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Abstract—Ride-hailing service has become part of our daily
life due to its convenience and low cost. However, it also raises
location privacy concerns for riders, because the service provider
can observe the full mobility traces of riders while they hail
rides. To address this problem, we first present a baseline
privacy preserving solution. Although the baseline solution can
provide personalized rider location privacy, we identify potential
location inference attacks against it. To overcome these attacks,
we propose an enhanced privacy preserving solution that exploits
novel obfuscation techniques to enable matching ride requests
to drivers without breaching riders’ location privacy and with
limited loss of matching accuracy. We use real dataset of taxi-
cabs to show that our solution, compared to previous work,
provides much better ride matching, i.e., ride matching closer
to the optimal solution, while preserving personalized riders’
location privacy.

I. INTRODUCTION

Ride-hailing services such as Uber, Lyft and Gett, enable

drivers to offer rides using their own vehicles, and enables

riders to request and hail rides. Millions of people enjoy

such service due to its convenience and low cost. However,

the current ride-hailing service significantly threatens riders’

location privacy. Since rider mobility, including the pick-

up and drop-off location information, is tracked, a Service

Provider (SP) can infer sensitive information about the riders

such as where they live and work [1]. Many real world

incidents have been reported about the misuse of such data. For

example, in November 2014, Uber investigated one employee

who was reported to have tracked riders [2]. If this location

privacy issue is not addressed, many users may not be willing

to use such service despite its popularity.

Location privacy has been well studied in the literature,

and researchers have proposed many location obfuscation

mechanisms, such as location perturbation [3], spatial cloaking

[4] [5], dummy location generation [6] [7], etc. In location

perturbation, noise is added to locations to generate obfuscated

locations. In spatial cloaking, a user reduces the granularity

of his location so that his location can be hidden inside a

cloaked region. The dummy location generation technique

generates k − 1 properly selected dummy locations to hide

the user’s actual location. These techniques increase users’

location privacy as it would be more difficult for an adversary

to know the actual locations of the users. However, these

techniques cannot be directly applied to the current ride-

hailing systems without affecting the system usability.

Recently, researchers started to look into privacy issues

in ride-hailing services. PrivateRide [8] is the first system

that aims to enhance location privacy for riders. It relies on

spatial cloaking algorithms to obfuscate locations of riders

and drivers by replacing their actual locations with cloaked

regions. Then, in order to match a rider to a driver, the SP

measures the distances between the rider’s pick-up location

and the drivers’ locations. Based on the calculated distances,

the rider is assigned to the driver who is the closest to his

cloaked region. Since the ride matching is based on the cloaked

regions, instead of the actual locations, the chosen driver may

not be the optimal one and has to drive extra distance for rider

pickup, and the rider may wait extra time to get the ride.

In this paper, we present a location privacy preserving solu-

tion that efficiently matches riders and drivers while preserving

riders’ location privacy. We first propose a baseline solution

that allows a rider to select the driver who is the closest

to his pick-up location without revealing his location to the

SP. However, with side information such as knowledge of

ride matching and temporal cloaking techniques deployed in

the baseline solution, the SP can launch location inference

attacks. To overcome these attacks, we propose an enhanced

solution that allows a rider to specify his privacy preference.

In this solution, the ride matching algorithm selects a set of

drivers that are as close to the rider’s location as possible, and

meanwhile located within an area that meets rider’s privacy

preference. Then, the rider selects a driver among the set of

drivers. The pick-up and drop-off times are further obfuscated

in a way to prevent the SP from using the temporal information

to improve the inference of the rider’s location.

In summary, our main contributions are:

1) We present a baseline privacy preserving solution that

protects locations of riders in ride-hailing services, and

show potential inference attacks against it.

2) To overcome the inference attacks against the baseline

solution, we propose an enhanced privacy preserving

solution which provides personalized riders’ location

privacy. It relies on novel obfuscation techniques that

satisfy riders’ privacy requirements without affecting the

convenience of the service, and with limited loss in ride

matching accuracy.

3) We analyze a real dataset that contains 60000 rides. The

experiment results show that our enhanced solution out-

performs PrivateRide by achieving much better matching

accuracy with negligible computational overhead.

The rest of the paper is organized as follows. Section II



presents the preliminaries. We present the baseline privacy

preserving solution in Section III, and the enhanced solution

in Section IV. We present evaluation results in Section V, and

present related work in Section VI. Section VII discusses some

practical issues, and Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we introduce ride-hailing services, the secu-

rity model, the design goals, and the basic concept of Voronoi

diagram which is employed in our solutions.

A. Ride-Hailing Services

The ride-hailing service involves three parties: riders, drivers

and a service provider (SP). Riders are typically smartphone

users who need to hail a ride. Drivers are car owners who

are willing to offer rides. The SP receives ride requests from

riders and matches the requests with available drivers.

Ride matching is primarily based on the locations of the

rider and drivers. It is initiated when a rider sends a ride

request to the SP that includes his pick-up and optionally drop-

off locations. Then the SP selects among available drivers the

closest driver to the rider’s pickup location. To do so, drivers

have to continuously report their locations to the SP.

After matching a driver to a ride request, the SP allows the

driver and rider to coordinate the ride by sending each party

the information of the other, i.e., name, reputation and phone

number. If both parties accept the ride, the SP continuously

shares the driver’s location with the rider. Once the driver

picks up the rider, he notifies the SP with the start of the ride.

During the ride, the driver continuously updates the SP with

his actual location. At the end of the ride, the driver notifies

the SP and becomes available again to offer a new ride.

B. Security Model

We assume the SP is an honest but curious adversary who

has the incentive to track riders’ precise locations. The SP can

use collected location traces of the riders to profile and infer

sensitive information about them, improve its own service, or

to sell the collected data to other third parties (e.g., advertise-

ment agencies). However, the SP has no incentive to attack

the riders’ and drivers’ mobile devices by providing them

with malicious application. Because such malicious behavior

can be detected via reverse engineering the application, and

hence harm its reputation and lead to business loss over its

competitors.

In our model, drivers continuously update the SP with their

actual locations, because they are workers who provide ride

offers to riders and in return receive money for such a service.

We also assume that drivers do not disclose riders’ locations

to the SP, because drivers are normally independent workers

who do not have the incentive to collude with the SP.

C. Design Goals

Our design goals for a ride-hailing service are as follows:

1) Preserving rider’s personalized location privacy: The

goal is to provide ride-hailing service without disclosing
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Fig. 1. Voronoi diagram of a set of drivers’ locations. The dashed lines
represent the dual graph for the Voronoi diagram of a set of drivers’ locations.

the riders’ actual locations to the SP. Moreover, the

service has to satisfy the riders’ needs for personalized

location privacy throughout the operation of the service.

2) Maximizing the accuracy of ride matching: In ride

matching, the optimal is achieved when a rider is

matched with the closest driver, because it minimizes the

riders’ waiting time, and the drivers’ driving distance.

Hence, the objective is to select a driver that is as

close as possible to the rider’s pick-up location while

preserving his personalized location privacy.

D. Voronoi Diagram

The Voronoi diagram [9], [10] is a data structure in the

field of computational geometry that represents the proximity

information about a set of nodes. It partitions the space with

a set of nodes into polygons such that each polygon contains

exactly one node. Every point inside a given polygon is closer

to the node in this polygon than to any other nodes. Figure

1 shows a Voronoi diagram and its dual graph represented by

the dashed lines. The dual graph of a plane graph G has a

vertex for each face of G and an edge for every two faces of

G that are separated by an edge. Each vertex lies inside one

Voronoi polygon, and each edge connects two vertices in two

Voronoi polygons.

In this paper, we will show a potential location inference

attack that exploits Voronoi diagram. Figure 1 shows the

Voronoi diagram of a set of drivers’ locations. Each driver

location is enclosed by a Voronoi polygon. Locations inside

one polygon are closer to the driver inside this polygon than

any other drivers. Then based on the attack, we propose

an enhanced privacy preserving ride matching algorithm that

protects riders’ location privacy by constructing a Voronoi

diagram and its dual graph.

III. BASELINE PRIVACY PRESERVING RIDE-HAILING

In this section, we introduce the baseline privacy preserving

ride-hailing solution, and describe location inference attacks

against it.

A. System Overview

As shown in Figure 2, our system consists of three parties:

riders, drivers, and SP. The SP handles the incoming ride



Fig. 2. System Model.

requests from riders. A rider sends a ride request includes

geographical region, and optionally obfuscated drop-off lo-

cation. Then based on the provided geographical region, the

SP constructs a list of drivers’ locations for drivers that are

close to the rider. The rider receives the list, picks a driver,

and notifies the SP with the selected driver. The SP allows the

driver and rider to coordinate the ride through direct communi-

cation. Through the established communication channel, they

can share sensitive information such as actual pick-up location,

drop-off location, and obfuscated locations. In addition, the

driver continuously shares his actual location updates while

heading to the pick-up location. On reaching the cloaked

region where the rider is located, he updates the SP with the

same cloaked region of the rider. Then the driver picks up the

rider, and notifies the SP with an obfuscated pick-up time of

the ride. During the ride, the driver continuously sends the

SP the cloaked region until he moves out of it. Afterwards,

the driver continuously sends his actual location to the SP.

After the end of the ride, the driver notifies the SP with an

obfuscated drop-off time of the ride and becomes available

again to offer a new ride. Next, we describe the details of

the baseline privacy preserving ride-hailing solution, which

includes three components: ride initiation, ride matching, and

temporal cloaking.

1) Ride Initiation: A rider initiates a ride request to the

SP as follows. He sends a geographical region, denoted as Q,

which contains his actual pick-up location and its cloaking

region. Figure 3 shows the construction of Q. To construct

Q, the rider specifies his privacy preference in the form of a

cloaking region [11], where his actual location will be indis-

tinguishable from any other location inside it. Specifically, the

rider specifies the cloaking region as a square of an area equals

to S2 centered at the actual location L. Then another location,

denotes L′, is chosen uniformly at random from points inside

the cloaking region. Finally, Q is generated centered at L′ with

a diagonal 2R. To guarantee that the cloaking region will lie

inside Q, R should be of length greater than or equal to the

length of the diagonal of the cloaking region, i.e., R ≥
√
2S.

Using the same construction method, the rider can generate an

obfuscated drop-off location. Afterwards, the rider sends the

ride request with the geographical area Q to the SP. Once the

SP receives the ride request, it uses Q to filter out all drivers

that are irrelevant to the rider’s pick-up location and sends to

the rider a list of drivers’ locations in Q.

L'

L

S

R

Fig. 3. Construction of
geographical region Q.
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Fig. 4. Location Inference Attack
with knowledge of ride matching.

2) Ride Matching: Following the ride initiation process, the

SP sends a set of candidate drivers’ locations which are within

the geographical region Q provided by the rider. Then the rider

selects the closest driver to his actual location, and notifies the

SP with the selected driver.

3) Temporal Cloaking: To obfuscate the pick-up and drop-

off times, the SP discretizes the time of the day into time

intervals. Then a driver reports to the SP the time interval

where an event occurs. For example, if the time interval is

4 minutes, an event such as rider pick-up occurring between

0:00 and 0:04 would be reported to the SP at 0:04.

B. Location Inference Attacks

In this subsection, we first show how the SP can launch

a location inference attack with knowledge of ride matching.

Then, we show another location inference attack which ex-

ploits knowledge of temporal cloaking along with information

about driver’s car speed to improve the inference of riders’

locations.

1) Location inference Attack with knowledge of ride match-

ing : Since a rider selects the driver closest to his location, the

SP can improve the inference of the rider’s location based on

the selected driver. The SP has access to all drivers’ locations,

and thus the selected driver indicates the rider’s location is

closest to that driver’s location than any other driver’s location.

Therefore, the SP can perform the attack by constructing a

Voronoi diagram based on a set of drivers’ locations. Every

driver’s location is enclosed by a Voronoi polygon which

consists of all locations closer to that location than any other

driver’s location. By using the Voronoi diagram, the SP can

infer the rider’s location is within the Voronoi polygon of the

selected driver, denoted by PD∗ . Therefore, when the cloaking

region is larger than PD∗ , the SP can reduce rider’s cloaking

region into a smaller region represented by PD∗ .

Figure 4 describes the location inference attack. The ‘◦’

symbol represents the drivers locations, and the constructed

Voronoi diagram partitions the region based on the distance

to the drivers’ locations. The square represents the cloaking

region of size AR = S2. The gray polygon represents the

Voronoi polygon P ∗
D of the closest driver. The ‘•’ symbol

represents the location of the driver closest to the rider’s pick-

up location. The pick-up location is represented by a ‘+’

symbol. Considering the rider chooses the closest driver to his
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knowledge of temporal cloaking.

location, then the SP deduces that the rider’s actual location

lies within PD∗ .

To quantify the effect of the attack on location privacy, we

introduce the following notations. Let O denote the cloaking

region and divide it into a grid of K cells. Each location is

represented by the cell it falls into. The probability of being

in a cell i is denoted by pi. Then, we first quantify the attack

using a metric called Leaked Information, defined as follows:

Leaked Information = H(O)−H(O|PD∗), (1)

where H(O) =
∑R

i=1 pi . log 1
pi

.

H(.) denotes the entropy of a random variable [12]. The

H(O) evaluates the SP’s prior knowledge about rider’s lo-

cation and it is the entropy of the prior probability. We

assume that before the attack, the SP does not have any side

information and the best he can do is to reveal O. Hence the

actual rider’s location can be within any cell inside O with

probability equal to 1
K

. Here, the prior probability is repre-

sented by a uniform distribution which provides the maximum

entropy before running the attack, and hence H(O) = logK.

The H(O|PD∗) measures the SP’s posterior knowledge after

running the attack and it is the entropy of the posterior

probability. Hence, the privacy leakage is measured in terms

of the change in SP’s knowledge. Next, we quantify the attack

using another metric called Disclosed Area, defined as follows.

Disclosed Area =
AR −Ap

AR

. (2)

The Disclosed Area metric measures the proportion of the

area of the cloaking region disclosed after running the attack.

AR denotes the size of the cloaking region and Ap denotes

the size of PD∗ .

Using these two metrics, we quantify the effect of the attack

on a real dataset consisting of mobility traces of taxi cabs

collected in Shanghai, China [13]. The dataset is described

in more details in Section V.A. Figure 5 and Figure 6 show

the cumulative distribution functions of the Leaked Informa-

tion and Disclosed Area, respectively. It can be observed as

S increases, both Leaked Information and Disclosed Area

increase. This is because when AR is larger, more drivers

can be located inside O. With many drivers inside O, many

constructed voronoi polygons lie inside O, and the SP can

infer that the rider’s location is only inside one of them which

is PD∗ . As shown in Figure 6, even with small O, a square

with S = 250 m, only around 20% cases do not disclose any

information about O. For cloaking regions with larger AR,

the privacy breach is nearly inevitable. For example, when

S = 1000 m, in 80% cases, the portion of the area disclosed

is larger than 75%.

2) Location inference Attack with knowledge of temporal

cloaking: The temporal cloaking technique does not prevent

the SP from exploiting temporal information along with side

information such as driver’s car speed to infer more precise

locations. The inference attack is described as follows. Let

v denote the maximum driver speed, and T denote the time

difference between the time of the last known driver’s location

and the obfuscated time for pick-up. Let the maximum dis-

tance between any two points inside the cloaking region PD∗

be dmax. Then the SP may prune part of O by computing the

maximum distance a driver can travel when moving at speed

v. The maximum travel distance equals to v.T . Then the attack

is successful iff dmax > 2vT .

As shown in Figure 7, when dmax of PD∗ , i.e., the gray

polygon, is larger than the maximum travel distance a driver

can travel, it indicates that part of PD∗ is unreachable by

the driver at the pick-up time, and hence the actual pick-

up location cannot lie within the unreachable region, i.e.,

the region shown by dashed lines. Hence, the SP can further

reduce the cloaking region PD∗ . Similar attack can be used to

improve the inference of the drop-off location.

IV. ENHANCED PRIVACY PRESERVING RIDE-HAILING

Our enhanced privacy preserving ride-hailing is based on

the baseline solution. By improving the techniques used in

ride matching and temporal cloaking, our enhanced solution

can defend against location inference attacks.

A. The Enhanced Ride Matching

The enhanced ride matching consists of two parts. The

first part is a spatial cloaking algorithm that constructs a

cloaking region based on drivers’ locations and rider’s privacy

preference. The second part is a driver selection algorithm

that picks a single driver among the set of drivers located
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within the cloaking region. The driver is chosen according to

a probabilistic mechanism.

In the spatial cloaking algorithm, the actual pick-up location

of a rider, denoted as Lp
R, is hidden inside a cloaking region.

The rider specifies his privacy preference in the form of an

area of size AR. The privacy preference corresponds to hiding

the rider’s actual location inside an area of size at least AR.

With such privacy preference, the cloaking algorithm generates

the cloaking region as follows. First, let LD = {LD1
, .., LDn

}
denote the set of n drivers’ locations provided by the SP. The

algorithm constructs the Voronoi diagram and its dual graph

from LD. The Voronoi diagram divides the area into a set of

Voronoi polygons represented by {P1, .., Pn}. The dual graph

of the Voronoi diagram corresponds to constructing a Delau-

nay triangulation [14] on the set LD. Each node LDi
of the

dual graph is labeled with two metrics: the Euclidean distance

between LDi
and the Lp

R, denoted as DDi
= dist(LDi

, Lp
R),

and the area of the Voronoi polygon Pi, denoted as APi
. The

APi
is computed using the polygon triangulation method [15].

Then the problem can be formulated as follows.

Definition IV.1. Let the dual graph of the Voronoi diagram

denote G = (V,E), where V = {LD1
, .., LDn

} and each

location LDi
lies inside a Voronoi polygon Pi. Find a subgraph

GS = (VS , ES), ES ⊂ E that satisfies the following: 1) the

drivers’ locations in VS are as close as possible to the rider’s

location Lp
R; that is, for any driver’s location LDi

∈ VS and

driver’s location LDj
/∈ VS , DDi

≤ DDj
, 2) the area covered

by the Voronoi polygons of the drivers in VS , denoted as AT =
AP1

+ ..+AP|VS |
, must be equal to at least AR.

The problem can be solved using a greedy algorithm. The

intuition of the algorithm is to construct a subgraph that

includes a set of drivers’ locations by sequentially picking a

driver’s location that is closest to the rider’s location until the

size of the area AT covered by the selected driver’s polygons

exceeds the required threshold AR. Hence, the algorithm

progressively expands the covered area by aggregating drivers’

polygons until the privacy preference AR ≤ AT is satisfied.

To construct the subgraph, the algorithm traverses the dual

graph G. However, the traversal of G cannot be done using a

straight forward Breadth-First search. Because it is not always

the case that immediate neighbor nodes are closer than farther-

away neighbors. For example, as shown in Figure 8, the

distance between a rider’s location at node A and the location

of its neighbor node C is larger than the distance between it

and the location of its two-hop neighbor node B. Based on

this observation, the algorithm uses a priority queue QS in

traversing G and the traversal works as follows. Initially, VS

contains the location of the driver closest to the rider, i.e., the

root node. Next, the algorithm explores and adds the neighbor

nodes of the root node to QS . Then it picks a node among

the neighbors from QS that has the smallest distance, inserts

it into VS , and explores and adds its neighbors to QS . Hence

at every step, the algorithm chooses, among all nodes in QS ,

a node that is a neighbor to any node in VS without favoring

root’s neighbors over others. The choice from neighbors is to

preserve the connectivity of the cloaking region constructed

by the drivers’ polygons of VS .

The second part of the enhanced ride matching is the driver

selection algorithm, which runs on a set S equivalent to VS but

ordered according to the distance from the root node. It divides

S into two sets S1 and S2, such that S1 contains locations that

are closer to the rider’s location when compared to locations

in S2. Then a single driver is selected among S1 and S2 with

probability equal to w ∗pi and pi, respectively. The parameter

w denotes a weight factor which, when set to a value larger

than one, allows the driver selection algorithm to favor closer

drivers. The parameter pi is equal to 1
(w|S1|+|S2|

).
Spatial cloaking and driver selection are summarized in

Algorithm 1. For the priority queue implementation, we con-

sider using a regular binary heap. Then the complexity time

of the algorithm is as follows. Lines 1 ∼ 2 constructs the

Voronoi diagram and its dual graph. An algorithm such as the

Fortune’s algorithm [16] can be used to generate the Voronoi

diagram and its dual, which runs in O(n log n). Lines 3 ∼ 6
iterate on all nodes in V to label them, which takes O(n).
The traversal of the dual graph in lines 7 ∼ 14 runs in time

O(|VS | + |ES |), where |VS | = O(n) and |ES | = O(n) as

stated in the following lemma:

Lemma IV.1. Any planar graph on n ≥ 3 vertices has at

most 3n− 6 edges and at most 2n− 4 faces [17].

Hence the running time of the graph traversal is O(n) and an

iteration of it runs in O(log n) because each iteration consists

of: 1) finding and removing the node with the smallest distance

among all nodes in QS , which requires O(log n), and 2)

adding to QS the node’s children, which requires O(log n).
Therefore, Lines 7 ∼ 14 requires O(n log n) time. And lines

15 ∼ 17 has the time complexity of O(n log n) for sorting VS

using merge sort algorithm. Hence, the time complexity of the

greedy algorithm is O(n log n).
Figure 9 shows the constructed cloaking region, the selected

driver by our algorithm, and one of the drivers that can be

selected by PrivateRide. As can be observed, our algorithm

works as follows. VS initially contains the location of the

closest driver, and AT equals to the area of the closest driver’s

polygon, represented by the light gray polygon. Then the

algorithm explores and adds the neighbor nodes of the root



node, until it constructs the cloaking region that satisfies the

privacy preference AR. The cloaking region is represented

by the light and dark gray regions. Then a single driver is

selected among the set of drivers within this region. The driver

selected by our algorithm is represented by a ‘⊙’ symbol.

The driver selected by PrivateRide is picked among the set

of drivers inside the square region, i.e., the cloaking region

represented by the square. Because PrivateRide considers all

drivers co-located with the rider at the same cloaking region

have a distance equals to zero from that rider’s location,

it cannot distinguish between them. The driver represented

by ‘⊕’ symbol, which is at the boundary of the cloaking

region, can be selected by PrivateRide. The closest driver is

represented by a ‘•’ symbol. As observed, our algorithm does

not select the closest driver due to the privacy preference.

However, the selected driver by our algorithm can be at a

distance closer to the rider’s location compared to the selected

driver by PrivateRide. This is because PrivateRide can select a

driver located in the boundary of the square region, while our

algorithm uses nearby drivers to generate the cloaking region.

Algorithm 1: ENHANCED RIDE MATCHING

Input: rider’s pickup location Lp
R and set of n

drivers’ locations LD = {LD1
, .., LDn

}
Output: an optimal driver location that satisfies the

privacy requirement AR

/* Spatial cloaking */

1 construct Voronoi diagram from set LD

2 construct the dual graph G = (V,E) of the Voronoi

diagram where V = LD and each location LDi
lies

inside a Voronoi polygon Pi.

3 for each node LDi
do

4 compute the Voronoi polygon area APi

5 compute the distance DDi
= dist(LDi

, Lp
R)

6 label the node with {APi
, DDi

}
7 set VS to the node u with the smallest distance DDi

among all nodes in V
8 set AT to the area APi

of the Voronoi polygon of u
9 initialize priority queue QS and push in QS the

children of u
10 while AT < AR do

11 find and remove a node v ∈ QS with the smallest

distance among all nodes in QS

12 add to AT the area APi
of the Voronoi polygon of

v
13 add v to VS

14 push in QS the children of v

/* Driver selection */

15 set S to VS and sort it in ascending order by distance

16 divide S into two sets S1 and S2

17 pick a driver location L∗
D from S1 with probability

w ∗ pi or from S2 with probability pi
18 return L∗

D
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Fig. 9. Construction of the spatial cloaking region.

B. The Enhanced Temporal Cloaking

To overcome the inference attack against the baseline tem-

poral cloaking, we need to obfuscate the time such that the

possible travel distance of a driver within the given time

covers the whole cloaking region. Otherwise, some part of the

cloaking region can be pruned by the SP, because the driver

cannot reach them at his maximum speed.

The enhanced temporal cloaking algorithm is described

in Algorithm 2. In this algorithm, the cloaking region is

represented by a set of points X , which represent the vertices

of the Voronoi polygons lying inside the cloaking region. The

SP using some statistics can determine the maximum speed v
of a driver within this region. In addition, the SP knows the

time of the last actual location reported by the driver before

entering the rider’s cloaking region, denoted by td.

In Line 1 ∼ 2, first we use the randomized incremental

algorithm proposed in [18] to compute the smallest enclosing

circle of the points X . As the smallest enclosing circle has

at least two points of X on its boundary, the maximum

traveling distance between any two points inside the circle,

denoted by dmax, corresponds to the obtained circle diameter.

Then in Line 3, t denotes the time delay which should be

added to obfuscate the actual time and is computed according

to dmax. Finally, we set the obfuscated time according to

Line 4 in the algorithm. A random value r is added to the

obfuscated time to prevent the SP from knowing dmax that

reveals information about the cloaking region. Hence, the

proposed cloaking algorithm runs in time of O(n).

C. Privacy Analysis

We formalize our enhanced privacy preserving ride-hailing

solution by comparing the probabilities of rider being located

in different Voronoi polygons within cloaking region O, after

observing the chosen driver’s location L∗
D. Let Pi, and Pj

be two Voronoi polygons that lie inside O, then the ideal

case is that
P(Pi|L

∗
D)

P(Pj |L∗
D
) ≤ w. For w = 1, the SP may deduce

that the rider has equal probability of being located in Pi

or Pj . However, the SP may have side information on the

prior probability of the rider being located in each polygon,

represented by P(Pi), and P(Pj). For example, the probability

that the rider being located in a shopping area may be higher



Algorithm 2: ENHANCED TEMPORAL CLOAKING

Input: cloaking region represented by a set of points

X , maximum driver speed v, last known time

where driver’s actual location is reported td, a

random value r.

Output: an obfuscated time t′

1 compute the smallest enclosing circle for the set of

points X
2 set dmax to the circle diameter

3 set t to dmax

v

4 set t′ equals td + t+ r
5 return t′

than the probability of being located in a lake. Hence, we can

formalize our privacy preserving solution as follows:

Theorem IV.2. The enhanced privacy preserving ride-hailing

solution guarantees strong privacy for rider’s actual location

inside a cloaking region O iff it satisfies the following for all

prior probabilities and any chosen driver L∗
D from S.

P(Pi|L∗
D)

P(Pj |L∗
D)

≤ w.
P(Pi)

P(Pj)
, ∀Pi, Pj ∈ O. (3)

Proof. The proof is by contradiction. Assume it is safe for a

rider to release the cloaking region O to the SP. Then the SP

knows the locations of drivers inside O, and it also knows that

the algorithm uses the location information of nearby drivers

to generate O. Therefore, it may deduce that the rider tends

to be close to the center of the cloaking region. With such

information, the SP can improve the inference of the rider’s

actual location as follows. For each driver’s location LDi
, it

computes the distances between that location and all other

drivers’ locations, denoted by Di = {distj(LDi
, LDj

)}∀j 6=i.

Then it obtains the variance of the computed distances, rep-

resented by Var(Di) = E[(Di −µ)2]. Finally, the SP chooses

the Voronoi polygon of the driver’s location with the smallest

variance, i.e., argmini Var(Di). The chosen polygon contains

the rider’s actual location with high probability, and thus the

inference of the rider’s location can be improved.

However, in our solution, a rider releases the chosen driver’s

location L∗
D only to the SP, and no more information is

released about the cloaking region. We obtain a contradiction

and thus, the described inference attack is not possible without

knowing the cloaking region O. Hence, the observed L∗
D has

limited effect to the probabilities deduced by the SP.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the enhanced

privacy preserving solution and compare it to PrivateRide.

We first introduce our evaluation setup and then show the

evaluation results.

A. Evaluation Setup

The evaluations are based on a real dataset consisting of

mobility traces of taxi cabs collected during a single day

TABLE I
COMPUTATIONAL TIME OF OUR ALGORITHM

Setting Algorithm Computational Time

R = 500 m (1.12± 0.21) ms

R = 1000 m (1.41± 0.36) ms

R = 2000 m (2.64± 0.82) ms

R = 5000 m (8.66± 2.20) ms

in Shanghai, China [13]. The dataset includes time-stamped

location traces collected using GPS devices. In addition, each

record includes an OCCUPIED variable that indicates whether

the taxi is vacant or occupied. It is equal to 1 when the taxi

is occupied and 0 otherwise. Hence, the ride records are a

sequence of consecutive records where OCCUPIED equals to

1.

A ride is defined by the start time, end time, pick-up

location, drop-off location, ride time, and ride distance. The

start time and the pick-up location are obtained from the first

record of the ride records. The end time and the drop-off

location are obtained from the last record of the ride records.

The ride distance is calculated using the haversine formula

[19], as the distance between the pick-up and drop-off location.

The total number of rides in the dataset is 60000. We filter

out rides that have a total distance of zero or last for less than

5 minutes, and we only consider rides inside an area of ≈ (44
km ∗ 44 km). Thus, for our experiments we use 25000 rides.

We compare our enhanced solution with PrivateRide [8]

by evaluating the accuracy of their ride matching. In the

evaluation results, we call our enhanced ride matching Our

algorithm. The performance of both solutions is evaluated

based on a metric called Relative Extra Distance, which

measures the extra distance a driver has to drive compared

to the distance covered by the closest driver to the rider’s

location. We set R = 4000 m if not mentioned otherwise.

B. Evaluation Results

In this section, we present the experimental evaluation

results. For comparison purpose, we implemented the cloaking

algorithm in PrivateRide, and we set the area of the cloaking

region to AR. For instance, if AR = 62500 m2, the region is

divided into square cells of 250 ∗ 250 m2.

1) Effect of the privacy preference AR and the weight

factor w on the ride matching accuracy: In Figure 10, we

show the effect of AR and w on ride matching accuracy

measured by the Relative Extra Distance metric. The results

show the cumulative distribution function of the Relative Extra

Distance, which reflects the extra cost for both drivers and

riders. It can be observed that by imposing higher privacy

preference by requiring larger AR, the matching accuracy

decreases. In addition, we can observe that the increase in

w contributes to an increase in the matching accuracy, and

hence a decrease in the extra distance.

Compared to PrivateRide, our algorithm, under the same

AR, achieves higher matching accuracy. As AR increases, the
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Fig. 10. Effect of AR on ride matching accuracy (Relative Extra Distance). (a) AR = 20002 m2, (b) AR = 10002 m2, and (c) AR = 2502 m2

accuracy gap between our algorithm and PrivateRide increases,

which shows that our algorithm outperforms PrivateRide. As

shown in Figure 10 (a), when AR = 20002 m2, in 80% of

the rides, the Relative Extra Distance of our algorithm under

different w’s is up to: 831 m for w = 1, 760 m for w = 2, and

675 m for w = 4, while it is up to 1560 m in PrivateRide. In

this case, comparing our algorithm with w = 4 to PrivateRide,

the savings in the extra cost can be calculated as follows:
1560−675

1560 = 56.7%. While as shown in Figure 10 (b), when

AR = 10002 m2, in 80% of the rides, the Relative Extra

Distance of our algorithm with w = 1 is up to 380 m, but up

to 666 m in PrivateRide.

2) Computational overhead: We evaluate the computa-

tional time of the algorithm when AR = 62500 m2. We study

the effect of R on the computational time. As shown in Table

I, for a rider, the computational overhead introduced by our

algorithm varies depending on R. It can be observed that the

time overhead in our algorithm is small, especially when R
ranges from 500 m to 2000 m, it is only ≈ 1.12 ms to 2.64 ms.

As AR and R increase, the time overhead increases. However,

even with AR = 25002 m2, R can be equal to 5000 m, and

in this case the time overhead is still small to be noticed by

a rider. In PrivateRide, riders receive a single driver selected

by the SP, hence there is no computational overhead.

3) Effect of the privacy preference AR on the time delay

t due to temporal cloaking: We evaluate the time delay t
generated by the enhanced temporal cloaking algorithm. We

study the effect of AR on the introduced time delay. As

shown in Figure 11, the time delay introduced by the temporal

cloaking algorithm varies with AR. As observed, the time

delay varies and it is small, especially when AR ranges from

2502 m2 to 5002 m2. In ≈ 90% of the cases, the time delay

is less than 2 minutes. In PrivateRide, the temporal cloaking

introduces fixed time delay. However, as shown in Section

III.B, the SP can improve the inference of riders’ locations

with the knowledge of such static temporal cloaking.

VI. RELATED WORK

In the line of privacy preserving solutions for ride-hailing

services, previous works have addressed privacy issues in

ride-sharing services [20]–[23]. For example, Friginal et. al

[20] proposed a solution for protecting location privacy in
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Fig. 11. Time delay introduced by the enhanced temporal cloaking algorithm
for different AR.

dynamic ride-sharing services. They consider a distributed

architecture which allows users’ location information to be

scattered around the network, hence preventing the SP from

collecting and storing sensitive location information from ride-

sharing users. Ni et. al [21] proposed a protocol to solve

the contradiction between safety and privacy preservation of

riders and drivers. However, ride-sharing is different from ride-

hailing. Ride-sharing services enable multiple individuals with

similar trip schedules to share a single car along their route.

While ride-hailing services allow users to use their own cars as

taxies, so they can pick up and drop off riders at their specified

pick-up and drop-off locations.

Recently, researchers started to look into privacy issues

in ride-hailing services. PrivateRide [8] is the first system

that aims to enhance location privacy for riders. It relies on

spatial cloaking algorithms to obfuscate locations of riders

and drivers by replacing their actual locations with cloaked

regions. Then, in order to match a rider to a driver, the SP

measures the distances between the rider’s pick-up location

and the driver’s locations. Based on the calculated distances,

the rider is assigned to the driver who is the closest to his

cloaked region. Since the ride matching is based on the cloaked

regions, instead of the actual locations, the chosen driver may

not be the optimal one and has to drive extra distance for

rider pickup, and the rider may wait extra time to get the

ride. As another solution, ORide [24] relies on homomorphic

encryption to encrypt riders’ and drivers’ locations before

sending them to the SP. Then the SP computes the encrypted



distances based on the encrypted locations and returns them to

the rider. The rider decrypts the distance and selects the closest

driver. Although ORide achieves better matching results com-

pared to PrivateRide, its cryptographic solution incurs much

higher computation overhead. Moreover, this solution encrypts

drivers’ locations; as a result, the SP does not know the

locations of the drivers. Hence, this model is not compatible

with the current ride-hailing services and not incrementally

deployable.

In this paper, we focus on protecting riders’ pick-up and

drop-off locations which can be used to infer sensitive in-

formation such as where riders live and work. Protecting

the whole riders’ mobility trace is out of the scope of

this work. There are existing works related to anonymizing

users’ mobility traces [25]. Despite the existence of these

anaonymization solutions, the work in [26], [27] highlights

the privacy vulnerability of anonymized traces by exploiting

users’ side information such as users’ observed locations and

co-locations.

VII. DISCUSSIONS

One of the challenges in adapting our algorithm is how

to preserve rider’s location privacy at the drop-off location.

After the ride ends, normally the driver continuously reports

his actual location to the SP in order to receive new ride

requests. However, by knowing the driver actual location after

the drop-off, the SP can infer rider’s drop-off location. To

protect rider’s drop-off location, one solution is to let the driver

drive outside of the rider’s cloaking region before reporting

his actual location. Another solution is to wait for some time

proportional to the cloaking region size before reporting the

actual location. In both solutions, the driver would not be

able to accept new rides for some time, which may adversely

affect his business. To compensate for that, the riders who

care for their location privacy should pay the driver an amount

proportional to the time he has to wait or the extra distance

he has to drive out of the cloaking region.

VIII. CONCLUSIONS

In this paper, we addressed the problem of preserving riders’

location privacy in ride-hailing services. We presented two

solutions, the baseline solution and the enhanced privacy pre-

serving ride-hailing solution. Although the baseline solution

can provide riders with personalized location privacy, we iden-

tified two inference attacks against it. Then, we presented an

enhanced solution which relies on enhanced ride matching and

temporal cloaking algorithms to deal with these inference at-

tacks. The enhanced solution provides riders with personalized

location privacy while limiting the matching accuracy loss.

Experimental results showed that our solution outperforms

previous work by providing more accurate matching results

with negligible computational overhead.
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