+05 -

1.0E+04 -

04 1 1.0E+03 -

1.0E+02
0.2 4

y Scheme |

Accessibility of Trust Metadata at the TA (A)

Query Communication Overhead in Bytes (B)

1.0E+01 o
'y Scheme Il

v
—m- Proposed Scheme = Proposed Scheme
o 1.0E+00

2 a 8 1 2 a 8
No. of Redundant Storage Locations (L) No. of Redundant Storage Locations (L)

(a) (b)

Fig. 4. (a) Variation of A with the number of redundant storage locations (L), C =
20%, p = 0.2 (b) Variation of the Query Communication Overhead in Bytes (B) with
L, C = 20%, p = 0.2 (the y-axis is in logarithmic scale)

For a trust management scheme to be robust to random dropping attacks, an
update could be propagated to multiple (redundant) storage locations. Queries
could be unicast to each of the multiple storage locations separately (preliminary
schemes) or broadcast in the network (proposed scheme). Replies to queries could
then be obtained from each of the multiple storage locations. Figure 4(a) shows
the variation of A with the number of redundant storage locations (L). Here,
C = 20% and p = 0.2. As L increases, A increases for all three schemes. This
trend is expected since the more the number of redundant storage locations for

an update, the more the chances of trust metadata requested by the TA reaching
it.

14

The variation of the query communication overhead in bytes (B) with L is
shown in Figure 4(b). The y-axis in this figure is in logarithmic scale. Note that
we consider the query overhead and not the total overhead of trust metadata
management as a metric. This is so since the message overhead for updates,
replies and change in storage nodes is similar across the three schemes on an av-
erage, but is different for queries, based on how efficient they are. As expected,
preliminary scheme II has a very high query overhead compared to the other
two schemes (see Sections 3.1 and 3.2). The query overhead of the preliminary
schemes increases with L. Even though B is lower for preliminary scheme I com-
pared to the proposed scheme, preliminary scheme I has some serious limitations
and is not secure (as noted in Section 3.1). Note that for the proposed scheme,
B remains about the same as L increases, due to the usage of broadcast queries,
irrespective of the value of L. Thus, the proposed scheme is more scalable com-
pared to the preliminary schemes.

5 Related Work

To the best of our knowledge, this paper proposes the first scheme for in-network
storage of trust metadata in a mobile ad-hoc network, that also satisfies a number
of security properties and is robust to several security attacks that attempt to
disrupt the availability of trust metadata in the network.

A trust management framework could be subjected to other types of secu-
rity attacks [2,15,12]. For example, bad mouthing attack, in which dishonest
recommendations are provided by nodes, on-off attack, in which nodes behave
well and badly alternatively, conflicting behavior attack, in which nodes behave
differently with different peer nodes, sybil attack, in which several fake identi-
fiers are created by a node and newcomer attack, in which a node registers itself
as a new user. Li et al. [2] and Sun et al. [15] identified such attacks and pro-
posed defense techniques. Our current work could be used in conjunction with
the defense techniques proposed in [2,15] to improve the overall security of a
trust management scheme in an MANET.

Li et al. [1] described a multi-dimensional trust evaluation framework from
different perspectives, namely collaboration trust for selfish behavior, behav-
ioral trust for malicious behavior and reference trust for opinion correctness.
They proposed performing different types of independent observations to obtain
the trust metadata for each dimension. Balakrishnan et al. [5] proposed coupling
a trust management framework with other security models such as key manage-
ment and secure routing. They recommend security models provide feedback to
one another to improve the overall security of the network.

In some previous protocols [4, 3], nodes themselves initiate requests to obtain
trust metadata created by other nodes (recommendations). Requests are sent
and replies are received based on the recommendation trust values of nodes,
i.e., trust metadata for providing correct recommendations. A node evaluates
recommendation trust by comparing recommendations to its own observations.
In [16], a trust metadata storage system was proposed. However, this system
does not consider security attacks at all. Thus, it is vulnerable to the attacks
mentioned in this paper.

15

6

Conclusion and Future Work

In this paper, we propose an in-network secure trust metadata management
scheme for a mobile ad-hoc network. We identify the security and performance
design goals for such a scheme and note that the proposed scheme satisfies those
goals. We also evaluate the performance and robustness of the proposed scheme
and observe that it compares favorably to two preliminary schemes.

In the future, we shall devise techniques to obtain the location proof of a

node that creates trust metadata in a mobile ad-hoc network. The purpose is to
detect false claims by nodes of their presence in particular regions of the network
and observation of misbehavior of nodes to create trust metadata.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Li, W., Joshi, A., Finin, T.: Coping with Node Misbehaviors in Ad Hoc Networks :
A Multi-Dimensional Trust Management Approach. In: Proc. IEEE MDM. (2010)
Li, J., Li, R., Kato, J.: Future Trust Management Framework for Mobile Ad Hoc
Networks. In: Proc. IEEE Communications Magazine. Volume 46. (2008) 108-114

. Sun, Y., Yu, W., Han, Z., Liu, K.: Information Theoretic Framework of Trust

Modeling and Evaluation for Ad Hoc Networks. In: Proc. IEEE Journal on Selected
Areas in Communications. Volume 24. (2006) 305-317

Velloso, P., Laufer, R., Cunha, D., Duarte, O., Pujolle, G.: Trust Management in
Mobile Ad Hoc Networks Using a Scalable Maturity-Based Model. In: Proc. IEEE
Transactions on Network and Service Management. Volume 7. (2010) 172-185
Balakrishnan, V., Varadharajan, V., Tupakula, U., Lues, P.. TEAM : Trust En-
hanced Security Architecture for Mobile Ad-Hoc Networks. In: Proc. IEEE ICON.
2007

(Zhang;7 Y., Lee, W.: Intrusion Detection in Wireless Ad-Hoc Networks. In: Proc.
ACM MobiCom. (2000)

Karp, B., Kung, H.: GPSR : Greedy Perimeter Stateless Routing for Wireless
Networks. In: Proc. ACM MobiCom. (2000)

. Wang, Y., Singh, M.: Trust Representation and Aggregation in a Distributed

Agent System. In: Proc. ACM AAAI (2006)

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for
Fine-Grained Access Control of Encrypted Data. In: Proc. ACM CCS. (2006)
Yu, S., Ren, K., Lou, W.: FDAC: Toward Fine-Grained Distributed Data Access
Control in Wireless Sensor Networks. In: Proc. IEEE INFOCOM. (2009)
Falcone, R., Pezzulo, G., Castelfranchi, C.: A Fuzzy Approach to a Belief-Based
Trust Computation. In: Proc. ACM AAMAS. (2002)

Govindan, K., Mohapatra, P.: Trust Computations and Trust Dynamics in Mo-
bile Adhoc Networks : a Survey. In: Proc. IEEE Communications Surveys and
Tutorials. Volume 14. (2011) 279-298

Zhu, B., Wan, Z., Kankanhalli, M., Bao, F., Deng, R.: Anonymous Secure Routing
in Mobile Ad-Hoc Networks. In: Proc. IEEE Local Computer Networks. (2004)
GloMoSim: Global Mobile Information Systems Simulation Library.
http://pcl.cs.ucla.edu/projects/glomosim

Sun, Y., Han, Z., Liu, K.: Defense of Trust Management Vulnerabilities in Dis-
tributed Networks. In: Proc. IEEE Communications Magazine. Volume 46. (2008)
112-119

Natarajan, V., Zhu, S., Srivatsa, M., Opper, J.: Semantics-Aware Storage and
Replication of Trust Metadata in Mobile Ad-Hoc Networks. In: Proc. IEEE AINA.
(2012)

16

