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ABSTRACT
Hop-by-hop data aggregation is a very important technique for re-
ducing the communication overhead and energy expenditure of sen-
sor nodes during the process of data collection in a sensor network.
However, because individual sensor readings are lost in theper-
hop aggregation process, compromised nodes in the network may
forge false values as the aggregation results of other nodes, tricking
the base station into accepting spurious aggregation results. Here a
fundamental challenge is: how can the base station obtain a good
approximation of the fusion result when a fraction of sensornodes
are compromised?

To answer this challenge, we propose SDAP, a Secure Hop-by-
hop Data Aggregation Protocol for sensor networks. The design of
SDAP is based on the principles ofdivide-and-conquer andcommit-
and-attest. First, SDAP uses a novel probabilistic grouping tech-
nique to dynamically partition the nodes in a tree topology into
multiple logical groups (subtrees) of similar sizes. A commitment-
based hop-by-hop aggregation is performed in each group to gen-
erate a group aggregate. The base station then identifies thesus-
picious groups based on the set of group aggregates. Finally, each
group under suspect participates in an attestation processto prove
the correctness of its group aggregate. Our analysis and simulations
show that SDAP can achieve the level of efficiency close to an ordi-
nary hop-by-hop aggregation protocol while providing certain as-
surance on the trustworthiness of the aggregation result. Moreover,
SDAP is a general-purpose secure aggregation protocol applicable
to multiple aggregation functions.
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1. INTRODUCTION
Wireless sensor networks are envisioned to be economic solu-

tions to many important applications, such as real-time traffic mon-
itoring, military surveillance, and homeland security [1]. A sensor
network may consist of hundreds or thousands of low-cost sensors,
each of which acts as an information source, sensing and collect-
ing data from the environment for a given task. In addition, there
may also exist one or more base stations (or data sinks) whichsub-
scribe to specific data streams by distributing interests orqueries.
The sensors in the network then push relevant data to a querying
base station (BS). However, it is very inefficient for every sensor
node to report their raw data back because every data packet need
traverse many hops to reach the BS and especially sensor nodes
are often constrained by scarce resources in memory, computation,
communication, and battery. On the other hand, as in many cases
sensor nodes in an area detect the common phenomena, there is
high redundancy in their raw data. Thus, reporting raw data is of-
ten unnecessary.

Recently many data aggregation protocols [2, 3, 4, 5, 6, 7, 8]
have been proposed to eliminate the data redundancy in sensor data
of the network, hence reducing the communication cost and energy
expenditure in data collection. During a typical data aggregation
process, sensor nodes are organized into a tree hierarchy rooted at a
BS. The non-leaf nodes act as aggregators, fusing the data collected
from their child nodes before forwarding the results towards the BS.
In this way, data are processed and fused at each hop on the wayto
the BS, and communication overhead can be largely reduced.

Hop-by-hop aggregation, however, opens a new door to false
data injection attacks. Sensor nodes are often deployed in open
and unattended environments, so they are vulnerable to physical
tampering due to the low manufacturing cost. An adversary can
obtain the confidential information (e.g., cryptographic keys) from
a compromised sensor and reprogram it with malicious code. The
compromised node may then report an arbitrary false fusion result
to its parent node in the tree topology, causing the final aggregation
result to far deviate from the true measurement. This attackcan be-



come more damaging when multiple compromised nodes collude
in injecting false data.

The above attack is extremely difficult, if not impossible, to pre-
vent or detect. From the viewpoint of information theory, data ag-
gregation is a lossy data compression process because all the indi-
vidual sensor readings are lost in the per-hop aggregation process.
Hence, it is impossible for the BS to verify the correctness of an
aggregated result without knowing the original readings. Unfortu-
nately, the requirement of knowing the original readings effectively
precludes any data aggregation techniques. As such, in practice a
tradeoff between efficiency and accuracy must be made. The chal-
lenge now becomes: how can the BS obtain a good approximation
of the aggregation result without losing the efficiency of per-hop
data aggregation when a fraction of sensor nodes are compromised?

To answer this challenge, we propose SDAP, a Secure Hop-by-
hop Data Aggregation Protocol for sensor networks. The design of
SDAP is motivated by the following observation. During a normal
hop-by-hop aggregation process in a tree topology, (implicitly) we
need to place more trust on the high-level nodes (i.e., nodescloser
to the root) than the low-level nodes, because the aggregated result
calculated by a high-level node is due to a larger number of sensor
nodes. In other words, if a compromised node is closer to the root,
the bogus aggregated data from it will have a larger impact onthe
final result computed by the root. However, in reality none ofthese
low-cost sensors should be more trustable than others. As such,
SDAP takes the approach of reducing the trust on high-level nodes,
which is realized by the principle ofdivide-and-conquer. More
specifically, by using a probabilistic grouping method, SDAP dy-
namically partitions the topology tree into multiplelogical groups
(subtrees) of similar sizes. Since fewer nodes will be undera high-
level node in a logical subtree, the potential security threat by a
compromised high-level node is reduced.

To preserve the efficiency of per-hop aggregation, SDAP per-
forms hop-by-hop aggregation in each logical group and generates
one aggregate from each group. In addition, based on the principle
of commit-and-attest, SDAP enhances an ordinary hop-by-hop ag-
gregation protocol with commitment capability, which ensures that
once a group commits its aggregate this group cannot deny it later.
After the BS has collected all the group aggregates, it then iden-
tifies the suspicious groups based on a bivariate multiple-outlier
detection algorithm. Finally, each group under suspect participates
in an attestation process to prove the correctness of its group aggre-
gate. The BS will discard the individual group aggregate if agroup
under attestation fails to support its earlier commitment made in the
collection phase; the final aggregate is calculated over allthe group
aggregates that are either normal or have passed the attestation pro-
cedure.

Our analysis and simulations show that SDAP can achieve the
level of efficiency close to an ordinary hop-by-hop aggregation pro-
tocol while providing certain assurance on the trustworthiness of
the aggregation result. Unlike the trimming-based resilient aggre-
gation [9] that simply ignore some fraction of highest and lowest
values without any reasoning, our attestation scheme provides ef-
fective means to validate and then probably accept the abnormal
values, as oftentimes we are more interested in those abnormal val-
ues than normal ones. As such, there is zero false positive inSDAP.
Moreover, SDAP is a general-purpose secure aggregation protocol
applicable to multiple aggregation functions.

The remainder of this paper is organized as follows. Section2
describes our system model and design goals. In section 3, we
propose our secure data aggregation protocol composed of group-
ing, aggregation and attestation. Security analysis and performance
evaluation of our scheme are presented in section 4 and section 5,

respectively. After that, section 6 describes related workin litera-
ture. Finally, we summarize our work and discuss the future work
in section 7.

2. SYSTEM MODEL AND DESIGN GOALS
This section describes our system model and design goals, fol-

lowed by the notations used in the description of the protocol.

2.1 Network Model and Key Setup
Network Model We assume a sensor network consisting of a large
number of resource-limited sensor nodes (e.g., MICA motes [10]).
In addition, there exists a powerful BS that connects the sensor net-
work to the outside infrastructure such as the Internet. As in other
data aggregation protocols [6, 11], we assume a topologicaltree
rooted at the BS. There are various methods for constructingthe
aggregation tree according to different application requirements.
However, SDAP does not rely on a specific tree construction algo-
rithm as long as there is one. To concentrate on the security aspects
of data aggregation, we will not address the general issues regard-
ing data aggregation, e.g., what sensor applications mightbenefit
from the technique of data aggregation or how to ensure time syn-
chronization among nodes.

In a real application, a topology tree may be dynamic due to node
or link failures. In TinyOS [12], a beaconing message is flooded
every 30 seconds to reconstruct the broadcast tree. Clearly, it will
be too costly for the BS to keep track of the network topology for
every topology change, because every topology discovery may re-
quire every node to report its parent/child information to the BS.
As such, in our scheme, we assume that the BS does not know the
shape of the tree and its distance (in number of hops) from every
node although it may want to discover the tree topology occasion-
ally for other purposes.

We also assume there is a reliable transmission mechanism, for
example, by using a link-layer hop-by-hop acknowledgment proto-
col. Thus, the various types of packets in our scheme will notbe
lost.
Key SetupWe assume the BS cannot be compromised and it has
a secure mechanism (e.g.,µTESLA [13]) to authenticate its broad-
cast messages to all the nodes in the tree and every node can ver-
ify the received broadcast messages. We also assume every sensor
node has an individual secret key shared with the BS. Further, there
is a unique pairwise key shared between each pair of neighboring
nodes [14, 15, 16].

2.2 Attack Model
Since a standard authentication primitive , e.g., message authen-

tication code (MAC)s, can be employed to easily defeat an out-
sider adversary (who do not have any authentication keys) from
launching many attacks, we assume an adversary can compromise
a (small) fraction of sensor nodes to obtain the keys as well as re-
program these sensor with attacking code. There may be multiple
potential attacks against a tree-based aggregation protocol. One
type of attacks is behavior-based, in which the goal of an attacker
is to disrupt the normal operation of the sensor network. Forex-
ample, once a sensor node in the tree is compromised, it can attack
the underlying routing protocol, drop other nodes’ readings on pur-
pose, or cause denial of message attacks [17] to deprive other nodes
from receiving broadcast messages of the BS.

In this paper, however, we are not addressing any of these behavior-
based attacks; instead, we focus on defending againstfalse data
injection attacks where the goal of an attacker is to make the BS
to accept false sensor reports. In many situations, values received
by the BS provide a basis for critical decisions; hence, false or bi-



ased values may cause catastrophic consequences. For example,
when forwarding other sensor nodes’ reported values, a compro-
mised node may modify their values; it may also forge some false
sensor readings on its own behalf. Because the measurementsof
the physical world are inherently noisy, if an attacker forges sensor
readings that have negligible influence on the final aggregation re-
sult, he gains little. Therefore, we assume that an attackeraims to
inject false values that deviate from the true measures in a notice-
able scale. Apparently, the attacker does not want to be detected
when launching this attack.

In particular, in the context of data aggregation, an aggregate
usually contains not only a data value computed for the required
aggregation function but also a count value indicating the number
of sensor nodes involved in the aggregation operation. Clearly, an
attacker can forge an unusual false data value as well as a large
count value to make its false data account for a large portionof the
final aggregated result. We refer to these two types of attacksvalue
changing attack andcount changing attack, respectively.

Next we show through an example why value changing attack
and count changing attack are severe attacks. Suppose the BS
queries the network for the average temperature and any sensed
value must be between 32F and 150F. Let us assume a compro-
mised node receives from its child nodes the aggregated data100F
and the count value 50. If the compromised node cannot modifythe
received aggregate, i.e., it can only forge a false reading of its own,
then the aggregation data may range from 98.7F( 100∗50+32

51
) ∼

101F( 100∗50+150
51

), which does not deviate far away from the true
average value. However, if it can launch a count changing attack by
reporting a bogus large count value, then it can make the average re-
sult be any value in the range from 100F to 150F (assuming its own
reported temperature is 150F). Similarly, if the compromised node
can launch a value changing attack by modifying the data value in
its child nodes’ aggregate, it can easily make the average result be
either 150F or 32F as desired. Obviously, if possible, an attacker
can combine and launch these two attacks simultaneously to affect
the final aggregate without being detected.

Note that we do not consider the attack where a compromised
node forges a false reading of its own as a value changing attack.
First, as we shown in the above example, the impact of such an
attack is usually limited. Second, such a compromised node is very
much like a faulty sensor node. In this case, we have to rely onan
outlier detection algorithm or the content-based attestation scheme
proposed in Section 3.4.4.

2.3 Design Goal
Our design goal is to defend against the false data injectionat-

tacks making the BS accept false aggregation results, and wewill
focus on two kinds of false data injection attacks, value changing
attacks and count changing attacks. Specifically, our design goal
includes:

• Low communication overhead: The purpose of conducting
aggregation is to reduce communication overhead. Clearly if
the overhead of our scheme is equivalent to that of a raw data
based scheme, there is no need to employ our scheme.

• Effectiveness: The BS should have a high probability to de-
tect the injected false values. Once false values are detected,
they will be discarded. This is important to ensure the accu-
racy of the final aggregation result.

• Generality: Since it is undesirable to design one scheme
for one aggregation function, our scheme should apply to
various aggregation functions, such as MAX/MIN, MEAN,
SUM, COUNT, and so forth.

NotationsThe following notations are used in the description of
the protocol:

• BS refers to the BS.u, v, w, x, y are principals, i.e., the
identifiers of sensor nodes.

• Ku,v is the pairwise key shared between nodeu and nodev,
andKu is the individual key shared between nodeu and the
BS.

• m1|m2 denotes the concatenation of two messagesm1 and
m2.

• E(K, m) refers to the encryption of messagem using key
K.

• MAC(K, m) is the message authentication code (MAC) of
messagem with keyK.

In addition, we will useu → v : M to denote a one-hop delivery
of messageM from u to a neighborv andu →→ v : M to denote
a delivery that may involve multiple hops.

3. THE SECURE DATA AGGREGATION PRO-
TOCOL

In this section, we present our Secure Data Aggregation Protocol
(SDAP). We first give an overview of the protocol and then present
the details of the protocol.

3.1 Protocol Overview
The design of SDAP is based on the principles ofdivide-and-

conquer andcommit-and-attest. First, SDAP uses a novel proba-
bilistic grouping technique to partition the nodes in a treetopol-
ogy into multiple logical groups (subtrees) of similar sizes. A
commitment-based hop-by-hop aggregation is performed in each
group to generate a group aggregated result. The BS then iden-
tifies the suspicious groups based on the set of group aggregated
results. Finally, each group under suspect participates inan attesta-
tion process to prove the correctness of its group aggregate. Next,
we present the details of the protocol, which includes threephases:
query dissemination, data aggregation, andattestation.

3.2 Tree Construction and Query Dissemina-
tion

For concreteness, we first describe a simple aggregation tree con-
struction algorithm, which is similar to that in [6]. Initially, the root
broadcasts a tree construction beaconing message which includes
its own id and its depth to be 0. When a node, sayx, receives
a broadcast message at its first time from a nodey, x assigns its
depth to be the depth ofy plus one, and its parent to bey. After
this, it rebroadcasts the message. This process continues until all
nodes have received this message.

After constructing the aggregation tree, the BS can disseminate
the aggregation query message through this tree. Besides the aggre-
gation function that represents the BS’s request, a random number
is added to the query. This random number is generated by the BS
as a grouping seed, which is used for the probabilistic grouping in
the next phase. Specifically, a query packet that the BS broadcasts
is as follows:

BS →→ ∗ : Fagg, Sg

whereFagg refers to a specific aggregation function, such as MIN
/MAX, MEAN, SUM, andSg is the random number generated for
each query. We may employµTESLA [13] to provide global broad-
cast authentication of the query dissemination.

Above we discussed query dissemination after tree construction
to make it independent of the tree construction protocol. Inprac-
tice, we may combine these two steps into one. The query infor-
mation can be piggybacked in a beaconing message. On the other



hand, the dissemination of a query can help reconstruct the tree
topology, thus mitigating the tree partition problem due tonode or
link failures.

3.3 Probabilistic Grouping and Data Aggre-
gation

Through the previous phase, all nodes have identified their par-
ents. In this phase, SDAP randomly groups all the nodes into mul-
tiple logical groups and performs aggregation in each group. Prob-
abilistic grouping is conducted through the selection of leader node
for each group. During the aggregation, every node makes itscom-
mitment by embedding some security information to its aggregate.
Next, we first describe how group leaders are selected, and then
discuss techniques to add security information into the aggregated
data.

3.3.1 Group Leader Selection
Group leaders are selected on-the-fly based on the count val-

ues and the grouping seedSg received in the query dissemination
phase. Two functions are used in group leader selection. Oneis
a cryptographically secure pseudo-random functionH that uni-
formly maps the input values (node id andSg) into the range of
[0, 1); the other is a grouping functionFg that takes a positive in-
teger (count) as the input and outputs a real number between[0, 1].
More specifically, each node, sayx, decides if it is a leader node by
checking whether

H(Sg|x) < Fg(c) (1)

wherec is the count value of nodex (we will see howc is cal-
culated in the next subsection). If this inequation is true,nodex
becomes a leader. Once a node becomes the leader, all the nodes in
its subtree that have not been grouped yet become members of its
group. An example of a grouped tree is shown in Figure 1. Herex
is a group leader and the nodes included in the dashed line areits
group members. Similarly,w′′ is another group leader.

The grouping functionFg is used to control the probability for
a node to be chosen as a group leader and it is preloaded in each
sensor. Because the output ofH is uniformly distributed between
0 and1, the probability that it is smaller thanFg(c) actually equals
to the value ofFg(c). In our construction,Fg(c) increases with the
count valuec. Thus, if a node has a larger count value, the proba-
bility for it to become a leader is higher. By adjusting the grouping
function, ideally, the resulted group sizes are roughly even with a
small deviation, which provides the basis for our attestation. A spe-
cific grouping function is selected and the grouping result is shown
in Section 5.1.

The use of the random numberSg as the grouping seed is mainly
for security reasons. With the random number, the BS can rotate
the leaders among nodes instead of fixing their roles, so thatthe at-
tackers cannot determine in advance which nodes will be the group
leaders for each query. Otherwise, the attacker may target at the
group leaders and compromise them. Also, because a different Sg

is used each time, every node is assigned into a different group that
is formed on the fly. This helps thwart some prearranged collud-
ing attacks by multiple compromised nodes. Another advantage
is to balance the resource usage of nodes (e.g., storage, computa-
tion, and communication) so as to prolong the overall lifetime of
the network.

3.3.2 Aggregation Commitment
Before describing the data aggregation process, we first intro-

duce the packet format used in the commitment. Each aggregation
packet contains the sender’sid, an aggregated data value, and a
count value to indicate how many nodes contributing to the aggre-
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Figure 1: An example of the aggregation tree. The nodes x, y
and w” with the color dark gray are leader nodes, and the BS
as the root is a default leader

gated data. In addition, a flag field (one bit) is contained in each
packet to show whether the aggregate needs to be aggregated fur-
ther by the nodes enroute to the root. Flag value ‘1’ means that no
further aggregation is needed, whereas ‘0’ means to be aggregated.
This flag field is initialized to ‘0’. After a group leader finishes
the aggregation for the group, this flag field is set to ‘1’, andother
nodes on the path to the root just forward those packets with flag
‘1’.

The pairwise key shared between each pair of parent and childis
used to encrypt the aggregate. This encryption in practice provides
not only confidentiality but also authentication. This is because
the content format is known to the BS and the value of each item
should fall in a certain range. Thus, using encryption savesthe
bandwidth that will otherwise be used for an additional message
authentication code (MAC). In addition, a MAC computed using
the key shared with the BS is also attached at the end of each packet,
which provides authentication to the BS. Next, we present details
of the aggregation process.

Leaf node aggregation:Different from query dissemination, data
aggregation starts from the leaf nodes towards the BS. Sincea leaf
node does not need to do aggregation, it just sends itsid, data and
count value to its parent (it also keeps a local copy until theattes-
tation phase is completed). The following shows the packet that a
leaf nodeu sends to its parentv:

u → v : u, 0, E(Ku,v, 1|Ru|Sg)|MACu

MACu = MAC(Ku, 0|1|u|Ru|Sg)

where ‘0’ is the aggregation flag, ‘1’ is the count value,Ru the
reading of nodeu, andMACu the MAC value computed by node
u with its individual key. HereSg is included to identify the query
as well as to prevent replay attacks.

Intermediate node aggregation:When an intermediate node re-
ceives an aggregate from its child node, it first checks the flag. If
the flag is ‘0’, it keeps a local copy of the aggregates (until the attes-
tation phase is done) and performs further aggregation; otherwise,
the node directly forwards the packet to its parent node.

More specifically, for a report with flag ‘0’ received from a child
node, a node first decrypts the data using its pairwise key shared
with this child node. It also performs some simple checking on
the validity of the count,Ru (if within a certain range), andSg

(if the same as the one received in the query dissemination phase).
If the aggregate packet does not pass this checking, it will discard
the packet. Otherwise, it will further aggregate its own reading



with all the aggregates received from its child nodes with flag ‘0’.
A new count is also calculated as the sum of the count values in
the received aggregates with flag ‘0’ plus one (considering its own
reading). The node checks if it is a group leader based on the same
inequation (1) using its own id and the new count as the inputs. The
node then encrypts the new count value and aggregation data using
the pairwise key shared with its own parent.

As shown in Figure1,w is the parent ofv. Since here nodev is
not a leader. The packet thatv sends tow is as follows:

v → w : v, 0, E(Kv,w, 3|Aggv|Sg)|MACv

Aggv = Fagg(Rv, Ru, Ru′)

MACv = MAC(Kv, 0|3|v|Aggv|MACu ⊕ MACu′ |Sg)

where ’3’ is the count value summed over the count value ofu, u′

and its own contribution,Aggv is the aggregation value of node
v andMACv is the MAC value computed by nodev. Note that
the MAC of an intermediate node is calculated over not only the
previous fields but also the XOR of the MACs from its children.In
this way, a MAC value is also computed in a hop-by-hop fashion,
thus it can represent the authentication information of allthe nodes
contributing to the data.

Leader node aggregation:Now suppose that an intermediate node
has processed the aggregates from its child nodes and it findsout
that it is a group leader based on (1). Like a regular intermediate
node, it also computes a new aggregate, keeps local copies ofthose
packets with flag ‘0’, and appends a corresponding MAC using its
individual key shared with the BS. Unlike a regular intermediate
node, it encrypts the new aggregate with its individual key and sets
the flag to ‘1’ in its aggregation packet. Since in Figure 1 node x is
a group leader, the packet it sends upward is as follows:

x →→ BS : x, 1, E(Kx, 15|Aggx|Sg)|MACx

Aggx = Fagg(Rx, Aggw, Aggw′)

MACx = MAC(Kx, 1|15|x|Aggx|MACw ⊕ MACw′ |Sg)

whereAggx is the aggregation result of the group andMACx is
the MAC value computed by the leader nodex. Note that the leader
node needs to set the flag field to ‘1’, so that data from this group
will not be aggregated any more. That is, in Figure 1, when node
y receives a packet fromx, it forwards the packet towards the BS
without any further aggregation and it does not add the countvalue
of x to its own. In an extreme case when all the children of a node
are group leaders, this node will only contribute count value 1 to
its parent node, similar to a leaf node. As such, we can see that the
importance of a higher level node is reduced as we have desired.

Based on the above aggregation rule, the aggregated data and
the corresponding MACs are transmitted to the BS. There may be
some nodes left without group membership. In this case, the BS is
the default group leader for them.

After the BS receives the aggregates from all groups, it decrypts
and saves them in the following format: (x, cx, Aggx, MACx),
where x is the leader node’s id,cx is the group size,Aggx is
the group’s aggregation result andMACx is the authentication tag
computed by the group leader. Note that all the groups are logical
groups; no physical partition of the topology tree is involved.

We notice that although the spirit of this technique is similar
to Merkle hash tree [18], there are several noticeable differences.
First, Merkle hash tree is a data structure, not a real topology tree;
second, Merkle hash tree is a binary tree whereas in our case the
topology tree is arbitrary. Third, in Merkle hash tree only leaves
are measurements, all others are hash values. Fourth, the value of a
MAC in our scheme is computed over more information.

3.3.3 Tracking the Forwarding Path
When a sensor node receives an aggregation packet with flag ‘1’,

it records into its forwarding table the following information: Sg,
the id of the group leader, the incoming link (i.e., from which node
it receives the packet). In this way, when the BS sends out an at-
testation request later regarding this group, the node knows where
to forward this request. This can save some message overheadbe-
cause otherwise the BS has to flood the request. For example, as
shown in Figure1, when nodey receives the packet fromx, it for-
wards the packet to the BS and addsx to its forwarding table. In
the future, if the BS wants to attest the group ofx, it sends the attes-
tation message directly to its childy. Sincex is in y’s forwarding
table,y also forwards this attestation message directly tox.

The above solution works fine in most cases. If the aggregation
tree is very large and there are many groups, techniques suchas
Bloom filters [19] may be used to reduce the storage overhead.We
note that the size of a forwarding table does not necessarilykeep
increasing because it is updated in each query.

3.4 Verification and Attestation
3.4.1 Verifying the Aggregation Messages

After the BS has received the aggregation messages from the
group leaders, it needs to verify the authenticity of the aggregated
value in each aggregation message. This includes verifyingthe con-
tent of the packet and the authenticity of the leader. First,based on
the group leader id, sayx, in the message, the BS can find out
the individual key of the node (Kx) by which it decrypts the data
and gets the following information: the count valuecx, the aggre-
gated valueAggx, andSg. The authenticity of the message is pro-
vided because the content format is known to the BS and the value
of each item should fall in certain range. Second, the BS verifies
the legitimacy of the claimed group leaderx by checking whether
H(Sg|x) < Fg(cx) because the BS knowsH , Fg and the grouping
seedSg. If this does not hold or any item in the packet is invalid,
the BS simply drops the packet.

3.4.2 Determining Suspicious Groups for Attestation
After the above verification, the BS believes about the aggregate,

say(cx, Aggx), is truly from a legitimate leaderx. However, the
BS cannot tell whethercx or Aggx has been modified because a
compromised group node or the leaderx may have modified the
data, which can influence the final aggregation result at the BS.
Note that authentication cannot solve this insider attack because a
compromised node has the valid keys.

We expect the attacker to forge an aggregated data that have a
non-trivial influence on the final result; otherwise the attacker could
not gain much. As a result, a false aggregate should exhibit certain
abnormality. On the other hand, we cannot simply treat all ab-
normal sensing data as outliers and discard them, since theymay
indeed reflect the real environment. In many cases we are more
interested in abnormal data than in normal ones. For example, for
sensors deployed to detect fire events, abnormally high temperature
is our special interest. With these in mind, we have to verifythe
abnormal aggregates before accepting or rejecting them. Inother
words, the BS should attest the groups with suspicious largecount
values or doubtful aggregation data.

We mainly use Grubbs’ test [20], also known as the maximum
normalized residual test, to detect the outliers. However,we also
make several modifications so that it can detectmultiple outliers
from bivariate data. In Grubbs’ test, the Null hypothesisH0 means
that there are no outliers in the data set, whereas the hypothesis
H1 means that there are at least one outliers in the data set. More
specifically, it first computes the sample statistic for eachdatumχ



Algorithm 1 Outlier Detection Algorithm

Input: a setT of n tuples(x, cx, Aggx), wherex is group leader
id, cx is group count value,Aggx is group aggregation result, and
n is total number of groups;
Output: a setL of leader ids of groups with outliers;
Procedure:
1: loop
2: compute meanµc and standard deviationsc for all the

counts in setT ;
3: compute meanµv and standard deviationsv for all the val-

ues in setT ;
4: find the maximum count valuecx in setT ;
5: compute statisticZc for countcx: cx−µc

sc
;

6: computep-valuePc based on the statisticZc;
7: compute statisticZv for the corresponding valueAggx:

|Aggx−µv |
sv

;
8: computep-valuePv based on the statisticZv;
9: if (Pc ∗ Pv) < α then

10: T = T − {(x, cx, Aggx)};
11: L = L

S

{x};
12: else
13: break;
14: end if
15: end loop
16: returnL;

in the set by|χ−µ|
s

, whereµ ands are the sample mean and stan-
dard deviation of all the data, respectively. The result represents
the datum’s absolute deviation from the sample mean in unitsof
the sample standard deviation. Based on this, there are two equiva-
lent methods to decide whetherH0 should be accepted or not. One
is to check whether the sample statistic falls in the non-rejection
range defined by the critical values. The other one is to compare
the p-value computed based on the sample statistic with the pre-
defined significance levelα (equals to0.05 typically), where the
p-value is the observed level of significance, defined as the prob-
ability that the sample statistic is equal to or more than theresult
obtained from the sample data given thatH0 is true. The smaller
thep-value is, the farther the sample statistic deviates from the sam-
ple mean. When thep-value is smaller thanα, H0 is rejected and
the datum under consideration is an outlier.

When we apply Grubbs’ test in our setting, we need to make
several extensions. First, since Grubbs’ test detects one outlier at a
time, we can expunge the detected outlier from the dataset and iter-
ate the test over the remaining data until no outliers can be found.
In this way we can detect multiple outliers. Second, Grubbs’test
is normally used for univariate data set, but we will need to detect
outliers from bivariate data (i.e., counts and aggregationdata). Be-
cause counts and data are independent variables, we set thep-value
as the product of these twop-values to prevent an attacker from
either forging a large count or an extreme value. Normally, ada-
tum of one variable is considered to be an outlier when itsp-value
is smaller than0.05. In our bivariate case, even when each sepa-
rate one is less like an outlier, we may still consider it as anoutlier.
For instance, for a count and data value pair reported by a group, we
may get thep-value0.2 for the count and0.24 for the data. None of
them is smaller than0.05; however, their product is0.048 < 0.05.
Thus, we identify this group as a suspicious group. In another ex-
ample, to avoid detection an attacker may report a very smallcount
value but extreme data. In this case, we may get thep-value of 1.0
for the count, but as long asp-value for the data is less than 0.05,
this group will still be selected. A formal description of the outlier
detection algorithm is shown in Algorithm1.

We have seen that an attacker does not have much motivation for

forging a small count. As such, we are only interested in large count
values. That is, for count values, the BS will run the one-sided
Grubbs’ test for computing thep-values. For data values, we may
consider a two-sided test for some aggregation applications, such as
MEAN. For other operations such as MIN/MAX, it depends on the
specific aggregation functions. We may also resort to the content-
based attestation introduced in Section 3.4.4 to deal with these data
outliers.

3.4.3 Generating and Forwarding Attestation Requests
After the BS has decided which group(s) to attest, it will need

to decide how to attest the group. The challenge is due to the fact
that the BS only knows the group leader id — it does not know
what the other nodes are and how they form the group topology.In
this case, how can it prevent the group leader from making up the
group topology and attested results? Next we show a simple while
effective way to address this challenge.

The BS broadcasts an attestation message including the id ofthe
leader for the group to be attested, a random numberSa, andSg.
Sa is used as the seed for the attestation and it will determine a
unique and verifiable attestation path as shown shortly.Sg is in-
cluded for identifying the query. Letx be the id of the leader node
for the group to be attested andy the id of the node from which the
BS received the group aggregate (BS also maintains a forwarding
table).

BS → y : x, Sa, Sg (2)

Again, we can useµTESLA to provide broadcast authentication.
The attestation request from the BS will be disseminated down

the tree. Every node receiving this request searches its forwarding
table using the leader id as the index to get the next-hop nodeid. It
then forwards the request to that next-hop node.

3.4.4 Group Attestation
During a group attestation process, a physical attestationpath

between the group leader and a leaf node (in the group subtree) is
dynamically formed. More specifically, after the leader node re-
ceives the attestation request from the BS, it decides the next hop
on the attestation path as follows. It first adds up all the count
values of its child nodes in the logical group (not all the child
nodes in the physical tree because some child nodes may become
group leaders themselves) and calculates

Pd
k=1 ck, whereck is the

count value of itskth child andd is the number of its children
in the group. This can be done since the parent node stored all
the count values from the children nodes in the aggregation phase.
Then, it calculates

Pd
k=1 ck · H(Sa|id) for each of its childrenid

based on the pseudo-random functionH . The parent picks up the
ith child for attestation if the calculated value falls in the interval
[
Pi−1

k=1 ck,
Pi

k=1 ck). We will prove in the next subsection that
this construction ensures that the probability for a child node to be
selected on the path is proportional to its count value reported in
the aggregation phase. Thus, a child with a larger count willbe
attested with a higher probability1.

A selected child runs the same process to select one of its own
children to form the path. Recursively, an attestation pathbetween
the leader and a leaf node (in the logical group subtree) is formed.
Each node on the path sends back its count value and its own read-
ing. If the node is not a leaf node, its parent also asks its sibling
nodes to send back their count values, aggregation data, andtheir
MACs.
1Instead of using count values only, a variant of this idea is to use
some function (e.g., multiplication) of count and data as the criteria
to detect a compromised node that forges small count but extreme
data.



Figure 1 shows one example. Assume that the BS wants to attest
the group with leader nodex and the attestation path in this group
is x−w−v−u. Then, the messages sent back to the BS from this
group are:

x →→ BS : x, E(Kx, x|15|Rx)

w →→ BS : w, E(Kw, w|7|Rw)

w′ →→ BS : w′, E(Kw′ , w′|7|Aggw′ |MACw′ )

v →→ BS : v, E(Kv, v|3|Rv)

v′ →→ BS : v′, E(Kv′ , v′|3|Aggv′ |MACv′)

u →→ BS : u, E(Ku, u|1|Ru)

u′ →→ BS : u′, E(Ku′ , u′|1|Ru′ )

These messages are encrypted by the individual keys of the sensor
nodes.

After the BS decrypts the received data, it first verifies whether
w, v andu are really the nodes on the attestation path based on
Sa, these nodes’ ids, and the counts. Then, it verifies whether the
count value of every node is the sum of its children’s counts plus
one. If this check succeeds, it aggregates the data by itselfand
reconstructs the aggregation result of this group,Aggx, to examine
whether nodes on the path have forged the aggregation results in
the aggregation phase:

Aggv = Fagg(Rv, Ru, Ru′)

Aggw = Fagg(Rw, Aggv, Aggv′)

Aggx = Fagg(Rx, Aggw, Aggw′)

It can also reconstructMACx using these data:

MACu = MAC(Ku, 0|1|u|Ru|Sg)

MACu′ = MAC(Ku′ , 0|1|u′|Ru′ |Sg)

MACv = MAC(Kv, 0|3|v|Aggv|MACu ⊕ MACu′ |Sg)

MACw = MAC(Kw, 0|7|w|Aggw|MACv ⊕ MACv′ |Sg)

MACx = MAC(Kx, 1|15|x|Aggx|MACw ⊕ MACw′ |Sg)

Note that here some of the reconstructions may not be necessary.
For example, if the BS compares the reconstructed aggregation re-
sult with the previously received one and finds that they are not con-
sistent, there is no need for the BS to recompute the MAC value.
Only when both the aggregation result and the MAC value match
the previously received commitment, the BS accepts the dataand
use them to compute the final aggregation result. Otherwise,the
BS knows that some node in this group has been compromised and
it discards this group aggregate.

Attesting Multiple Paths The above technique is for one path at-
testation. To improve the detection capability, we may select mul-
tiple paths for attestation. One straightforward solutionis to send
multiple attestation seeds, each of which is used to determine one
path. A more efficient way is as follows. In its attestation re-
quest the BS addsng, the number of paths to be attested. When a
group node selects its child nodes, it evaluatesH(Sa|id|k), where
k = 1, 2, ..., ng. Clearly, these multiple paths will overlap; if a
node appears in multiple paths, it only needs to send back onere-
port. Thus, the cost of attestation is sublinear with respect to the
number of attested paths.

Other Attestation TechniquesThe above attestation is actually a
depth-based one because it picks up attestation paths in a group.
Alternatively, we may use a breadth-based scheme, in which the
BS may ask, for example, all the nodes one or two levels below

the group leader to supply their aggregates. This approach is good
for attesting a more balanced tree because the higher level nodes
usually have larger counts than the lower level nodes. However,
it may not be effective for arbitrary tree topology. Also, itis more
vulnerable to colluding attacks by several topologically consecutive
compromised nodes.

Some aggregation functions are found inherently insecure,such
as MIN/MAX, because the change to a single sensor reading can
cause noticeable changes to the final result [9]. Therefore,we also
consider a content-based attestation approach to validatean outlier.
Specifically, once the BS notices such an outlier, it requests the sen-
sor readings from the neighbors of this node and compares them.
Since these nodes are close to each other, their readings should bear
certain spatial or temporal correlation. Based on this knowledge,
the BS can decide whether to accept the outlier or not. Since this
technique is orthogonal to the presented techniques, we will study
it in the future.

4. SECURITY ANALYSIS
This section first discusses how SDAP prevents several general

attacks, then presents the qualitative results on its detection capa-
bility.

4.1 General Security Analysis
Our commit-and-attest technique aims to ensure that once a group

has committed its aggregation result, if being attested later, every
involved node in the group has to report its original aggregate.
Otherwise, the group attestation process will detect the attack by
finding the inconsistency between the committed aggregate and/or
MAC and the reconstructed aggregate and/or MAC. This technique
is secure as long as we use a cryptographically secure MAC func-
tion such as HMAC, although we will not give a rigorous proof
here. Readers are referred to Merkle hash tree [18] on this.

Due to our probabilistic grouping scheme, an attacker cannot se-
lectively compromise nodes to ensure his optimal attackingstrat-
egy: for example, making multiple of the compromised nodes or
no more than one to appear in the same group. Because grouping
is a dynamic process, a node cannot know in advance whether it
will become a group leader or which group it will belong to. Also,
because the aggregates from all the groups are encrypted, a com-
promised node cannot know if its own aggregate will become an
outlier by Grubbs’ test. Further, a node cannot know whetherit
will be selected on the attestation path because the attestation path
is also dynamically selected in a probabilistic fashion.

A data aggregation protocol is generally vulnerable to a poten-
tial event suppression attack, where a compromised node changes
its aggregated value corresponding to a real abnormal eventto a
normal value, thus the BS might not notice the real event. How-
ever, our probabilistic grouping technique can greatly mitigate this
attack because (1) the role of an attack node in an aggregation sub-
tree (group) is not fixed (group leader is randomly selected and
every node may become a leaf node in an aggregation subtree),and
(2) some other nodes belonging to other aggregation subtrees may
detect the real event and report it to the BS.

4.2 Detection Rate Analysis
Next we discuss the effectiveness of SDAP in detecting the value

changing attack and count changing attack. To detect eitherof these
attacks or a combination of them, the first step is to identifythe
suspicious groups. In last section we proposed to use Grubbs’ test
for this purpose (certainly other appropriate outlier detection algo-
rithms may also be applied), thus the probability of an attacked
group being selected is determined by the power of Grubbs’ test.
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Figure 2: Count value intervals for a parent with d children

Note that Grubbs’ test may identify an attack-free group as asus-
picious one; however, from security viewpoint this is not anissue
because this group will pass the group attestation anyway. In other
words, our protocol haszero false positive rate.

Next we will focus on analyzing the probability of such an at-
tack being detected by our group attestation scheme, given that the
attacked group has been identified. For clarification, when we refer
to a compromised node, we always assume that this node makes
either count changing attack or value changing attack (a compro-
mised node following our protocol is no different from a normal
one).

4.3 Count Changing Attack Detection
For ease of presentation, let us first consider the case that there is

only one compromised node in an attested group, although multiple
compromised nodes, if they are in a logical group, may collude in
launching attacks. A count changing attack will be detectedwhen
the compromised node is selected on an attestation path. In the
following, we analyze the detection probability. We propose three
lemmas that are related to this probability.

First, we derive the probability that a parent selects one child for
attestation based on the selection rule introduced in Section 3.4.4.

LEMMA 1. Suppose a parent has d children with counts c1, c2,
... , cd respectively in a logical group. The probability that this
parent selects the ith child with count ci for attestation is P (i, d) =

ci
P

d
k=1

ck
.

PROOF. Because the value ofH(Sa|id) is uniformly distributed
in the range[0, 1), it can be treated as a random variableX that fol-
lows a uniform distribution with the pdf (probability density func-
tion)

fX(x) =



1, if 0 ≤ x < 1
0, otherwise.

Thus, the value of
Pd

k=1 ck · H(Sa|id) can be treated as another
random variableY uniformly distributed in[0,

Pd
k=1 ck), whose

pdf is given by

fY (y) =

(

1
P

d
k=1

ck
, if 0 ≤ y <

Pd
k=1 ck

0, otherwise.

From Figure2, we can see that the probability for a parent to
select theith child equals to

P (i, d) =

Z

Pi
k=1 ck

Pi−1

k=1
ck

1
Pd

k=1 ck

dy =
ci

Pd
k=1 ck

,

which is proportional to the count value of this child.

Since an attestation path always starts from the leader node, if the
leader node of a group made the count changing attack, the de-
tection rate is100%. Next we analyze the probability that a reg-
ular node is selected on the attestation path. We use the notation
cj,i to denote the count value of a node in depthj (i.e., its dis-
tance from the leader node isj), which is also theith child of its
parent(Figure3). In this notation,0 ≤ j ≤ h whereh is the height
of the group subtree and1 ≤ i ≤ dj where in depthj there are
totally dj children for selection. Therefore, the count value of the
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Figure 3: Choosing an attestation path in one group based on
count values

leader node is denoted byc0,1. Count values of leader’s children
are denoted byc1,1 to c1,d1

from left to right. Suppose in depthj
the attested node is denoted byuj .

LEMMA 2. The detection rate of the attack by a compromised
node uj in depth j, i.e., the probability for node uj to be selected
on the attestation path, is Dr(j) =

Qj
l=1 P (il, dl).

PROOF. When the sibling of nodeuj ’s parent is selected, the
probability to choose nodeuj is 0; therefore, the probability of
choosing nodeuj with the parentuj−1 equals to the probability of
choosinguj−1 multiplied by the probability of choosinguj under
the condition that we have selected the parentuj−1.

According to Lemma 1, the probability for a childu1 in depth1
with countc1,i1 to be selected on the path isP (i1, d1), because the
probability for us to choose the leader node is100%. Hence, we
have that the detection rateDr(j), i.e., the probability for nodeuj

to be selected on the attestation path, equals to

P (Uj) = P (Uj |Uj−1) · P (Uj−1)
= P (Uj |Uj−1) · P (Uj−1|Uj−2) · · ·P (U1|U0)P (U0)
= P (ij , dj) · · ·P (i1, d1) · 1

=
Qj

l=1 P (il, dl),

whereUj refers to the event thatuj is selected on the attestation
path.

Next we show the detection rate of the attack when we select
multiple paths for attestation.

LEMMA 3. Suppose we choose m independent attestation paths.
The detection rate of the count changing attack by a compromised
node uj in depth j is Dr(j, m) = 1 − (1 − Dr(j))

m.

PROOF. We can treat the selection ofm attestation paths asm
independent events. The probability of detecting a compromised
node equals to the probability of selecting this node at least once
in the m events. SupposeA refers to the event that nodeuj is
selected on the attestation path at least once in them events. On the
contrary,A means that nodeuj is never selected on the attestation
path in them events. Based on Lemma 2, we have

P (A) = (1 −
Qj

l=1 P (il, dl))
m = (1 − Dr(j))

m.

Therefore, the detection rateDr(i, m) equals to

P (A) = 1 − P (A) = 1 − (1 − Dr(j))
m.

Since this is a function increasing with the value ofm, we can
see that if we perform the attestation for multiple times (m > 1),
the detection rate will be higher, which means that we have more
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Figure 4: Detection rate of the count changing attack in the
group with leader nodex. For cv=3,6,9,12,15, respectively. The
number of attestation paths equals to1 ∼ 8.

chances to detect the attack. Assume the nodev in the group with
leaderx in Figure1 is an attacking node, our detection rate of the
attack through multiple paths is shown in Figure4. For instance, if
nodev changes its count value from3 to 6. Accordingly, the count
values of nodew andx becomes10 and18, respectively. If we
choose only one attestation path, the detection rate of thisattack is
39.22%, but if we choose four attestation paths, the detection rate
is increased to86.35%.

Finally, we consider the case when multiple compromised nodes
are in the attested logical group. The detection rate is subject to
the distribution of these compromised nodes, for example, whether
more than one compromised nodes locate on a same path, no two
nodes locate on a same path, or a hybrid of these two scenarios. If
multiple compromised nodes are on the same attestation path, then
the detection rate of the attack equals to the probability that the
highest-level compromised node is selected; when all thesecom-
promised nodes are on different attestation paths, we can detect the
attack as long as we can choose any of these paths, so the detec-
tion rate is the sum of the probability for choosing each one.For
the hybrid case, the detection rate can be computed as the sumof
the probability that we attest the highest-level compromised node
in each of these paths. From the above analysis, we can see that if
there are more than one compromised nodes in the attested group,
the detection rate is higher unless these nodes are all on thesame
path.

4.4 Value Changing Attack Detection
Similar to a count changing attack, a value changing attack will

be detected when the attacking node is selected on the attestation
path. Because a compromised node may forge small count but
extreme data to avoid the attestation, for detecting value chang-
ing attack, it is not effective to determine an attestation path only
based on counts. Instead, we have to take into account the data
value by using some function of count and data as the criteriato se-
lect a path. For example, we may simply replace the count values
in the above path selection rule (Section 3.4.4) and lemmas with
c|R − Rnormal|, wherec is a count,R is the corresponding data
value, andRnormal is the normal data value (e.g., the normal in-
door temperature). Of course, other appropriate functionscan also
be applied.

5. PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of SDAP. We first

present a grouping function and show that it meets our require-
ments through simulated grouping results. Then, after we analyze
the communication overhead of the protocol, we further use sim-
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ulations to support our claim that SDAP only causes little extra
overhead compared to hop-by-hop aggregation.

5.1 Grouping Function
In Section 3.3.1, a grouping functionFg was used to control the

probability of a node being the group leader. This function gen-
erates an output value between 0 and 1, based on the count value.
Our goal is to select aFg which can ensure the group sizes are
similar so as to reduce the variance. Hence, when the BS performs
Grubbs’ test, less likely a normal group will become an outlier for
attestation, thus reducing the attestation overhead. Specifically, this
grouping function should have the following requirements:

• if c = 0, Fg(c) = 0;
• if c = 1 (leaf node),Fg(c) ≈ 0;
• if c → ∞ , Fg(c) → 1 , butFg(c) < 1;
• the gradient of its curve increases slowly at first and de-

creases towards0 after a peak value close to1.

The first three requirements are apparent. Based on the fourth re-
quirement, when the count valuec is small, the probability of be-
coming a leader is low, whereas when the count valuec is large
enough, this probability is rapidly increased to a large value (e.g.,
larger than50%). As a result, the group sizes becomes more simi-
lar.

To meet these requirements, we chooseFg(c) = (1 − e−β·c)γ

(0 < β ≤ 1, γ ≥ 1), whereβ is used to control the gradient
of the curve andγ is used to control the shape of the curve (e.g.,
concave or convex). As shown in Figure5, asβ increases, the curve
becomes sharper. With a largeγ, the function satisfies the fourth
requirement of our grouping function.

5.2 Grouping Results
We verify that the grouping function satisfies our requirements

through the simulated grouping results. In the simulation,3000
nodes are randomly distributed in an area of2000 ∗ 2000ft2 . The
transmission range is set to be65ft. Tree construction protocol in-
troduced in 3.2 is used to build up the tree. For the grouping func-
tion, β andγ are set to 0.15 and 30, respectively. The simulation is
run 5000 rounds.

Figure 6 shows the distribution of group leaders to the depthof
the tree. In our simulation, the height of the tree is 44. As discussed
in 3.2, the root has a depth of 0, and nodes in depth 44 are all
leaves. Since these nodes only have the count of 1, the chances of
being leaders are almost 0. Due to the small counts, nodes with
depth of 40 or more have no chance of being leaders, either. On
the other hand, nodes with depth between 10 and 30 have higher
probabilities to become leaders. For example, an average of5.5
nodes in the depth of 22 are group leaders. The root is always a
leader, so the average number of group leader in depth 0 is 1.

Figure 7 shows the distribution of group sizes when there is no
attack. As can be seen, the mean of the group size is 30, and the
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resulted group sizes do not deviate much from the mean. More
specifically, most group sizes are limited between 20 and 40.This
can provide a good basis for the attestation. According to the criti-
cal value in Grubbs’ test, when the total group number is 98 and
α = 0.1 (one tailed test,α/2 = 0.05), the attestation thresh-
old is 57.57. If the attacker increases the group size largerthan
this threshold, the BS can detect this attack by choosing thecorre-
sponding group for attestation. From the figure, we can see that the
number of attestations are very small when there is no attack. There
are only 2 out of 98 legitimate groups with group sizes largerthan
this threshold. Although the BS will also choose these two groups
for attestation, the BS will accept their values after the attestation
because they are both legitimate groups.

5.3 Communication Overhead
In this section, we first analyze the communication overheadof

our protocol and then further use simulations to verify our conclu-
sion that our protocol only causes little extra overhead compared
to hop-by-hop aggregation. To accurately measure the overhead,
we use the metric ofpacket ∗ hop and byte ∗ hop (product of
the data size and the message traveling distance), because message
overhead is proportional to the traveling distance of sensing data.
To help understand the communication overhead of our protocol,
we also compare it with the no-aggregation and hop-by-hop ag-
gregation approaches. For ease of exposition, we do not consider
the impact of packet retransmission due to the unreliable channel.
Although packet retransmission will increase the absoluteperfor-
mance overhead of SDAP, we expect itsrelative performance over-
head compared to the other two approaches will be similar because
packet retransmissions also occur in these approaches. We will ver-
ify the above intuition quantitatively in our future work.

The following notations are used in the analysis:

• (n, d, h) is used to model the aggregation tree, wheren means
the total number of nodes,d is the degree of the tree (e.g.,
d=2 represents a binary tree), andh is the height of the tree;

• ng is the number of attested groups;
• np is the number of attestation paths in the attested group

(for ease of expression, we assume the number of attestation
path in each attested group is the same);

• g(1 ≤ g ≤ n) is the average group size.

5.3.1 Analytical Results in packet ∗ hop

Since all the three schemes have the query broadcast overhead,
we only compare the communication overhead in the aggregation
( including attestation for our protocol). In the hop-by-hop data
aggregation approach, the number of packets is equal to the number
of edges in the broadcast tree. Hence, the communication overhead
of the hop-by-hop aggregation approach is as follows:

Chop−by−hop = n − 1 = Θ(n).

On the other hand, without in-network aggregation, i.e., every
sensor node sends its reading (with a MAC) separately to the BS,
the communication overhead can be expressed by:

Cno−aggregation =
Ph

1 i · di

= hdh+2−(h+1)dh+1+d

(d−1)2

= Θ(n · logn),

becauseh can be approximated bylogn. The upper bound isO(n2)
in case of a linear tree (h = n, d = 1).

In our protocol, the total number of groups is⌊n/g⌋+1, consid-
ering the extra group with the BS as the default leader. The height
of the group can be approximated by⌈h/2⌉, and then the average
distance to the BS from a leader is⌊h/2⌋. Based on the results
shown in the Figure 6, this assumption is reasonable becausewe
only consider the average case. With these assumptions, thecom-
munication overhead of our protocol during the aggregationphase
is (g − 1)(⌊n/g⌋ + 1) + ⌊n/g⌋⌊h/2⌋.

The overhead for attestation depends on the number of attested
groups and the attestation paths that we have chosen. The over-
head of disseminating the attestation request isngnp⌊h/2⌋, and
the overhead of sending the data back to the BS isngnp[⌊h/2⌋ +
P⌈h/2⌉

1 (⌊h/2⌋ + i)d]. Therefore, the total overhead is:
Cour ≤ (g − 1)(⌊n/g⌋ + 1) + ⌊n/g⌋⌊h/2⌋ + ngnp⌊h/2⌋

+ngnp[⌊h/2⌋ +
P⌈h/2⌉

1 (⌊h/2⌋ + i)d]

≈ n + ⌊nh/2g⌋ + ngnph +
ngnpdh(3h+2)

8
.

This formula actually gives us an upper bound of the communica-
tion overhead because in case of multiple attestation paths, a node
locating on multiple paths only needs to report one copy of its ag-
gregate. Also, thenp attestation requests for a group is actually
piggybacked into one packet.

The communication overhead of our protocol depends on the av-
erage group sizeg. If g is as large asn, the overhead is aboutO(n).
Otherwise, ifg is very small and can be treated as a constant num-
ber, the overhead isO(n · logn). In either case, the overhead of our
protocol is less than the no-aggregation approach and higher than
the hop-by-hop aggregation approach.

To quantify the difference, data results inpacket ∗ hop can be
seen in the Figure 8. The results are based on the following pa-
rameter setup:n = 3280, d = 3, h = 7 andnp = 1. As shown
in the figure, the communication overhead of our protocol is be-
tween3.4K and4.4K. Using the same parameters, we can easily
calculate the cost of the other approaches. Specifically, the commu-
nication overhead of the hop-by-hop aggregation approach is 3K,
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Figure 8: Overhead in packet*hop
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tions

and the communication overhead of the no-aggregation approach is
21K. Thus, our protocol does not add much overhead compared to
the hop-by-hop aggregation.

5.3.2 Analytical Results in byte ∗ hop

With the results of last subsection, we can easily calculatethe
overhead inbyte ∗ hop. Each packet includes node id (2 bytes),
data (4 bytes) and MAC (8 bytes), so the overhead of the hop-by-
hop aggregation and the no-aggregation approaches inbyte ∗ hop
are the results inpacket ∗ hop multiplied by 14(bytes).

Although we did not consider the query dissemination overhead,
for fair comparison, we should consider the extra overhead of our
protocol, due to the 4-byte random number used in the query dis-
semination. The total extra communication overhead for thequery
broadcast from the BS is about4(n − 1). The committed aggre-
gation packet is of the same format and with a size of 19 bytes (2
bytes for id, 5 bytes for data including counts, 8 bytes for MAC and
4 bytes for the grouping seed), thus the overhead of the aggregation
is 19[(g − 1)(⌊n/g⌋ + 1) + ⌊n/g⌋⌊h/2⌋]. The size of the attesta-
tion request from the BS is 10 bytes, 2 bytes for the leader id and
8 bytes for grouping/attestation seeds. Thus, the overheadto dis-
seminate the attestation request is10ngnp⌊h/2⌋. The overhead of
sending data back to the BS is17ngnp[⌊h/2⌋ +

P⌈h/2⌉
1 (⌊h/2⌋ +

i)] + 9ngnp

P⌈h/2⌉
1 (⌊h/2⌋ + i)(d − 1), because the packets sent

back to the BS from the nodes on the attestation path have the size
of 9 bytes (2 bytes for id and 7 bytes for data) and packets from
other nodes in the attestation are of the size 17 bytes (2 bytes for id
and 15 bytes for data). The total communication overhead of our
protocol inbyte ∗ hop is given by

C′
our ≤ 4(n − 1) + 19[(g − 1)(⌊n/g⌋ + 1) + ⌊n/g⌋⌊h/2⌋]

+27ngnp⌊h/2⌋ + 17ngnp

P⌈h/2⌉
1 (⌊h/2⌋ + i)

+9ngnp

P⌈h/2⌉
1 (⌊h/2⌋ + i)(d − 1)

≈ 23n + ⌊ 19nh
2g

⌋ + ⌊
27ngnph

2
⌋ +

ngnph(3h+2)(9d+8)

8
.

The result inbyte∗hop (Figure 9) is based on the same parameter
setup:n = 3280, d = 3, h = 7 andnp = 1. As shown in the fig-
ure, the communication overhead of our protocol is between80K
and92K, whereas the communication overhead of the hop-by-hop
aggregation approach is45.9K and the communication overhead
of the no-aggregation approach is298.5K.

5.3.3 Simulation Results
The previous analytical results are applicable to balancedtrees

with fixed degrees. To evaluate the communication overhead for
more general cases, we setup a simulation testbed. In our simu-
lation, 3000 nodes are randomly distributed in an area of2000 ∗
2000ft2 . The transmission range is set to60ft. To test different

group sizes, (β, γ) takes 8 different values:(0.15, 30), (0.14, 33),
(0.13, 36), (0.12, 39), (0.11, 42), (0.10, 45), (0.09, 48), (0.08, 51).
For each pair of parameters, we run the simulation 20 times, each
time with a different grouping seed. Based on our Grubbs’ test,
among all the 160 simulation runs, there are no attested groups in
79 simulations, 1 attested group in 52 simulations, 2 attested groups
in 18 simulations, 3 attested groups in 9 simulations, and 4 attested
groups in 2 simulations. We choose one attestation path in each
attested group.

The simulation result inbyte ∗ hop is shown in Figure 10. As
can be seen from the figure, the overhead of our protocol includ-
ing attestation is between 70K∼115K. With the same parameters,
through simulation, we get the communication overhead of the hop-
by-hop aggregation approach to be42K, and the communication
overhead of the no-aggregation approach to be1202K.

In summary, through analytical and simulation results, we can
see that our protocol does not add much overhead compared to the
hop-by-hop aggregation approach, but is more secure. On theother
hand, as the no-aggregation approach, our protocol provides secu-
rity, but with much less communication overhead.

6. RELATED WORK
Many data aggregation protocols [2, 3, 4, 5, 6, 8, 21] have been

proposed, but none of them were designed with security in mind.
Until recently very few work has been focused on secure data ag-
gregation.

After analyzing the possible attacks on the existing aggregation
primitives, Wagner[9] proposed a mathematical framework for for-
mally evaluating the security of several resilient aggregation tech-
niques. For example, median is a more robust estimator than mean;
truncation and trimming can be used to eliminate possible outliers.
This work, however, is not really about data aggregation because
it assumes the BS has already collected all the raw data. Also,
abnormal data are discarded without further reasoning. Hu and
Evans [11] propose a secure hop-by-hop data aggregation scheme
that works if one node is compromised. They also assume that only
leaf nodes in the tree topology sense data whereas the intermedi-
ate nodes do not have their own readings. SDAP can tolerate more
compromised nodes and allows every node to input its own read-
ings.

Du et al. [22] proposes a mechanism that allows the base station
to check the aggregated values submitted by several designated ag-
gregators, based on the endorsements provided by a certain number
of witness nodes around the aggregators. Their scheme does not
provide per-hop aggregation. Also it is assumed that sensing nodes
can be trusted and witness nodes do not collude with the aggrega-
tors. However, this condition may not always hold in practice.

Przydatek et al. [23] present SIA, a Secure Information Aggre-



gation scheme for sensor networks where a fraction of sensornodes
may be compromised. In their model, the BS is the only aggregator,
which collects the authenticated raw data from all the sensor nodes
in the network. The aggregator then computes an aggregationresult
over the raw data together with a commitment to the data basedon
a Merkle-hash tree and then sends them to a trustable remote user,
who later challenges the aggregator to verify the aggregate. They
assume that the bandwidth between a remote user and an aggre-
gator is a bottleneck; therefore, their protocol is for reducing this
bandwidth overhead while providing a means to detect with high
probability if the aggregator is compromised. The main difference
between SIA and SDAP is that SIA does not deal with per-hop
aggregation because it assumes the raw data are first collected by
the aggregator. Since SIA and SDAP work in different stages with
different network models (e.g., in SDAP there is no remote user),
in our future work we will investigate the potential of integrating
these two.

Several other works [24, 25, 26] had also proposed various so-
lutions to prevent false data injection attacks in sensor networks.
In their model, it is assumed that a set of sensors are deployed
as a cluster in an area of interest. When these sensors reach an
agreement on an event, each of them will contribute a MAC over
the event report. If a forwarding node shares a MAC key with the
endorsing sensors, it will be able to verify the authenticity of the
report. It drops the report if the verification fails. In thisway, an in-
jected false data packet could be discarded before it reaches the BS,
saving the forwarding energy. We note that although these schemes
also address the problem of false data injection, they do notinvolve
data aggregations.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose SDAP, a Secure Data Aggregation

Protocol for large-scale sensor networks. By usingdivide-and-
conquer, we partition the aggregation tree into groups to reduce
the importance of high-level nodes in the aggregation tree;we use
commit-and-attest so that the BS has a way to verify the aggregates.

In the future, we will further enrich the protocol in more detail.
For example, the breadth-based attestation and the content-based
attestation techniques may also be included in the protocol. We
may implement and show the benefits of Bloom Filter in our pro-
tocol. The potential of integrating with different networkmodel,
such as that in SIA, will be investigated too.
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