Designing System-level Defenses against Cellphone Malvear

Liang Xie* Xinwen Zhang

Ashwin Chaugule*

Trent Jaeger* Sencun Zhu*

xDepartment of Computer Science and Engineering, Pennmagh&tate University, PA 16802
T Samsung Information Systems America, San Jose, CA 95134

{Ixie, avcl14, szhu, tjaegp@cse.psu.edu

Abstract—Cellphones are increasingly becoming attractive
targets of various malware, which not only cause privacy
leakage, extra charges, and depletion of battery power, bualso
introduce malicious traffic into networks. In this work, we seek
system-level solutions to handle these security threats p&cif-
ically, we propose a mandatory access control-based defens
to blocking malware that launch attacks through creating nev
processes for execution. To combat more elaborated malware
which redirect program flows of normal applications to execue
malicious code within a legitimate security domain, we furher
propose using artificial intelligence (Al) techniques suchas
Graphic Turing test. Through extensive experiments based o
both Symbian and Linux smartphones, we show that both
our system-level countermeasures effectively detect anddek
cellphone malware with low false positives, and can be eagil
deployed on existing smartphone hardware.

Keywords-Cellphone Malware; Graphic Turing Test; Manda-
tory Access Control;

I. INTRODUCTION

xinwen.z@samsung.com

Flexispy [7] monitors a victim’s call history and contacts,
and delivers these sensitive information to a remote server

Research on quarantining cellphone malware has started
recently. The straightforward defense is to mirror thetetrg
against PC viruses with the inception of security patches fo
cellphones. However, it is challenging for users to acquire
signature files in a timely manner; besides, downloading
often causes extra charges. Some recent work propose more
active solutions, e.g., by designing algorithms to autemat
ically identify compromised phones based on user interac-
tions [8] and suggesting a proactive containment framework
to quarantine those suspected devices, and by designing
a collaborative virus detection/alerting system [9]. Tehes
approaches, however, rely on network or external agents to
throttle worm spread. We believe that defense mechanisms
deployed on cellphones are more effective both in detecting
malware in a timely fashion and in preventing malicious
messages from entering wireless networks. Indeed, on this

and data services have become ubiquitous and indispensablephone against cross-service attacks from its PDA interfac

This advantage however comes with a price. — mobileyowever, it does not provide further solutions for contagni
networks and terminal devices (e.g., smartphones and PDAg);tomated malware [11].

are becoming attractive targets to attackers. Especihiy,
popularity of mobile services such as email and messaging;ontributions: First, a comprehensive study on malware’s
and their dependence on common software platforms suchttack strategies is important in designing effective eoun
as Symbian and Linux, have made mobile devices ever morermeasures against them. Our categorization and analy-
vulnerable. Situation gets worse as mobile devices quickisis on major attack strategies reveal challenging issues to
evolve [1]. According to F-Secure [2], currently there arebe addressed in effective defenses. Second, we propose a
more than 350 mobile malware (or viruses) in circulation.mandatory access control-based mechanism which controls
Examples of the most notorious threats to cellphones imcludprogram accesses to important system resources through
Skull [3], Cabir [4], and Mabir [5] targeting at Symbian enforcing a customized access control policy in the context
operating systems. The research organization IDC estimat®f cellphones. This mechanism is effective in defeating
that by 2008 the market for mobile security software will malware which execute malicious codes in new processes.
grow yearly by 70% [6]. Third, to combat automated malware which gain controls of
In this paper, we refer toellphone malwareas malicious existing processes to execute malicious codes, we propose
codes that exploit vulnerabilities in cellphone softwanela a more comprehensive defense which identifies and blocks
propagate in networks through popular services such asalware using Al techniques such as Graphic Turing test
Bluetooth and messaging (SMS/MMS) services. Cellphon€GTT). Using MMS as an example, through challenging a
malware are devastating to both mobile users and networkser, our approach differentiates whether a delivery of MMS
infrastructures. Users of compromised cellphones could benessage is legitimate (user-initiated) or illegal (malsvar
unconsciously charged for numerous messages delivered liyitiated). Moreover, this approach does not reply on known
malware and their phone batteries could be quickly drainedmalware signatures. Fourth, we provide real implementatio
Other reported damages include loss of user data and privaand evaluate our defenses on major smartphone platforms.
and software crashes. For example, a Trojan spy namexperimental results including benchmark and performance

data demonstrate that our solutions are light-weight andases, these code may even invoke certain system calls to
effective in blocking various malware. cause crashes. Compared with strategy |, this attack method
Outline: The rest of the paper is organized as follows. IniS more elaborated and automated hence more challenging
Section I, we provide an overview of our defenses: anbecause it keeps the security context of the hijacked psoces

access contro-based scheme and a GTT-based scheme. WRile executing the malicious code and does not rely on
present design and implementation details of the defenses HSer operations to propagate.

Section 111 and_ evaluat_e their gffectiveness_, and perfocaan Il. OVERVIEW OF THE COUNTERMEASURES

through experiments in Section IV. We introduce related

work in Section V and conclude in Section VI, We assume that a malware launches attacks from

application-level software, i.e., it could compromise pbo
A. Malware’s Attack Strategies applications such as email and MMS/SMS messaging, etc.

From a software perspective, we study two basic forméﬂowever, it cannot break the kernel. Kernel level attacks
of attack strategies adopted by cellphone malware. The ke uch as rootkits have not been found on cellphones [2].

difference between these two is whether a malware createsc also notice Ehat a few teghnlgues can be adopted to
a new process to launch its attack prevent malware’s kernel-hacking in cellphones, for exam-

_ . ple, integrity measurement architecture (IMA) [13], [14]
Attack strategy I: In this case, a malware always creates pe|ns identify falsifications on kernel code, virtual maghi

a new process to execute its malicious code, and to cOMgchniques [15] helps isolate kernel-level attacks froegal
promise the cellphoneJser operations are usually required 0g kernel protection is out of the scope of this paper.
in this case, e.g., a user installs a downloaded software, or \ye design a mandatory access control (MAC)-based
opens a received message. The newly created process Ndgection scheme to defeat malware which launch attacks

its own descriptor, which describes address space, epecuti ,roygh creating new malicious processes (attack strategy
state, and security attributes (i.e., security confxfThis). To combat more elaborated malware which redirect

security context is different from that of the parent praces program flows of normal applications (e.g., messaging and
which invokes it. Due to simplicity, this strategy is widely gmailing) to execute malicious code within a legitimate

adopted by most existing malware. Symbian and Windowsecyrity domain (attack strategy I1), we adopt Al technijue
Mobile users cannot change the kernel; Symbian programg;chy as Graphic Turing test (GTT) as the countermeasure.

register themselves within a platform and make system\ote that this approach addresses both forms of attacks.
calls within framework APIs (provided by vendors) to use

system services. Realizing this, cellphone malware launch. Access Control-based Protection

attacks through legally installed applications. For exEnp We first anatomize the MMS/SMS messaging, a major
Mabir [5] includes its malicious code in an SIS installation infection vector for malware. To deliver a message to the
file 2 and attaches it to an infection vector (e.g., an MMSrecipient’ a messaging process invokes a sequence of key
message). Once a recipient activates this SIS file, a ma#icio system calls to access important system resources (e.g.,
program is installed and executed, incurring damages to thfe, socket, and modem device) and access related sys-
phone. For instance, a program invokes messaging APIs t@m services. Using a Linux-based phone (e.g., Motorola
deliver numerous malicious messages, or steal user privai1200 and E680) as an example, to search for the email
information and send to a malicious server. address or phone number of the recipient, a messaging

Attack strategy II: In this case, a malware does not create process namedwmsclient invokes open(*addresshbook”,

a new process in the phone. Instead, it redirects the progranf®_RDONLY) to access the contact list in the phone ad-
flow of a legitimate application (e.g., messaging processyress book; to deliver a SMS/MMS messagensclient

to execute its malicious code within a legitimate securitycalls fd=open(*/dev/ttyS0”, QRDWR)to open the modem
context Such attacks mostly happen in cellphones withdevice ? (i.e., serial deviceltyS0) and invokeswrite(fd,
open-source platform OS and application frameworks, e.g/nessage, lengthtp send a composed messagessage to
Linux-based smartphones. An automated malware adopt§e modem, which eventually processes the message and
this strategy through exploiting software vulnerabiteuch ~ transmits it to the air interface; to send an email messaging

as stack buffer-overrun [12] in a cellphone software tothrough Wi-Fi interface, a process namedtpclient in-
‘hijack’ its normal program flow and launch attacks. Note VOkessocket(AEINET, SOCKSTREAMY)o create a stream

that the malicious code to be executed after the malwargocket through which it communicates with an SMTP server.
gains control of the program counter may exist in the origina These system calls are critical monitoring and autheriticat

program’s address space so that it is legal to OS. In someoints in kernel, because malware’s final goal is to invoke
system calls as a normal process does and gain accesses
Iror example in Linux, a process’s security context typicalbnsists of identity,

role, and type/domain of the process. SModem device is a separate phone unit, which contains raeguéncy (RF) and
2The format of an user-initiated installation file to distrib Symbian applications. base-band components, low-level coding-decoding sohaad protocol stacks.

to important system resources and launch attacks. Therés authenticate an ongoing process and identify malware
fore, our goal with access control-based protection is tdehaviors. Specifically, our countermeasure involvesxec
distinguish malicious processes from normal ones and giveng a Graphic Turing test (GTT) before a phone message
different permissions to them at these checking points. framework eventually delivers a message to the air inter-
We adopt a defense model that is similar to Securityface of the phone. GTT has a nice feature that a human
Enhanced Linux (SELinux) [16] to achieve strong protectionbeing can always pass a Turing test while an automated
in cellphones. SELinux employs Linux Security Modules malware cannot. In this case, even if an elaborated malware
(LSM) inside kernel to implement MAC policies, which as- compromises the application-layer interface of the keypad
sign different permissions to different processes base up driver, it is still unable to figure out the correct answer of a
the least privilege principle. Specifically, SELinux asates GTT challenge. This countermeasure can identify malware
security labels (contexts) of the formser:role:typeto all adopting both forms of attack strategies, because it does no
subjects (processes) and objects (files/directoriesramagy simply verify the security context of an ongoing process;
sockets, etc.). Within a security context, thgpe attribute instead, it differentiates a malicious message originiaiton
represents the type of a subject or an object, esghdt a normal user through authenticating their genuine natures
and syslogdt. Instead of directly associating aser with ~ This approach also helps detect a wider variety of malware,
types, SELinux associates @ser with a set ofroles and a including new malware that are unknown to security vendors
role with a set oftypes. Therole simplifies the management (e.g., zero-day or polymorphic ones).
of users. This means that access control in SELinux is Although our GTT-based defense requires user operations
primarily enforced via a so-called Type-Enforcement [17]during message deliveries, the rate of normal MMS/MMS
policy model. messaging (on the order o~10.07 messages/hour [18])
) is unlikely to be very frequent due to the limited resources
B. GTT-based Protection of dedicated signaling channels, e.g., Stand-alone Dextica
Using messaging malware as an example, to identify an€ontrol Channels (SDCCHSs) configured for SMS messaging
throttle malware within a cellphone device, we first need toin GSM [19] Base Stations. Moreover GTT takes only
differentiate a malware-initiated messaging process feom several seconds, which can be ignored when considering
normal user-initiated messaging process. This is relgtive the time a user spends to compose a message. Note that a
easy when a malware creates an unauthorized process to inser is motivated to take GTT because she wants to prevent
voke system calls or messaging APIs to execute its maliciousellphone from sending numerous malicious messages which
program, because this malicious process has its new securitause privacy leakage, extremely high service charges, and
context which can be identified according to some predefineduick depletion of battery power Under certain circum-
security policies. However, in the case when a malwarestances, a user may choose to launch GTT on her cellphone
launches attacks through hijacking the program flow of ausing arandom-challenging moden which the messaging
registered application, it becomes a challenging taskuseca framework of the phone randomly (e.g., with a probability
the malicious process retains the security context of thef 10%) executes GTTs to authenticate message initiators.
registered application, which is still legitimate. This is especially useful when the user needs to deliver a
To detect such malware behavior, one approach is téarge amount of messages, for example, during holidays
use content-based filtering. For example, messages that ave birthdays. Note that also it does not provide perfect
delivered with .SIS attachments and attractive titles aveem prevention, random-challenges are still very effectivelén
suspicious than others. However, this often results in nontecting malware which tend to generate numerous malicious
neglectable false positives and false negatives, as we- expmessages. We argue that one desire property of malware is
rience in the context of email spam filtering. Moreover, thisstealthy to bypass IDS. With our technique, such malware
involves running complex machine learning tools, which dowill be eventually captured even if it transmits at a low rate
not fit for cellphones that are usually resource-constdaine After that, the user can disinfect this phone by installing a
Another approach is to let a user manually confirm everysecurity patch or sending it for professional maintenance.
message that is leaving her phone. Specifically, when sen@®verall, the random-challenging strategy nicely dealdwit
ing a message to the air interface, the messaging framewoektradeoff between user convenience and cellphone security
asks the user to choose YES/NO using either keypad or
touch-screen to confirm the message delivery. This of course !1l. D EPLOYMENT OF THECOUNTERMEASURES
helps block some simple attacks. However, more elaborated. Access control-based Protection
malware could compromise the application-layer interface
of the keypad/touch-screen driver and inject a false input t
circumvent this simple protection.

We adopt ""rtiﬁ_‘:ial intellige_nce _(AI) technlques to adf_“ess 40ur technical report [20] shows the complete flow of applyaugess
this challenging issue. Our idea is to rely on Al techniquescontrol on key system resources to contain cellphone malwar

1) Achieving Access Control on Smartphonétere we
explain in detail$ how this scheme works in Qtopia phone

edition 4.2 [21], the major application platform for Linux- OS, and (2) besides policy rules to enable trusted subjects’
based phones such as Motorola A1200, Sony Mylo, anghermissions on target resources, we need to define rules
many others [22]. Recall that our strategy is to authentifor permissionlabelfrom and labelto to subjects and key
cate and authorize accesses to key resources such as usesources such that only legitimate processes can get these
address book, modem devices, and Wi-Fi interfaces ompermissions and re-label them. Significantly differentrro
a mobile device. Therefore, we focus our control on thetraditional OS where an object owner determines other
system calls that are invoked towards these resources, suphogram’s permissions to access the object, SELinux policy
as open("addressbook”, O_RDONLY) open(“/dev/ttyS0”, controls which domain can have these permissions.
O_RDWR) and write(fd, message, length)Fortunately,
hooks have been defined by LSM in most places where we 2) A Sample Policy for Secure Messagirigext, we use
want to control system file openings and device accesses. concrete example to demonstrate how cellphone malware
Therefore, the main tasks in this scheme are to (1) definean be effectively contained with above techniques. Specifi
SELinux policy rules to specify process and object typescally, we show how to construct a policy module for securing
and permissions to access critical system resources @l la messaging services in Linux-based phones that adopt Qtopia
corresponding programs to specific types thus enabling thePhone 4.2 as their application platform. Qtopia provides
legitimate permissions, and (3) limit type transitions viaa number of integrated messaging applications (e.g., SMS,
program invocations from any other type to those allowedMMS, and email client) to phone users. Here we gisgail -
to access protected resources. We explain these steps. beldlie email messaging application as an example. We note that
The fundamental goal of our access control-based schenmlicy rules can be defined for other applications withirs thi
is to only allow legitimate accesses to key resources whilegnodule or in other modules.In this example, we examine
denying others. The key problem is to identify what kind of malware exploits on user address book. We show how to
privileges are required for each program, such as to satisfglefine SELinux policy rules and explain why such policy
the least privilege principle. One feature of SELinux pplic rules help protect the Qtopia messaging application agains
is that allallow rules in apolicy.confare positive; that is, a malware that adopts attack strategy I. We first construct
a single rule always adds some permissions to a subjethe following policy module, as shown in the table.
type. Therefore, to prevent any illegal subject type from
having unexpected permissions, we define “private” type%
of our target resource objects such that they are only @sibl

o subject types in the sandomain Here by domain we ecify that onlygtmail_t subject can read and write the

mean all trusted subjects that are allowed to access a targ%z) . .
object. For example, in the Qtopia platform, Qt application address book ObJeCt’_Wh'le any other subjetiasgt) can
have thegetattr permission of it, e.g., to get some meta-

and plugins (e.g.gtmail and gtmm3 are typically trusted .

to the address book object. Thus permissions from therg\formati.on of the obj.ect. Any other accesses to the address
to read/write user address book are allowed, while thos ook object are denied by SELinux security module. The

permissions from other subjects are denied. To provide pri['ext two allow rules state that onsysadmt subjects can

vate object types, we leverage the recent SELinux Loadabllé‘bel objects (including pragram file and data file) toffrom

Policy Module (LPM) mechanism, which offers a flexible gtmail_t andqtaddressbook; that is, only a system admin-

way to create self-contained policy modules that are Iinkeo‘stratlve program can make a program fileqmail t such

to an existing policy. Private object types can be defined ifS to_ rg_ad object f|Ie_ qﬂtaddressboo_k. This prevents the
ossibility that a malicious program can relabel an arbjtra

an LPM such that they can only be accessed by subject typeps))
defined in the same module, which provides a flexible an fogram toqtmail t which then can read the address book

safe mechanism to define desired permissions for subject !e. The last thrge allow rule_zs define the domain transmqn
at when ajtmail_t program is executed, the new process is

If a subject type needs to access object types defined it ited frombase t to atmail t aut ticallv. Thi
another module, an LPM can defipablic object types that ransited frombaset to gimar.t automaticaty. ThiS ensures
that procesgytmail t can only be created by executing a

can be accessed kgxternal subject types via pre-defined tmail t proaram file
interfaces, i.e., only pre-defined subjects can access. them? =t Prog '

To correctly enforce an SELinux policy and confine Hence, by enforcing this policy module, we can ensure
application behaviors, another key issue is subject anghat only gtmail t process can read and write user address
object labelling. As SELinux is label-based access controlpook, aqtmail t process can only be created by executing
assigning appropriate labels to target subjects and abjecta gtmail t program file, and only system administrative
and controlling the permissions to change these labels aligrocess can label a program file to tygenail_t. Therefore,
critical. Particularly, in the Cellphone environment wevba without an exp”cit administrative Change, any ma”ciom.p
to solve two problems: (1) we need to label key resourcegess launched by a malware cannot be labelledtasil_t
and trusted subjects with appropriate labels in a cellphongnd its access to the user address book object will be denied.

As previously discussed, we define two typgsmail_t
r gtmail client application, andjtaddressbook for user
email address book object file. The first two allow rules

policy_nodul e(gtmail, 1.0)
require {

type base_t;

type sysadmt;

type qtmail _t;
type qtaddresshook_t;
allow qgtmail _t gtaddressbook_t:file *;

al | ow base_t qtaddresshook_t:file getattr;

al l ow sysadmt qtmail _t: {dir file}
{rel abel to rel abel from};
al l ow sysadm t qtaddressbook_t: {dir file}

and clutter are sufficient to confuse current OCR (optical
character recognition) software. This is the fact that G¥WP
relies on the guarantee that a cellphone user can recognize
the text while existing automated programs cannot. Figure 1
shows a scenario of GIMPY test and a detailed flow of phone
software. Here a user in messaging authenticates herself by
entering an ASCII text in the same sequence of letters as
that appear on the phone screen.

{rel abel to rel abel from};
allow type_transition base_t qtmail _t:
process qtnmail _t;
all ow gt mai | _t qt_mall_t:flle entrypoint; . ST
al |l ow base_t qtnmil _t:process transition; % 7

Compose a Message
(try = 0)

For attack Il, as the legitimatgtmail process is hijacked,
which is already labelled witlqtmail t when it is launched,
our access control-based scheme cannot block its maliciou
access to the user address book. Therefore we need a mo
intelligent scheme as described in next subsection. fFf’-S‘\L B

Please type the text you
see in the picture

To: alice @google.com

B. Graphic Turing Test on Smartphones

Submit Reset More

Al techniques such as GTT help people differentiate
human beings from automated machines. Network servers
adopt this strategy to filter automated messages generate
by spammers or worms, e.g., in securing email account
registrations [23] and fighting against Deny of Service (DoS
attacks [24]. We design a GTT-based mechanism which (&) GIMPY test in cel-
helps a cellphone identify malware-controlled program flow phone
and take further countermeasure against it. Although here Figure 1. GTT-based protection in a cellphone.
we use MMS-related malware to demonstrate the defense,
our approach is equally effective in combating malware In choosing an appropriate instance of GTT, there is
propagating via other vehicles such as Email, Bluetoott, ana tradeoff between a test's complexity (i.e., security) and
Wi-Fi. In the following section, we assume cellphones adopits convenience to users. Normally users will not spend
a random-challenging mode of GTT. much time on a test. Otherwise, they would rather switch

1) Instantiating Graphic Turing TestWe choose to incor- it off. However, a GIMPY test with few characters are
porate a visual CAPTCHA (Completely Automated Publiclikely to be broken by intelligent malware. Although for
Turing test to Tell Computers and Human Apart) [25] testdemonstration purpose we use GIMPY in this work, we
into a mandatory point of each message delivery. CAPTCHAcan easily substitute it with a more secure instance of
is a program that generates and grades visual tests that mésT T, e.g., Animal-PIX, which asks users to choose among
humans can solve, but automated programs including mag pre-defined set of animals. This intuitive method also
ware cannot. Thus, for a normal cellphone user, she simplielps reduce user response time. One fortunate thing is that
needs to pass an easy test (e.g., recognizing an image @falware cannot install complex machine-learning tool$isuc
distorted text) before sending her newly composed messagks neural networks in resource-constrained cellphones to
to the output interface (usually a buffer named Outbox inbuild classifiers and recognize images, although they have
cellphone). Note that decoding images of distorted text iglone it in PC systems. Indeed, even it is smart enough to
well beyond the capability of cellphone malware. Therefore bypass one test in a while, failure once will expose itself
a malware most likely fails this authentication and all itsand will be removed by a user.
unauthorized out-going messages will be eliminated from 2) Embedding GTT in Smartphone$he next issue is
the cellphone. As most cellphones are resource-consttainavhere to embed GTT tests. In our experiments with Sym-
(typically with 220MHZ CPU and 32 MByte RAM), we bian smartphones, we incorporate a GIMPY test into an
cannot embed very complex visual tests in them. One effecappropriate API in the messaging framework (e.g., used in
tive yet simple realization of CAPTCHA is GIMPY [26], Nokia S60 or Sony-Ericsson UIQ 3 SDKSs), which must
which concatenates an arbitrary sequence of letters to forine invoked each time when an application accesses the
a word and renders a distorted image of the word. In mostodem interface to deliver a message. From software per-
variants of GIMPY (e.g., EZ-GIMPY [27]), a cluttered and spective, a modem is responsible for data coding/decoding
textured background is also added to the text. The distortioand protocol processing in a cellphone, and any messaging

Save Message.
Move to Outbox

(b) Flow of protection

request (including the message content itself) has to b
transferred to modem in order to be transmitted to the air in:z
terface (using AT commands defined in GSM protocol 07075 #
0705 [19]). Specifically, vendors such as Nokia and Sony: 43 ’ e
Ericsson can integrate a GTT test into a Symbian messagin it :’ & \‘éh\f/
library function namedCMmsClientMtm :: SendL(). N

This function is invoked each time when a user applicatior ‘:/ 5§ victims
initializes a communication entity named/msMtm and ;

composes a new MMS message (see Figure 2 in Technicalgure 2. Configuration of cellphone experiments (using
Report [20]). According to a typical messaging procedure OMAP-59120SK platform as an example).

iMmsMtm first sets the message content as well as pos-

sible attachment, the recipient’s address, etc., and sopie Figure 2 shows the configuration of our smartphone exper-
the message to a temporary buffer named Outbox (througiinents. An administrator can control the OMAP board and
calling CMmsClientMtm :: SendL()). At the same time, |og its events through an externilinicom terminal (serial
iMmsMtm starts a timer usinguait — start() and has port). The OMAP board connects to a standard modem de-
the system scheduler deal with the final message deliveryice through which it communicates with other smartphones
to the modem device. Through augmenting the library funcwithin 2G/3G cellular networks. In addition, each board can
tion CMmsClientMtm :: SendL() into CMmsClient access the Internet through its on-board network interface
Mtm :: NewSendL(), we place the GIMPY test at the we also implemented an external malicious server [29],
point right after the message content has been built and justhich establishes connections (SSL) with the on-board mal-
before it is transferred to the buffer of the modem dEVice.\Nare and receives private user contact information S“Qalth
Thus, only authorized messages that pass authenticatiens gathered from the OMAP board. Therefore, besides the
accepted by the modem. Because GIMPY test is embeddeflalware attacks inside the board, the malicious servelf itse
in the messaging API, a user can conveniently update igan exploit disclosed user information and launch autochate
through downloading a new function library from a vendor's messaging attacks to vulnerable phones by executing its own
website. For example, she can upgrade the software tmessaging service such ssndmail We implemented three
execute another form of GTT, e.g, Animal-PIX [25]. representative malware: Cabir [4], CommWarrior [30], and
We have demonstrated how to embed GTT in messagingiasco [31] in both Linux and Symbian-based smartphones.
libraries. However, in an open-source platform (e.g., kU These malware adopt attack strategy I. In addition, we
where an intelligent malware tries to bypass the messagingnplemented an automated malware which adopts attack

framework and direCtIy transfers malicious messages to thgtrategy Il in Compromising Smartphone devices. Refer to
modem interface, GTT can be embedded in kernel level, e.gsection I-A for attack strategies.

in a kernel module. Comparing with the simple YES/NO
scheme we mentioned in Section 1I-B, GTT is more robusB: Access control-based Defense
and secure because it is unlikely to be broken by application As SELinux LSM inserts hooks and checks access control
level malware. Even its interfaces with application views a policies in many system calls, it introduces overhead to
compromised, a malware still cannot figure out the correctain primitive functions and inter-process communicagion
answers of a GTT test. However, in the YES/NO scheme(IPCs). We studied the performance of our access control-
the keypad driver’s interfaces with applications are abvay based scheme with microbenchmark to investigate the over-
exposed to malware. head for various low-level system operations such as pspces
file, and socket accesses in phone devices. Our test includes
.) two policies: our simplified policy for cellphone environ-
A. Experimental Settings ment, and the original NSA example policy. We compared
In our tests, we chose OMAP-59120SK [28] as thethe results with those measured without SELinux involved
development board for Linux-based phones. We chose Trolltbaseline).
tech [21] Qtopia Phone Edition 4.2 as the application plat- Our benchmark tests were performed with the LMbench
form. Qtopia is currently running on a wide variety of Linux- 3 suites [32]. Table | shows the measurements in microsec-
based phones [22] (e.g., Motorola A1200 and OpenMoko)onds. The measurements show the trend that security checks
and it provides a complete set of C++ SDKSs, user-friendlyin null /O and stat operations introduce more overhead
tools and APIs for application developers. Our source codepercentage than others. However, the total time of security
of malware and defenses were first built into PC executaehecks is quite small in these operations, i.e., less then
bles and tested in a Linux-based emulator. Finally, thes@0 microseconds. Typical file related operations such as
programs were cross-compiled into target executables foopen/close and create/delete, and process related aperati
ARM-9 processor and deployed to the OMAP board. such as fork, exec, and sh, also have very small overhead.

phone monitor
. malicious
" server
O 4
i :

45

IV. EXPERIMENTS AND EVALUATIONS

E&T?ﬁomark Egzel'ne glu LPO"CY ;/; '2\198 /; Policy Z"l To find th_e overhead of the GTT-based scheme, we
stat 48.4 66.5 37| 67.9 40 chose EZ-Gimpy [27], a CAPTCHA currently used by
open/close | 1113 1179 6 | 1277 14 Yahoo! to screen out bots. As aforementioned before,
Ok Create | 29000 | 32003 3 | Sesod - we embedded GTT into the Symbian library function
fork 4169 4270 2 | 4281 2 CMMSClientMtm :: SendL(), which is currently used
exec 18K 19K 5 | 19K 5 in the messaging framework of both Nokia S60 phones and
;:‘pe ;252 gi& 620 2358 622 Sony-Ericsson UIQ phones. The experiment shows that our
AF_UNIX | 460 520 15| 511 11 GTT-based scheme successfully identified and blocked the
ubp 574.1 648.3 13| 817.9 12 malware and thus prevented misuses of system resources.
TCP 1714 858.6 11] 1044 35 Our protection scheme reduces the average CPU occupancy

. Table | to 6% or below. In addition, two GTT trials in the test incur
BenchmairrI](r[r?iiLchl)tsgcc())nl\géPé%Q&ﬁ%érl\i/lse%seLtJtreerrnents are ow overhead on CPU and memory usages. Specifically,
the maximum CPU occupancy is 5% and it only happens
within less than one second, the memory space required for
an EZ-GIMPY is in order of hundreds of KBytes. Another
important thing is that each EZ-Gimpy takes a use~R.%®
seconds to complete, hence it has a good time response
compared with the time that a user spends in composing
a message.

Applications | Drives CPU | Memory |
CPU Usage | CPU Usage History

Normal messaging

V. RELATED WORK

Mulliner et al. [10] adopted a labelling technique to
protect the phone interface against malware attacks which
comes through the phone’s PDA interface. Specifically,
resources and codes are labeled based on the interfaces that
Figure 3. Nokia 3230 (Symbian) compromised by malware they come from. A process can access a resource or invoke
adopting attack strategy Il; average CPU occupancy a code only when it has been labelled with the same label
exceeds 35% as the resource or code. or, if it is not labelled, it is ladgbll
with the same label of the resource or code and then gets
the access. Any process or resource created by a process

The average is around 5%. We note that as we use NF'§ labelled with the same label as the creating process.
root filesystem in the experiment, some of our measured he key difference between this and our access control-
performance data are much h|gher than that in desktopaSEd scheme is that, our scheme is based on a well-studied
systems [16]. As a summary, using Linux kernel 2.6 as thd E policy model, which can be configured to implement
platform OS, our access control-based defense is lightweig different security requirements.

CPU time (10 seconds)

Unauthorized messaging

when compared with the baseline benchmark. Bose et al. [8] proposed a proactive malware containment
framework to quarantine suspected users. Cheng et al. [9]
C. GTT-based Defense designed a collaborative virus detection and alert system

To evaluate the effectiveness of the GTT-based protectionamed SmartSiren for securing smartphones. Smartsiren
scheme and test its overhead (e.g., CPU occupancy arabllects communication data from phones and performs joint
memory usage) in real phone environments, we launchednalysis to detect abnormal behavior and alert users. Our
both forms of attacks on Symbian-based and Linux-basedork differs from these solutions in that we adopt system-
smartphones. The experiment result in Figure 3 demonstratéevel defenses to combat cellphone malware. Recently, Bose
the system resource usages of a Nokia 3230 phone, whiddt al. [33] proposed adopting machine-learning technidques
is compromised by a malware adopting attack strategy Icellphones to detect malware. Their method discriminates
to cause the same damages as CommWarrior [30] does. Wke malicious behaviors of malware from the normal be-
can see that the malware automatically generates a madiciotnaviors of applications through training a classifier sush a
message in every 20 seconds (according to the timer Bupport Vector Machines (SVMs). However, this training
starts). This results in 35% CPU occupancy by averageprocess requires input from known malware behavior, i.e.,
We note that there is difference in CPU usage betweetheir approach still heavily replies on malware signatures
a normal messaging and a malware-initiated messagingimilarly, Venugopal et al. [34] described a virus detec-
because the latter is executed in the background hence dotisn system for the Symbian platform which monitors the
not involve Graphic User Interactions (GUIs) during its DLL functions used by applications. By using Bayesian
messaging process. decision theory and past virus samples, they try to check

the behavior of applications to find matches with malicious[11] C. Mulliner and G. Vigna, “Vulnerability analysis of msn
activity. Anomaly-based IDS has also been proposed to USeragents,” irProc. of ACM ACSAC2006.
detect malware that are energy-greedy [35]. Unlike the abovl12] “http://gn.W|k|ped|a.org/wnkl/stac_ld)uffer_overflow,” o
schemes which are primarily intrusion detection based, outt3l Ehdsﬁllwlglrér%(éngt]%%’ o iat‘ég‘?éas%%d irlft'eg?i(tjy?mn% cqeeSlan
defenses (also in [36]) are more like intrusion preventlon. architecture,” inProc. of Usenix Security Symposiug004.
can not only block attacks at realtime, but also expects very14] T. Jaeger, R. Sailer, and U. Shankar, “Prima: Policjuced
low false positive and false negative rates because it does ~ !Niegrity measurement architecture,” Rroc. of SACMAT
not rely on signatures. [15] “http://www.virtuallogix.com/,” .

Other related work include attacks on cellphone’s baty1g] p. Loscocco and S. Smalley, “Integrating flexible suppo
teries [37] and on cellular networks [18]. In [38], social for security policies into the linux operating system,” in
network knowledge (the social ties among cellphone users Proceedings of USENIX Annual Technical Confereratil.

: . : 17] W. E. Boebert and R. Y. Kain, “A practical alternative to
reflected by their conversation frequency) is leveraged td hierarchical integrity policies,” irProceedin%s of the Eighth

rapidly distribute security patches [39] to cellphonesemd National Computer Security Conferenck98

worm attacks. [18] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Explo
|n8 open functionality in sms-capable celluar networksy” i
ACM CCs 2005.

VI. CONCLUSIONS ANDFUTURE WORK [19] “http://www.3gpp.org/ftp/specs/archive,” .

Recent outhreaks of computer malware also remind us thapo] “http:/iwww.cse.psu.edu/” Ixie/techrepl,” .
devastating attacks in cellphones is approaching. Existin[21] “http://trolltech.com/products/gtopia,” .
signature-based countermeasures and security updas are22] “http://trolitech.com/products/qtopia/gtopiase/gtopiadevices,”
ther non-realtime or heavily dependent on users’ awarenes 3] :‘http://WWW.pcmag.com/articleZ/O 4149,13068T5ABp,” .
We have proposed two system-level defenses which CO”SiSEq W. Morein. A. Stavrou. D Cook’ A K’eromytis V. ’Misra
of an access control-based scheme and a GTT-based scheme. and D. Rubenstein, “Using graphic turing tests to_counter
We have showed through extensive cellphone experiments %Bosmated ddos attack against web servers/A@M CCS
that these solutions are effective, lightweight, and easy t[25] L. Ah'n, M. Blum, N. Hopper, and J. Langford, “CAPTCHA:
deploy. In spite of some remaining issues such as diversity ~ Using Hard Al Problems for Security,” iEUROCRYPT
of smartphone OS, new infection vehicles such as Wi-Fi .
and potential OS kernel-level malware attacks, our sahstio
provide practical ways for containing malware within the
context of mobile devices. Identifying compromised hand-
sets from the network according to their traffic behavior by
leveraging our previous techniques [40].

126] “http://www.captcha.net/captchas/gimpy,” .
[27] “http:/lwww.cs.sfu.ca/” mori/research/gimpy,” .
[28] “http://www.elinux.org/osk,” .

[29] “http://www.cse.psu.edu/” Ixie/snapshots/,” .

[30] M. Lactaotao, “Security information: Virus encyclafa:
ggwsbogcomwar.a: Technical details,” Trend Micro Inc.,

ACKNOWLEDGMENT [31] EOOCS:Qien, “Security response: Symbos.lasco.a, syetant

The authors would like to thank the anonymous reviewer§32] “http://sourceforge.net/projects/imbenchl,” .
for their valuable comments. This work was supported in[33] A. Bose and et al., “Behavioral detection of malware on
part by grants NSF-0643906 and NSF-0721579. mobile handsets,” iMobiSys 2008.

[34] Deepak Venugopal, Guoning Hu, and Nicoleta Roman, “In-
REFERENCES telligent virus detection on mobile devices,” ST '06:
[1] “http://www.us-cert.gov/pressoom/trendsandanalysisq108.pdf,” Proceedings of the 2006 International Conference on Pyyac

Security and Trust2006, pp. 1-4.

[2] M. H)/PPOHGF\, _ “State of cell é)hone malware in 2007, [35] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-gige
http://www.usenix.org/events/sec07/tech/hyppon€ii.pd anomalies and mobile malware variants,” Broc. of The

[3] E Chien, “Security response: Symbos.skull, symar2604,” Qgsrgaetrlsirégls%%rg?rence on Mobile Systems, Applications

[4] P. Ferrie, P. Szor, R. Stanev, and R. Mouritzen, "S(?:urit [36] L. Xie, H. Song, T. Jaeger, and S. Zhu, “Towards a syst@&ma
response: Symbos.cabir” Symantec Corporation, 2004. approach for cell-phone worm containment,” im Proc. of

5 E. Chi . . . Symb bi WWW (poster paper008.

[5] 2 nen. ecurity response: Symbos.mabir, symantec[37] R. Racic, D. Ma, and H. Chen, “Exploiting mms vulnerabil

v ities to stealthily exhause mobile phone’s battery,” IHEE

[6] “http:/www.idc.com/getdoc.jsp?containerid=20&)7 . SecureCom2006.
[7] “http://www.f-secure.com/v-descs/flexispg.shtml,” . [38] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci., "A social
o . _ _ network based patching scheme for worm containment in
[8] A. Bose anlg K. Shin, Pgovit;:gvez gggurlty for mobile megsa cellular networks,” inProceedings of IEEE Infocgn2009.
Ing networks,” inProc. of WiSe ’ [39] L. Xie, H. Song, and S. Zhu, “On the effectiveness of int
[9] J. Chen, S. Wongand, H. Yang, and S. Lu, “Smartsiren: 8/iru patch dissemination against file-sharing worms,”Piroc. of
detection and alert for smartphones,” MobiSys 2007. ACNS 2008.

[10] C.Mulliner, G. Vigna, D. Dagon, and W, Lee, “Using lalmgg ~ [40] L. Xie and S. Zhu, “Message dropping attacks in overlay

o i i no networks: Attack dectection and attacker identificatiom’
E)"\ﬁ)\r/?&/’eznéo%r.oss service attacks against smartphones,” in Broc of SecureComo06.

