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Abstract—Cellphones are increasingly becoming attractive
targets of various malware, which not only cause privacy
leakage, extra charges, and depletion of battery power, butalso
introduce malicious traffic into networks. In this work, we seek
system-level solutions to handle these security threats. Specif-
ically, we propose a mandatory access control–based defense
to blocking malware that launch attacks through creating new
processes for execution. To combat more elaborated malware
which redirect program flows of normal applications to execute
malicious code within a legitimate security domain, we further
propose using artificial intelligence (AI) techniques suchas
Graphic Turing test. Through extensive experiments based on
both Symbian and Linux smartphones, we show that both
our system-level countermeasures effectively detect and block
cellphone malware with low false positives, and can be easily
deployed on existing smartphone hardware.

Keywords-Cellphone Malware; Graphic Turing Test; Manda-
tory Access Control;

I. I NTRODUCTION

Mobile communication systems which support both voice
and data services have become ubiquitous and indispensable.
This advantage however comes with a price — mobile
networks and terminal devices (e.g., smartphones and PDAs)
are becoming attractive targets to attackers. Especially,the
popularity of mobile services such as email and messaging,
and their dependence on common software platforms such
as Symbian and Linux, have made mobile devices ever more
vulnerable. Situation gets worse as mobile devices quickly
evolve [1]. According to F-Secure [2], currently there are
more than 350 mobile malware (or viruses) in circulation.
Examples of the most notorious threats to cellphones include
Skull [3], Cabir [4], and Mabir [5] targeting at Symbian
operating systems. The research organization IDC estimates
that by 2008 the market for mobile security software will
grow yearly by 70% [6].

In this paper, we refer tocellphone malwareas malicious
codes that exploit vulnerabilities in cellphone software and
propagate in networks through popular services such as
Bluetooth and messaging (SMS/MMS) services. Cellphone
malware are devastating to both mobile users and network
infrastructures. Users of compromised cellphones could be
unconsciously charged for numerous messages delivered by
malware and their phone batteries could be quickly drained.
Other reported damages include loss of user data and privacy
and software crashes. For example, a Trojan spy named

Flexispy [7] monitors a victim’s call history and contacts,
and delivers these sensitive information to a remote server.

Research on quarantining cellphone malware has started
recently. The straightforward defense is to mirror the strategy
against PC viruses with the inception of security patches for
cellphones. However, it is challenging for users to acquire
signature files in a timely manner; besides, downloading
often causes extra charges. Some recent work propose more
active solutions, e.g., by designing algorithms to automat-
ically identify compromised phones based on user interac-
tions [8] and suggesting a proactive containment framework
to quarantine those suspected devices, and by designing
a collaborative virus detection/alerting system [9]. These
approaches, however, rely on network or external agents to
throttle worm spread. We believe that defense mechanisms
deployed on cellphones are more effective both in detecting
malware in a timely fashion and in preventing malicious
messages from entering wireless networks. Indeed, on this
line, a labeling technique [10] has been proposed to protect
a phone against cross-service attacks from its PDA interface.
However, it does not provide further solutions for containing
automated malware [11].

Contributions : First, a comprehensive study on malware’s
attack strategies is important in designing effective coun-
termeasures against them. Our categorization and analy-
sis on major attack strategies reveal challenging issues to
be addressed in effective defenses. Second, we propose a
mandatory access control–based mechanism which controls
program accesses to important system resources through
enforcing a customized access control policy in the context
of cellphones. This mechanism is effective in defeating
malware which execute malicious codes in new processes.
Third, to combat automated malware which gain controls of
existing processes to execute malicious codes, we propose
a more comprehensive defense which identifies and blocks
malware using AI techniques such as Graphic Turing test
(GTT). Using MMS as an example, through challenging a
user, our approach differentiates whether a delivery of MMS
message is legitimate (user-initiated) or illegal (malware-
initiated). Moreover, this approach does not reply on known
malware signatures. Fourth, we provide real implementations
and evaluate our defenses on major smartphone platforms.
Experimental results including benchmark and performance



data demonstrate that our solutions are light-weight and
effective in blocking various malware.

Outline: The rest of the paper is organized as follows. In
Section II, we provide an overview of our defenses: an
access control–based scheme and a GTT-based scheme. We
present design and implementation details of the defenses in
Section III and evaluate their effectiveness and performance
through experiments in Section IV. We introduce related
work in Section V and conclude in Section VI.

A. Malware’s Attack Strategies

From a software perspective, we study two basic forms
of attack strategies adopted by cellphone malware. The key
difference between these two is whether a malware creates
a new process to launch its attack.

Attack strategy I: In this case, a malware always creates
a new process to execute its malicious code, and to com-
promise the cellphone. User operations are usually required
in this case, e.g., a user installs a downloaded software, or
opens a received message. The newly created process has
its own descriptor, which describes address space, execution
state, and security attributes (i.e., security context1). This
security context is different from that of the parent process
which invokes it. Due to simplicity, this strategy is widely
adopted by most existing malware. Symbian and Windows
Mobile users cannot change the kernel; Symbian programs
register themselves within a platform and make system
calls within framework APIs (provided by vendors) to use
system services. Realizing this, cellphone malware launch
attacks through legally installed applications. For example,
Mabir [5] includes its malicious code in an SIS installation
file 2 and attaches it to an infection vector (e.g., an MMS
message). Once a recipient activates this SIS file, a malicious
program is installed and executed, incurring damages to the
phone. For instance, a program invokes messaging APIs to
deliver numerous malicious messages, or steal user private
information and send to a malicious server.

Attack strategy II: In this case, a malware does not create
a new process in the phone. Instead, it redirects the program
flow of a legitimate application (e.g., messaging process)
to execute its malicious code within a legitimate security
context. Such attacks mostly happen in cellphones with
open-source platform OS and application frameworks, e.g.,
Linux-based smartphones. An automated malware adopts
this strategy through exploiting software vulnerabilities such
as stack buffer-overrun [12] in a cellphone software to
‘hijack’ its normal program flow and launch attacks. Note
that the malicious code to be executed after the malware
gains control of the program counter may exist in the original
program’s address space so that it is legal to OS. In some

1For example in Linux, a process’s security context typically consists of identity,
role, and type/domain of the process.

2The format of an user-initiated installation file to distribute Symbian applications.

cases, these code may even invoke certain system calls to
cause crashes. Compared with strategy I, this attack method
is more elaborated and automated hence more challenging
because it keeps the security context of the hijacked process
while executing the malicious code and does not rely on
user operations to propagate.

II. OVERVIEW OF THE COUNTERMEASURES

We assume that a malware launches attacks from
application-level software, i.e., it could compromise phone
applications such as email and MMS/SMS messaging, etc.
However, it cannot break the kernel. Kernel level attacks
such as rootkits have not been found on cellphones [2].
We also notice that a few techniques can be adopted to
prevent malware’s kernel-hacking in cellphones, for exam-
ple, integrity measurement architecture (IMA) [13], [14]
helps identify falsifications on kernel code, virtual machine
techniques [15] helps isolate kernel-level attacks from a legal
OS. Kernel protection is out of the scope of this paper.

We design a mandatory access control (MAC)-based
protection scheme to defeat malware which launch attacks
through creating new malicious processes (attack strategy
I). To combat more elaborated malware which redirect
program flows of normal applications (e.g., messaging and
emailing) to execute malicious code within a legitimate
security domain (attack strategy II), we adopt AI techniques
such as Graphic Turing test (GTT) as the countermeasure.
Note that this approach addresses both forms of attacks.

A. Access Control–based Protection

We first anatomize the MMS/SMS messaging, a major
infection vector for malware. To deliver a message to the
recipient, a messaging process invokes a sequence of key
system calls to access important system resources (e.g.,
file, socket, and modem device) and access related sys-
tem services. Using a Linux-based phone (e.g., Motorola
A1200 and E680) as an example, to search for the email
address or phone number of the recipient, a messaging
process namedmmsclient invokes open(“addressbook”,
O RDONLY) to access the contact list in the phone ad-
dress book; to deliver a SMS/MMS message,mmsclient

calls fd=open(“/dev/ttyS0”, ORDWR)to open the modem
device 3 (i.e., serial devicettyS0) and invokeswrite(fd,
message, length)to send a composed messagemessage to
the modem, which eventually processes the message and
transmits it to the air interface; to send an email messaging
through Wi-Fi interface, a process namedsmtpclient in-
vokessocket(AFINET, SOCKSTREAM)to create a stream
socket through which it communicates with an SMTP server.
These system calls are critical monitoring and authentication
points in kernel, because malware’s final goal is to invoke
system calls as a normal process does and gain accesses

3Modem device is a separate phone unit, which contains radio frequency (RF) and
base-band components, low-level coding-decoding software and protocol stacks.



to important system resources and launch attacks. There-
fore, our goal with access control-based protection is to
distinguish malicious processes from normal ones and give
different permissions to them at these checking points.

We adopt a defense model that is similar to Security
Enhanced Linux (SELinux) [16] to achieve strong protection
in cellphones. SELinux employs Linux Security Modules
(LSM) inside kernel to implement MAC policies, which as-
sign different permissions to different processes based upon
the least privilege principle. Specifically, SELinux associates
security labels (contexts) of the formuser:role:typeto all
subjects (processes) and objects (files/directories, programs,
sockets, etc.). Within a security context, thetype attribute
represents the type of a subject or an object, e.g.,sshd t
and syslogdt. Instead of directly associating auser with
types, SELinux associates auser with a set ofroles and a
role with a set oftypes. Therole simplifies the management
of users. This means that access control in SELinux is
primarily enforced via a so-called Type-Enforcement [17]
policy model.

B. GTT-based Protection

Using messaging malware as an example, to identify and
throttle malware within a cellphone device, we first need to
differentiate a malware-initiated messaging process froma
normal user-initiated messaging process. This is relatively
easy when a malware creates an unauthorized process to in-
voke system calls or messaging APIs to execute its malicious
program, because this malicious process has its new security
context which can be identified according to some predefined
security policies. However, in the case when a malware
launches attacks through hijacking the program flow of a
registered application, it becomes a challenging task because
the malicious process retains the security context of the
registered application, which is still legitimate.

To detect such malware behavior, one approach is to
use content-based filtering. For example, messages that are
delivered with .SIS attachments and attractive titles are more
suspicious than others. However, this often results in non-
neglectable false positives and false negatives, as we expe-
rience in the context of email spam filtering. Moreover, this
involves running complex machine learning tools, which do
not fit for cellphones that are usually resource-constrained.
Another approach is to let a user manually confirm every
message that is leaving her phone. Specifically, when send-
ing a message to the air interface, the messaging framework
asks the user to choose YES/NO using either keypad or
touch-screen to confirm the message delivery. This of course
helps block some simple attacks. However, more elaborated
malware could compromise the application-layer interface
of the keypad/touch-screen driver and inject a false input to
circumvent this simple protection.

We adopt artificial intelligence (AI) techniques to address
this challenging issue. Our idea is to rely on AI techniques

to authenticate an ongoing process and identify malware
behaviors. Specifically, our countermeasure involves execut-
ing a Graphic Turing test (GTT) before a phone message
framework eventually delivers a message to the air inter-
face of the phone. GTT has a nice feature that a human
being can always pass a Turing test while an automated
malware cannot. In this case, even if an elaborated malware
compromises the application-layer interface of the keypad
driver, it is still unable to figure out the correct answer of a
GTT challenge. This countermeasure can identify malware
adopting both forms of attack strategies, because it does not
simply verify the security context of an ongoing process;
instead, it differentiates a malicious message originatorfrom
a normal user through authenticating their genuine natures.
This approach also helps detect a wider variety of malware,
including new malware that are unknown to security vendors
(e.g., zero-day or polymorphic ones).

Although our GTT-based defense requires user operations
during message deliveries, the rate of normal MMS/MMS
messaging (on the order of 0∼10.07 messages/hour [18])
is unlikely to be very frequent due to the limited resources
of dedicated signaling channels, e.g., Stand-alone Dedicated
Control Channels (SDCCHs) configured for SMS messaging
in GSM [19] Base Stations. Moreover GTT takes only
several seconds, which can be ignored when considering
the time a user spends to compose a message. Note that a
user is motivated to take GTT because she wants to prevent
cellphone from sending numerous malicious messages which
cause privacy leakage, extremely high service charges, and
quick depletion of battery power Under certain circum-
stances, a user may choose to launch GTT on her cellphone
using arandom-challenging mode, in which the messaging
framework of the phone randomly (e.g., with a probability
of 10%) executes GTTs to authenticate message initiators.
This is especially useful when the user needs to deliver a
large amount of messages, for example, during holidays
or birthdays. Note that also it does not provide perfect
prevention, random-challenges are still very effective inde-
tecting malware which tend to generate numerous malicious
messages. We argue that one desire property of malware is
stealthy to bypass IDS. With our technique, such malware
will be eventually captured even if it transmits at a low rate.
After that, the user can disinfect this phone by installing a
security patch or sending it for professional maintenance.
Overall, the random-challenging strategy nicely deals with
a tradeoff between user convenience and cellphone security.

III. D EPLOYMENT OF THECOUNTERMEASURES

A. Access control–based Protection

1) Achieving Access Control on Smartphones:Here we
explain in details4 how this scheme works in Qtopia phone

4Our technical report [20] shows the complete flow of applyingaccess
control on key system resources to contain cellphone malware.



edition 4.2 [21], the major application platform for Linux-
based phones such as Motorola A1200, Sony Mylo, and
many others [22]. Recall that our strategy is to authenti-
cate and authorize accesses to key resources such as user
address book, modem devices, and Wi-Fi interfaces on
a mobile device. Therefore, we focus our control on the
system calls that are invoked towards these resources, such
as open(”addressbook”, O RDONLY), open(“/dev/ttyS0”,
O RDWR), and write(fd, message, length). Fortunately,
hooks have been defined by LSM in most places where we
want to control system file openings and device accesses.
Therefore, the main tasks in this scheme are to (1) define
SELinux policy rules to specify process and object types
and permissions to access critical system resources, (2) label
corresponding programs to specific types thus enabling their
legitimate permissions, and (3) limit type transitions via
program invocations from any other type to those allowed
to access protected resources. We explain these steps below.

The fundamental goal of our access control–based scheme
is to only allow legitimate accesses to key resources while
denying others. The key problem is to identify what kind of
privileges are required for each program, such as to satisfy
the least privilege principle. One feature of SELinux policy
is that all allow rules in apolicy.conf are positive; that is,
a single rule always adds some permissions to a subject
type. Therefore, to prevent any illegal subject type from
having unexpected permissions, we define “private” types
of our target resource objects such that they are only visible
to subject types in the samedomain. Here by domain we
mean all trusted subjects that are allowed to access a target
object. For example, in the Qtopia platform, Qt applications
and plugins (e.g.,qtmail and qtmms) are typically trusted
to the address book object. Thus permissions from them
to read/write user address book are allowed, while those
permissions from other subjects are denied. To provide pri-
vate object types, we leverage the recent SELinux Loadable
Policy Module (LPM) mechanism, which offers a flexible
way to create self-contained policy modules that are linked
to an existing policy. Private object types can be defined in
an LPM such that they can only be accessed by subject types
defined in the same module, which provides a flexible and
safe mechanism to define desired permissions for subjects.
If a subject type needs to access object types defined in
another module, an LPM can definepublic object types that
can be accessed byexternal subject types via pre-defined
interfaces, i.e., only pre-defined subjects can access them.

To correctly enforce an SELinux policy and confine
application behaviors, another key issue is subject and
object labelling. As SELinux is label-based access control,
assigning appropriate labels to target subjects and objects,
and controlling the permissions to change these labels are
critical. Particularly, in the cellphone environment we have
to solve two problems: (1) we need to label key resources
and trusted subjects with appropriate labels in a cellphone

OS, and (2) besides policy rules to enable trusted subjects’
permissions on target resources, we need to define rules
for permissionlabelfrom and labelto to subjects and key
resources such that only legitimate processes can get these
permissions and re-label them. Significantly different from
traditional OS where an object owner determines other
program’s permissions to access the object, SELinux policy
controls which domain can have these permissions.

2) A Sample Policy for Secure Messaging:Next, we use
a concrete example to demonstrate how cellphone malware
can be effectively contained with above techniques. Specifi-
cally, we show how to construct a policy module for securing
messaging services in Linux-based phones that adopt Qtopia
Phone 4.2 as their application platform. Qtopia provides
a number of integrated messaging applications (e.g., SMS,
MMS, and email client) to phone users. Here we useqtmail–
the email messaging application as an example. We note that
policy rules can be defined for other applications within this
module or in other modules.In this example, we examine
malware exploits on user address book. We show how to
define SELinux policy rules and explain why such policy
rules help protect the Qtopia messaging application against
a malware that adopts attack strategy I. We first construct
the following policy module, as shown in the table.

As previously discussed, we define two types:qtmail t
for qtmail client application, andqtaddressbookt for user
email address book object file. The first two allow rules
specify that onlyqtmail t subject can read and write the
address book object, while any other subjects (base t) can
have thegetattr permission of it, e.g., to get some meta-
information of the object. Any other accesses to the address
book object are denied by SELinux security module. The
next two allow rules state that onlysysadmt subjects can
label objects (including program file and data file) to/from
qtmail t andqtaddressbookt; that is, only a system admin-
istrative program can make a program file toqtmail t such
as to read object file ofqtaddressbookt. This prevents the
possibility that a malicious program can relabel an arbitrary
program toqtmail t which then can read the address book
file. The last three allow rules define the domain transition
that when aqtmail t program is executed, the new process is
transited frombase t to qtmail t automatically. This ensures
that processqtmail t can only be created by executing a
qtmail t program file.

Hence, by enforcing this policy module, we can ensure
that only qtmail t process can read and write user address
book, aqtmail t process can only be created by executing
a qtmail t program file, and only system administrative
process can label a program file to typeqtmail t. Therefore,
without an explicit administrative change, any malicious pro-
cess launched by a malware cannot be labelled asqtmail t
and its access to the user address book object will be denied.



policy_module(qtmail, 1.0)
require {
type base_t;
type sysadm_t;

}
type qtmail_t;
type qtaddressbook_t;
allow qtmail_t qtaddressbook_t:file *;
allow base_t qtaddressbook_t:file getattr;
allow sysadm_t qtmail_t:{dir file}

{relabelto relabelfrom};
allow sysadm_t qtaddressbook_t:{dir file}

{relabelto relabelfrom};
allow type_transition base_t qtmail_t:
process qtmail_t;

allow qtmail_t qtmail_t:file entrypoint;
allow base_t qtmail_t:process transition;

For attack II, as the legitimateqtmail process is hijacked,
which is already labelled withqtmail t when it is launched,
our access control–based scheme cannot block its malicious
access to the user address book. Therefore we need a more
intelligent scheme as described in next subsection.

B. Graphic Turing Test on Smartphones

AI techniques such as GTT help people differentiate
human beings from automated machines. Network servers
adopt this strategy to filter automated messages generated
by spammers or worms, e.g., in securing email account
registrations [23] and fighting against Deny of Service (DoS)
attacks [24]. We design a GTT-based mechanism which
helps a cellphone identify malware-controlled program flow
and take further countermeasure against it. Although here
we use MMS-related malware to demonstrate the defense,
our approach is equally effective in combating malware
propagating via other vehicles such as Email, Bluetooth, and
Wi-Fi. In the following section, we assume cellphones adopt
a random-challenging mode of GTT.

1) Instantiating Graphic Turing Test:We choose to incor-
porate a visual CAPTCHA (Completely Automated Public
Turing test to Tell Computers and Human Apart) [25] test
into a mandatory point of each message delivery. CAPTCHA
is a program that generates and grades visual tests that most
humans can solve, but automated programs including mal-
ware cannot. Thus, for a normal cellphone user, she simply
needs to pass an easy test (e.g., recognizing an image of
distorted text) before sending her newly composed message
to the output interface (usually a buffer named Outbox in
cellphone). Note that decoding images of distorted text is
well beyond the capability of cellphone malware. Therefore,
a malware most likely fails this authentication and all its
unauthorized out-going messages will be eliminated from
the cellphone. As most cellphones are resource-constrained
(typically with 220MHZ CPU and 32 MByte RAM), we
cannot embed very complex visual tests in them. One effec-
tive yet simple realization of CAPTCHA is GIMPY [26],
which concatenates an arbitrary sequence of letters to form
a word and renders a distorted image of the word. In most
variants of GIMPY (e.g., EZ-GIMPY [27]), a cluttered and
textured background is also added to the text. The distortion

and clutter are sufficient to confuse current OCR (optical
character recognition) software. This is the fact that GIMPY
relies on the guarantee that a cellphone user can recognize
the text while existing automated programs cannot. Figure 1
shows a scenario of GIMPY test and a detailed flow of phone
software. Here a user in messaging authenticates herself by
entering an ASCII text in the same sequence of letters as
that appear on the phone screen.

(a) GIMPY test in cell-
phone

(b) Flow of protection

Figure 1. GTT-based protection in a cellphone.

In choosing an appropriate instance of GTT, there is
a tradeoff between a test’s complexity (i.e., security) and
its convenience to users. Normally users will not spend
much time on a test. Otherwise, they would rather switch
it off. However, a GIMPY test with few characters are
likely to be broken by intelligent malware. Although for
demonstration purpose we use GIMPY in this work, we
can easily substitute it with a more secure instance of
GTT, e.g., Animal-PIX, which asks users to choose among
a pre-defined set of animals. This intuitive method also
helps reduce user response time. One fortunate thing is that,
malware cannot install complex machine-learning tools such
as neural networks in resource-constrained cellphones to
build classifiers and recognize images, although they have
done it in PC systems. Indeed, even it is smart enough to
bypass one test in a while, failure once will expose itself
and will be removed by a user.

2) Embedding GTT in Smartphones:The next issue is
where to embed GTT tests. In our experiments with Sym-
bian smartphones, we incorporate a GIMPY test into an
appropriate API in the messaging framework (e.g., used in
Nokia S60 or Sony-Ericsson UIQ 3 SDKs), which must
be invoked each time when an application accesses the
modem interface to deliver a message. From software per-
spective, a modem is responsible for data coding/decoding
and protocol processing in a cellphone, and any messaging



request (including the message content itself) has to be
transferred to modem in order to be transmitted to the air in-
terface (using AT commands defined in GSM protocol 0707,
0705 [19]). Specifically, vendors such as Nokia and Sony-
Ericsson can integrate a GTT test into a Symbian messaging
library function namedCMmsClientMtm :: SendL().
This function is invoked each time when a user application
initializes a communication entity namediMmsMtm and
composes a new MMS message (see Figure 2 in Technical
Report [20]). According to a typical messaging procedure,
iMmsMtm first sets the message content as well as pos-
sible attachment, the recipient’s address, etc., and copies
the message to a temporary buffer named Outbox (through
calling CMmsClientMtm :: SendL()). At the same time,
iMmsMtm starts a timer usingwait → start() and has
the system scheduler deal with the final message delivery
to the modem device. Through augmenting the library func-
tion CMmsClientMtm :: SendL() into CMmsClient

Mtm :: NewSendL(), we place the GIMPY test at the
point right after the message content has been built and just
before it is transferred to the buffer of the modem device.
Thus, only authorized messages that pass authentications are
accepted by the modem. Because GIMPY test is embedded
in the messaging API, a user can conveniently update it
through downloading a new function library from a vendor’s
website. For example, she can upgrade the software to
execute another form of GTT, e.g, Animal-PIX [25].

We have demonstrated how to embed GTT in messaging
libraries. However, in an open-source platform (e.g., Linux)
where an intelligent malware tries to bypass the messaging
framework and directly transfers malicious messages to the
modem interface, GTT can be embedded in kernel level, e.g.,
in a kernel module. Comparing with the simple YES/NO
scheme we mentioned in Section II-B, GTT is more robust
and secure because it is unlikely to be broken by application-
level malware. Even its interfaces with application views are
compromised, a malware still cannot figure out the correct
answers of a GTT test. However, in the YES/NO scheme,
the keypad driver’s interfaces with applications are always
exposed to malware.

IV. EXPERIMENTS AND EVALUATIONS

A. Experimental Settings

In our tests, we chose OMAP-5912OSK [28] as the
development board for Linux-based phones. We chose Troll-
tech [21] Qtopia Phone Edition 4.2 as the application plat-
form. Qtopia is currently running on a wide variety of Linux-
based phones [22] (e.g., Motorola A1200 and OpenMoko),
and it provides a complete set of C++ SDKs, user-friendly
tools and APIs for application developers. Our source codes
of malware and defenses were first built into PC executa-
bles and tested in a Linux-based emulator. Finally, these
programs were cross-compiled into target executables for
ARM-9 processor and deployed to the OMAP board.

Figure 2. Configuration of cellphone experiments (using
OMAP-5912OSK platform as an example).

Figure 2 shows the configuration of our smartphone exper-
iments. An administrator can control the OMAP board and
log its events through an externalMinicom terminal (serial
port). The OMAP board connects to a standard modem de-
vice through which it communicates with other smartphones
within 2G/3G cellular networks. In addition, each board can
access the Internet through its on-board network interface.
We also implemented an external malicious server [29],
which establishes connections (SSL) with the on-board mal-
ware and receives private user contact information stealthily
gathered from the OMAP board. Therefore, besides the
malware attacks inside the board, the malicious server itself
can exploit disclosed user information and launch automated
messaging attacks to vulnerable phones by executing its own
messaging service such assendmail. We implemented three
representative malware: Cabir [4], CommWarrior [30], and
Lasco [31] in both Linux and Symbian-based smartphones.
These malware adopt attack strategy I. In addition, we
implemented an automated malware which adopts attack
strategy II in compromising smartphone devices. Refer to
Section I-A for attack strategies.

B. Access control–based Defense

As SELinux LSM inserts hooks and checks access control
policies in many system calls, it introduces overhead to
main primitive functions and inter-process communications
(IPCs). We studied the performance of our access control–
based scheme with microbenchmark to investigate the over-
head for various low-level system operations such as process,
file, and socket accesses in phone devices. Our test includes
two policies: our simplified policy for cellphone environ-
ment, and the original NSA example policy. We compared
the results with those measured without SELinux involved
(baseline).

Our benchmark tests were performed with the LMbench
3 suites [32]. Table I shows the measurements in microsec-
onds. The measurements show the trend that security checks
in null I/O and stat operations introduce more overhead
percentage than others. However, the total time of security
checks is quite small in these operations, i.e., less then
20 microseconds. Typical file related operations such as
open/close and create/delete, and process related operations
such as fork, exec, and sh, also have very small overhead.



Benchmark Baseline Our Policy % NSA Policy %
null I/O 22.5 31.4 39 29.5 31
stat 48.4 66.5 37 67.9 40
open/close 1113 1179 6 1277 14
0KB create 2985.1 3257.3 9 3436.4 15
0KB delete 3174.6 3268.0 3 3546.1 11
fork 4169 4270 2 4281 2
exec 18K 19K 5 19K 5
sh 78K 83K 6 83K 6
pipe 264.2 319.6 20 322.8 22
AF UNIX 460 529 15 511 11
UDP 574.1 648.3 13 817.9 12
TCP 771.4 858.6 11 1044 35

Table I
Benchmark result in OMAP-5912. Measurements are

in microseconds. Smaller is better.

Figure 3. Nokia 3230 (Symbian) compromised by malware
adopting attack strategy II; average CPU occupancy
exceeds 35%

The average is around 5%. We note that as we use NFS
root filesystem in the experiment, some of our measured
performance data are much higher than that in desktop
systems [16]. As a summary, using Linux kernel 2.6 as the
platform OS, our access control-based defense is lightweight
when compared with the baseline benchmark.

C. GTT-based Defense

To evaluate the effectiveness of the GTT-based protection
scheme and test its overhead (e.g., CPU occupancy and
memory usage) in real phone environments, we launched
both forms of attacks on Symbian-based and Linux-based
smartphones. The experiment result in Figure 3 demonstrates
the system resource usages of a Nokia 3230 phone, which
is compromised by a malware adopting attack strategy II
to cause the same damages as CommWarrior [30] does. We
can see that the malware automatically generates a malicious
message in every 20 seconds (according to the timer it
starts). This results in 35% CPU occupancy by average.
We note that there is difference in CPU usage between
a normal messaging and a malware-initiated messaging,
because the latter is executed in the background hence does
not involve Graphic User Interactions (GUIs) during its
messaging process.

To find the overhead of the GTT-based scheme, we
chose EZ-Gimpy [27], a CAPTCHA currently used by
Yahoo! to screen out bots. As aforementioned before,
we embedded GTT into the Symbian library function
CMMSClientMtm :: SendL(), which is currently used
in the messaging framework of both Nokia S60 phones and
Sony-Ericsson UIQ phones. The experiment shows that our
GTT-based scheme successfully identified and blocked the
malware and thus prevented misuses of system resources.
Our protection scheme reduces the average CPU occupancy
to 6% or below. In addition, two GTT trials in the test incur
low overhead on CPU and memory usages. Specifically,
the maximum CPU occupancy is 5% and it only happens
within less than one second, the memory space required for
an EZ-GIMPY is in order of hundreds of KBytes. Another
important thing is that each EZ-Gimpy takes a user 1.5∼2.0
seconds to complete, hence it has a good time response
compared with the time that a user spends in composing
a message.

V. RELATED WORK

Mulliner et al. [10] adopted a labelling technique to
protect the phone interface against malware attacks which
comes through the phone’s PDA interface. Specifically,
resources and codes are labeled based on the interfaces that
they come from. A process can access a resource or invoke
a code only when it has been labelled with the same label
as the resource or code. or, if it is not labelled, it is labelled
with the same label of the resource or code and then gets
the access. Any process or resource created by a process
is labelled with the same label as the creating process.
The key difference between this and our access control–
based scheme is that, our scheme is based on a well-studied
TE policy model, which can be configured to implement
different security requirements.

Bose et al. [8] proposed a proactive malware containment
framework to quarantine suspected users. Cheng et al. [9]
designed a collaborative virus detection and alert system
named SmartSiren for securing smartphones. Smartsiren
collects communication data from phones and performs joint
analysis to detect abnormal behavior and alert users. Our
work differs from these solutions in that we adopt system-
level defenses to combat cellphone malware. Recently, Bose
et al. [33] proposed adopting machine-learning techniquesin
cellphones to detect malware. Their method discriminates
the malicious behaviors of malware from the normal be-
haviors of applications through training a classifier such as
Support Vector Machines (SVMs). However, this training
process requires input from known malware behavior, i.e.,
their approach still heavily replies on malware signatures.
Similarly, Venugopal et al. [34] described a virus detec-
tion system for the Symbian platform which monitors the
DLL functions used by applications. By using Bayesian
decision theory and past virus samples, they try to check



the behavior of applications to find matches with malicious
activity. Anomaly-based IDS has also been proposed to
detect malware that are energy-greedy [35]. Unlike the above
schemes which are primarily intrusion detection based, our
defenses (also in [36]) are more like intrusion prevention.It
can not only block attacks at realtime, but also expects very
low false positive and false negative rates because it does
not rely on signatures.

Other related work include attacks on cellphone’s bat-
teries [37] and on cellular networks [18]. In [38], social
network knowledge (the social ties among cellphone users
reflected by their conversation frequency) is leveraged to
rapidly distribute security patches [39] to cellphones under
worm attacks.

VI. CONCLUSIONS ANDFUTURE WORK

Recent outbreaks of computer malware also remind us that
devastating attacks in cellphones is approaching. Existing
signature-based countermeasures and security updates areei-
ther non-realtime or heavily dependent on users’ awareness.
We have proposed two system-level defenses which consists
of an access control-based scheme and a GTT-based scheme.
We have showed through extensive cellphone experiments
that these solutions are effective, lightweight, and easy to
deploy. In spite of some remaining issues such as diversity
of smartphone OS, new infection vehicles such as Wi-Fi,
and potential OS kernel-level malware attacks, our solutions
provide practical ways for containing malware within the
context of mobile devices. Identifying compromised hand-
sets from the network according to their traffic behavior by
leveraging our previous techniques [40].
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