
Detecting Software Theft via System Call Based Birthmarks

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA 16802

Email: {xinrwang, jhi, szhu}@cse.psu.edu

Peng Liu
College of Information Sciences and Technology

Pennsylvania State University
University Park, PA 16802

Email: pliu@ist.psu.edu

Abstract—Along with the burst of open source projects,
software theft (or plagiarism) has become a very serious threat
to the healthiness of software industry. Software birthmark,
which represents the unique characteristic of a program, can
be used for software theft detection. We propose two system
call based software birthmarks: SCSSB (System Call Short
Sequence Birthmark) and IDSCSB (Input Dependant System
Call Subsequence Birthmark), and examine how well they
reflect unique behavioral characteristics of a program. To our
knowledge, our detection system based on SCSSB and IDSCSB
is the first one that is capable of software component theft
detection where only partial code is stolen. We demonstrate the
strength of our birthmarks against various evasion techniques,
including those based on different compilers and different
compiler optimization levels as well as those based on very
powerful obfuscation techniques supported by SandMark.
Unlike the existing work that were evaluated through small or
toy software, we also evaluate our birthmarks on a set of large
software (web browsers). Our results show that system call
based birthmarks are very practical and effective in detecting
software theft that even adopts advanced evasion techniques.

Keywords-detection; plagiarism; birthmark;

I. INTRODUCTION

Software theft is an act of reusing someone else’s code,
in whole or in part, into one’s own program in a way
violating the terms of original license. Along with the rapid
developing software industry and the burst of open source
projects (e.g., in SourceForge.net there were over 180,000
registered open source projects as of Aug.2008), software
theft has become a very serious concern to honest soft-
ware companies and open source communities. To protect
software from theft, Collberg and Thoborson [1] proposed
software watermark techniques. Software watermark is a
unique identifier inserted into the protected software, which
is hard to remove but easy to verify. However, theoretically,
any watermark can be removed by sufficiently determined
attackers [2]. As such, a new kind of software protection
techniques called software birthmark were recently proposed
[3]–[6]. A software birthmark is a unique characteristic that a

The work of Wang and Zhu was supported by CAREER NSF-0643906.
The work of Jhi and Liu was supported in part by AFOSR MURI grant
FA9550-07-1-0527, ARO MURI: Computer-aided Human Centric Cyber
Situation Awareness, and NSF CNS-0905131. This work was also supported
by AFRL award FA8750-08-C-0137.

program inherently possesses, which can be used to identify
the program. Though some initial research has been done
on software birthmarks, existing schemes are still limited
in meeting the following highly desired requirements: (R1)
Resiliency to semantics-preserving obfuscation techniques
[7]; (R2) Capability to detect theft of components, which
may be only a small part of the original program; (R3)
Scalability to detect large-scale commercial or open source
software theft; (R4) Applicability to binary executables,
because the source code of a suspected software product
often cannot be obtained until some strong evidences are
collected. To see the limitations of the existing techniques
with respect to above requirements, let us break them down
into four classes: (C1) static source code based birthmark
[3]; (C2) static executable code based birthmark [8]; (C3)
dynamic whole program path(WPP) based birthmark [5];
(C4) dynamic API based birthmark [4], [6]. We briefly
summarize their limitations as follows: C1, C2 and C3
techniques cannot satisfy requirement R1 because they are
vulnerable to the techniques such as outlining and ordering
transformation; C2, C3 and C4 detect only whole program
theft thus cannot satisfy R2; C1 cannot meet R4 because
it requires source code; none of the existing techniques has
been evaluated on large-scale programs.

In this paper, we propose behavior based birthmarks for
meeting these key requirements. Behavior characteristic has
been widely used to identify malware from benign programs
[9], [10]. While two software independently developed for
the same purpose share many common behaviors, one usu-
ally contains unique behaviors compared to the other due
to the difference in features and implementation details. For
example, the Gecko HTML rendering engine [11] supports
MathML, while KHTML [12] does not; Gecko implements
RDF (resource description framework) to manage resources,
while KHTML implements its own framework. The unique
behaviors can be used as birthmarks for software theft
detection. Note that we aim to protect large-scale software.
The programs or components that are too small to bear
unique behaviors are out of our scope.

A system call sequence is a good candidate for behavior
based birthmarks because it shows the interaction between
a program and the operating system, where the interaction

is an essential behavioral characteristic of the program [9],
[10]. Although a code stealer may apply compiler op-
timization techniques or sophisticated semantic-preserving
transformation on a program to hide original code, these
techniques usually do not change the sequence of system
calls. It is also difficult to avoid system calls, because system
calls are the only way for a user mode program to request
kernel services in modern operating systems. For example,
in operating systems such as Unix/Linux, there is no way
to go through the file access control enforcement other than
invoking open()/read()/write() system calls.

We develop two system call based dynamic birthmarks
SCSSB (System Call Short Sequence Birthmark) and ID-
SCSB (Input Dependant System Call Subsequence Birth-
mark) to meet aforementioned key requirements. To extract
SCSSB, short subsequences of system calls are collected
from the whole system call sequence during the execution
of a program with a given input. Observing that some
system call short sequences in the set are commonly found
in many other programs and hence they do not represent
the unique behavior characteristic of the program, we estab-
lish a database of the common short sequences of system
calls from various programs. SCSSB is then extracted by
removing the commonly found short sequences from the
system call short sequences of the program. To address
noise injection attacks, we further propose IDSCSB, which
involves slightly higher performance overhead than SCSSB.
In IDSCSB, with two different inputs, we first extract two
whole system call sequences that only include the system
calls dependent to the individual input. The IDSCSB is
generated from each system call sequence by excluding the
system calls which appear in both system call sequences in
common. In this way, we can remove noisy system calls that
are intentionally injected. Our contributions are threefold:

• We proposed a novel type of birthmarks, which exploits
short sequences or input dependent subsequences of system
calls to represent unique behaviors of a program. Without
requiring any source code from the suspect, the system
call birthmark detection is a practical solution for reducing
plaintiff’s risks of false accusation before filing an intel-
lectual property lawsuit.
• As one of the most fundamental runtime indicators of pro-

gram behaviors, our system call birthmarks are resilient to
various advanced obfuscation techniques. Our experiment
results indicate that it not only is resilient to simple evasion
techniques such as different compilers and different opti-
mization levels, but also successfully discriminates code
obfuscated by SandMark [13], a state-of-the-art obfuscator.
• To our best knowledge, SCSSB and IDSCSB are the first

birthmarks that are proposed to detect software compo-
nent theft. Moreover, unlike existing techniques that are
evaluated with small or toy programs, we evaluate our
birthmark on a set of large software (web browsers). Thus,

�� ���
�� ��		
����	�			
�� 			���
�� 			���	
�����������	

�
�� 							���
�� 							���
�� 							���
�� 			�
�� 			���
����		����	�
���			���
����

					
�

��	��	��	��	��	��	��	��	��	��	��	��

�	�	�		��������!		��������!	

��������!		��������!		��������!	

���������

																								
"

Figure 1. (a) An example program. S0,...,S6 denote system calls. (b) The
system call trace generated by the execution of the example program with
input i = 1. (c) 4-long system call sequence set of the system call trace.

our evaluation shows the proposed birthmarks are practical.

II. PROBLEM FORMALIZATION

A. Software Birthmarks

A software birthmark is an inherent characteristic of a
program, which can uniquely identify the program. Before
we formally define software birthmarks, we first define copy.
Program q is a copy of program p, if q is exactly the same
as p. q is still considered as a copy of p after a sophisticated
software thief applies semantic preserving transformation
such as obfuscation techniques and compiler optimization.
Tamada et al. [3] and Myles et al. [5] define software
birthmark and dynamic software birthmark as follows:

Definition 1: (Software Birthmark) Let p, q be programs
or program components. Let f(p) be a set of characteristics
extracted from p. We say f(p) is a birthmark of component
p, only if both of the following conditions are satisfied:

1) f(p) is obtained only from p itself.
2) program q is a copy of p ⇒ f(p) = f(q).
Software birthmarks can be classified into static birth-

marks and dynamic birthmarks. A static birthmark relies on
syntactic structure of a program. Existing static birthmarks
are vulnerable to simple semantic-preserving transforma-
tions [5]. On the other hand, dynamic birthmarks rely on
the runtime behavior of a program, which is more difficult
to be altered through the code obfuscation techniques. In
this paper, we propose two dynamic birthmarks.

Definition 2: (Dynamic Software Birthmark) Let p, q be
programs or program components. Let I be an input to p
and q. Let f(p, I) be a set of characteristics extracted from p
by executing p with input I . f(p, I) is a dynamic birthmark
of p, only if both of the following conditions are satisfied:

1) f(p, I) is obtained only from p executed with input I
2) q is a copy of q ⇒ f(p, I) = f(q, I)

B. System Call Birthmarks

Definition 3: (System Call Trace) Let p be a program or
a program component. Let I be an input to p. A system call
trace T (p, I) is the trace of system calls called by program
p during the execution of program p with input I .

Figure 1(b) shows an example of a system call trace. For
simplicity, we show only the order of the system calls. The
actual system call traces also contain the parameter values
passed to the system calls and the return values.

Definition 4: (System Call Sequence Set) Let p be a
program or a program component. Let I be an input to p.
Let T (p, I) be the trace of system calls called by p during
the execution of p with input I . Then, k-long system call
sequence set S(p, I, k) is defined as follows:

S(p, I, k) = {t | t is a substring of T (p, I) and |t| = k}
Figure 1(c) shows an example of a 4-long system call

sequence set.

C. System Call Short Sequence Birthmark

Short sequences of system calls have been widely used
for intrusion detection systems to detect irregularities in
the behavior of a program for many years [14]. Here, we
use system call short sequences as a birthmark to detect
similarity of two programs. We define system call short
sequence birthmark as follows:

Definition 5: (SCSSB: System Call Short Sequence
Birthmark) Let p be a program or a program component.
Let I be an input to p. System call short sequence birthmark
SCSSB(p, I, k) is defined as a subset of a system call se-
quence set S(p, I, k) that satisfies the following conditions:

1) q is a copy of p ⇒ SCSSB(p, I, k) =
SCSSB(q, I, k) for any I .

2) q is different from p ⇒ SCSSB(p, I, k) should not
appear in q’s execution instances.

D. Measurement of Birthmark Similarity

The simplest measurement of similarity of two programs
is resemblance. Assuming a birthmark is a set of values
that represent unique characteristics of a program, we can
define resemblance of two birthmarks A and B using set

operations: R(A,B) =
|A ∩B|
|A ∪B| . Here the ∩ and ∪ opera-

tions are set intersection and union operations, respectively,
and the || operation denotes set cardinality. However, a
software plagiarizer can deliberately insert noise in a stolen
program. As a consequence, the resemblance is decreased
so that the stolen program can evade detections. In addition,
the resemblance is not an accurate measurement for core
component theft, because the core component may be only a
small part of the whole program. To overcome the limitation
of resemblance measurement, we define containment of two
birthmarks.

Definition 6: (Containment) The containment of A in B
is defined as:

C(A, B) =
|A ∩B|
|A|

Here A is the birthmark of a plaintiff program or its
component, and B is the birthmark of a suspect program.

Original
Program

 Input

S y s t e m C a l l T r a c e r System Call Tracer

Suspicious
Program

Birthmark
Generator

Bir thmark
Generator

 Detection
 Result

Bir thmark
Comparison

System Call Abstraction System Call Abstraction

Figure 2. System Design Diagram

From above definition, although a plagiarist may be able to
inject noise into B, as long as we can ensure |A ∩ B| will
not change, the containment measurement will be robust to
such attacks and suitable for core component theft detection.

III. SYSTEM DESIGN AND IMPLEMENTATION

Figure 2 shows the generic system diagram of our soft-
ware theft detection system. Given two programs in binary
executable, one is the plaintiff program and the other is the
suspect one, we first select inputs to feed both programs.
Note that to avoid false positives and false negatives caused
by program randomness, a number of different inputs should
be tested. In the runtime we use system call tracer to record
the whole system call sequence from each of the execution
with the same input. Then, system call abstraction removes
the system calls that are normally not related to program
behaviors. Next, system call birthmarks are generated by
birthmark generator and their similarity is measured. Fi-
nally, given a detection threshold, our system reports the
detection result. Let us describe these components in detail.

A. System Call Tracer

The simplest way to record system call traces is to use a
tool such as strace in Linux. Strace can record all system
calls invoked by a process, but it does not provide the thread
identifier when tracing a multi-threaded program. Thus, due
to the scheduling of threads, strace cannot always generate
accurate system call sequence birthmarks.

Therefore, we implemented SATracer based on Valgrind
[15]. Valgrind is an open source dynamic emulator. It
supports extensions called skins, which can dynamically
instrument a program. SATracer records the system call
traces of a program by running the program in its own
emulation environment. It records the system call number
as well as the process and thread numbers when a system
call is invoked.

SATracer can also mark whether a system call is called by
a specific component. This is useful for detecting software
component theft because we need to know which system
calls are invoked from which component of a plaintiff
program. Specifically, there are two options. one method is

to check whether a system call is called by a subroutine of
the component during the execution. We first prepare a list
of all subroutines of the component in SATracer. The list is
automatically generated by analyzing the source files of the
component using parser Elsa [16]. Then, SATracer checks
the execution stack of the running thread when a system
call is called from one of the subroutines. If a subroutine
in the execution stack exists in the prepared list, it must
be that this system call was called by the component and
hence it will be marked. Note that we assume that we have
control to the compiling process of plaintiff programs so
that symbol tables are kept in the executables. Alternatively,
if we can compile the specific component to a dynamically
linked library, a simpler method is used. Valgrind supplies
a function which maps a subroutine to the library which
the subroutine belongs to. Therefore, if a subroutine in the
execution stack is called from the component library during
the execution of a plaintiff program, it will be marked. In
either way, we can generate a birthmark for a component of
the plaintiff program.

B. System Call Abstraction

Since it is possible that two different system call se-
quences represent the same behavior, we do not extract
birthmarks directly from the raw system call sequences. To
address this, we abstract the system calls to a higher level
in the following way. First, we ignore the system calls that
apparently do not represent the behavior characteristic of a
program. For example, a libc malloc function is normally
implemented by system call brk and/or mmap. The mmap
system call is used when extremely large segments are
allocated. The brk system call changes the size of the heap
to be larger or smaller as needed. It is normally called to
grab a large chunk of memory and then split it as needed
to get smaller chunks in C function malloc. As such, not
every malloc in C need a system call and two programs
with the same behavior may have very different memory
management system call sequences. Fortunately, we can
ignore all memory management system calls, because they
do not represent the behavior characteristic of a program.
Second, we consider aliases or multiple versions of a system
call as the same in system call birthmarks. For example,
fstat(int fd, struct stat *sb) system call is the same as
stat(const char *path, struct stat *sb) except that fstat uses
the file descriptor fd as its parameter instead of the file name
path . We consider them the same. This not only reduces the
sophistication of dealing with many different system calls,
but also helps avoid the counterattack where an attacker
replaces one system call with another. Finally, since failed
system calls do not affect the behavior characteristic of a
program, they are also ignored. For example, assume that
a program opening a file fails at the first attempt and then
succeed in the next time. Although system call open is called
twice, the first failed call should be removed.

C. Birthmark Generator

Birthmarks are extracted from abstracted system calls
provided by the previous step. As to the SCSSB birthmark,
We extract it based on its definition. Condition 1 in Def.
5 tells us that given the same input the extracted system
call sequence should be the same. Therefore, we should
remove those loading-environment-dependent system calls.
To achieve this, the program is run multiple times with
the same input to find the common subsequences of the
multiple system call traces. Condition 2 in Def. 5 tells
us that the SCSSB of a program should be unique to the
program; therefore, we should remove the (noisy) system
calls common to the other programs. To do this, we establish
a database of common system call short sequences by
analyzing various sample programs in the wild. After that,
we remove these noise from our system call short sequences
and get the SCSSB birthmark.

D. Input Dependant System Call Subsequence Birthmarks

As the next section will show, SCSSB is robust to the
existing obfuscation techniques. However, if an attacker
can insert arbitrary system calls into the original program
meanwhile preserving its original semantics (although we
have not seen such automated tools yet), the original SCSSB
could be polluted or even destroyed.

To address the system call injection attack, next we pro-
pose an input dependent system call subsequence birthmark
(IDSCSB), which introduces slightly higher performance
overhead than SCSSB. We observe that many system calls
in a system call sequence are independent to the input and
do not reflect the semantic characteristic of a program for a
given input. A system call is said to be dependant to input
if any of the following conditions is true when the input
changes: (1) the system call disappears in the system call
sequence; (2) parameters to the system call changes; (3)
return value of the system call changes. We consider input
independent system calls as noise, because an attacker may
deliberately inject them. Therefore, we only extract input
dependent system calls as a birthmark.

Definition 7: (IDSCSB: Input Dependant System Call
Subsequence Birthmark) Let p be a program or a program
component. Let I be an input to p and J another input.
Let T (p, I) and T (p, J be system call traces generated by
executing program p with input I and J , respectively. Input
dependent system call subsequence birthmark is defined as:

IDSCSB(p, I) = {s|s ∈ T (p, I) and s /∈ T (p, J)}
We also use the containment measurement to compare

two IDSCSB birthmarks, but revise its definition for ID-
SCSB birthmarks by replacing the ∩ operation with the
computation of the longest common subsequence (LCS) and
replacing || operation with the length of a system call trace.
Note that LCS does not require every subsequence to be a
continuous segment of the mother sequence. For example,

Execute the program
three t imes

Input 1

Input 2

Extract the common
subsequence of three
traces of input 1

Execute the program
three t imes

Extract the common
subsequence of three
traces of input 2

Extract difference
Birthmark for the
program with input 1

Figure 3. The process of extracting IDSCSB Birthmarks

both {1, 6, 120} and {2, 24} are valid subsequences of the
value sequence {1, 2, 6, 24, 120}. In this sense, it is resilient
to noise injection attacks.

Extracting IDSCSB Birthmarks Figure 3 shows the
process of extracting IDSCSB Birthmarks. First, we prepare
two different inputs, and generate the system call sequence
for one input. To remove environmental noise, we extract
the common subsequence of the multiple system call traces
obtained by running a program multiple times with the same
input. In our experiment, we run the target Second, we
generate the system call sequence for the other input. The
same method as in the first step is used to remove noise.
Finally, the results from above two steps are compared and
the system calls that are independent to both of the inputs are
identified. The IDSCSB birthmark is generated by extracting
the system calls which appear only in the result of the first
(or the second, depending on which input we would use to
detect plagiarism) input.

There are two additional implementation details. First,
some parameters and return values of system calls such as
“file id” and “process id” are ignored because the parameters
vary when the execution environment changes. Second, to
control the length of the system call log, large parameters
over 32 bytes are hashed by the MD5 algorithm and only
their hash values are recorded.

IV. EVALUATION

In Section 1 we mentioned four key requirements on
software theft detection. It is easy to see R4 (Applicability
to binary executables) is already met by our design. In this
section, we evaluate the performance of SCSSB and ID-
SCSB birthmarks with respect to four primary criteria: (M1)
capability to detect whole program theft (M2) capability
to detect component theft for large-scale programs, (M3)
credibility to independently developed program, and (M4)
resiliency to obfuscation. These four criteria contain more
than R1, R2 and R3 because of M3.

In this section, we will first demonstrate the strength
of our birthmarks against evasion techniques that apply
different compilers or different compiler optimization levels.
Then, we will evaluate criteria M1, M2, M3 and M4 for both
SCSSB and IDSCSB against some advanced obfuscation
techniques and 15 real-world large applications.

For ease of presentation, before showing the results we
first introduce SandMark [13], a tool developed at the

University of Arizona for analyzing and processing Java
byte code. We use SandMark because it is the only free
and powerful software with a comprehensive list of fully
functioning code obfuscation algorithms. Note that our
system call birthmark extractor built upon Valgrind reads
only x86 Linux executables. To feed the extractor with Java
applications, we convert Java class files to x86 executable
using GCJ 4.1.2, the GNU ahead-of-time Compiler for the
Java language.

For code obfuscation analysis, SandMark implements 39
byte code obfuscators. Dividing an array to multiple arrays,
splitting an array element, promoting all primitive data
types to classes, wrap and move a part of a class into a
new class, merging two variables in a longer variable, and
encrypting string variables are some of the features that
SandMark provides for data obfuscation. For control obfus-
cation, SandMark can insert opaque predicates to every con-
ditional branch, reorder instructions, inline/merge/interleave
methods, randomly insert opaque branches within a basic
block. Besides, SandMark can alter method-signatures by
adding or reordering parameters, change class inheritance
structures, and thwart static decompilation.

A. Impact of Compiler Optimization Levels

Changing compiler optimization levels is a type of se-
mantic preserving transformation techniques which may be
used by a software plagiarist to avoid detection. Here, we
evaluated the impact of compiler optimization levels on
system call based birthmarks. A set of programs were used:
bzip2 (a popular lossless compression tool), gzip (a popular
lossless compression tool) and oggenc (an encoding tool
for Ogg Vorbis, a free lossy audio compression format). To
make them easy to compile with several different compilers,
single compilation-unit source code (bzip2.c, gzip.c and
oggenc.c) were used. 1 We used five optimization switches (-
O0,-O1,-O2,-O3 and -Os) of GCC to generate executables of
different optimization levels (e.g., bzip2-O0, bzip2-O3, etc.)
for each program. The generated executables were executed
with the same input and a system call sequence was recorded
for each executable. We compared the system call sequences,
and found that applying optimization options did not change
the system call sequences of bzip2 and gzip while the system
call sequences for oggenc with optimization options -O3
and -Os had only one less “write” system calls compared
to the executables with optimization options -O0, -O1 and
-O2. This result shows that system call based birthmarks are
robust to compiler optimization.

B. Impact of Different Compilers

A software plagiarist may also use a different compiler to
avoid detection. To evaluate the impact of applying different
compilers, we compared system call sequences with three

1http://people.csail.mit.edu/smcc/projects/single-file-programs/

 0

 20

 40

 60

 80

 100

O
rig

in
al

Ar
ra

yF
ol

de
r

Ar
ra

yS
pl

itt
er

Bl
oc

kM
ar

ke
r

Bl
ud

ge
on

Si
gn

at
ur

es
Bo

ol
ea

nS
pl

itt
er

Br
an

ch
In

ve
rte

r
Bu

gg
yC

od
e

C
la

ss
Sp

lit
te

r
C

on
st

an
tP

oo
lR

eo
rd

er
er

D
up

lic
at

eR
eg

is
te

rs
D

yn
am

ic
In

lin
er

Fa
ls

eR
ef

ac
to

r
Fi

el
dA

ss
ig

nm
en

t
In

lin
er

In
se

rtO
pa

qu
eP

re
di

ca
te

s
In

te
ge

rA
rra

yS
pl

itt
er

In
te

rle
av

eM
et

ho
ds

Irr
ed

uc
ib

ilit
y

M
er

ge
Lo

ca
lIn

te
ge

rs
M

et
ho

dM
er

ge
r

O
bj

ec
tif

y
O

pa
qu

eB
ra

nc
hI

ns
er

tio
n

O
ve

rlo
ad

N
am

es
Pr

om
ot

eP
rim

iti
ve

R
eg

is
te

rs
Pu

bl
ic

iz
eF

ie
ld

s
R

an
do

m
D

ea
dC

od
e

R
en

am
eR

eg
is

te
rs

R
eo

rd
er

In
st

ru
ct

io
ns

R
eo

rd
er

Pa
ra

m
et

er
s

Si
m

pl
eO

pa
qu

eP
re

di
ca

te
s

Sp
lit

C
la

ss
es

St
at

ic
M

et
ho

dB
od

ie
s

Tr
an

sp
ar

en
tB

ra
nc

hI
ns

er
tio

n
Va

ria
bl

eR
ea

ss
ig

ne
r

C
on

ta
in

m
en

t (
%

)

(a) Comparison between original JLex and its obfuscated ones

 0

 20

 40

 60

 80

 100

O
rig

in
al

Ar
ra

yF
ol

de
r

Ar
ra

yS
pl

itt
er

Bl
oc

kM
ar

ke
r

Bl
ud

ge
on

Si
gn

at
ur

es
Bo

ol
ea

nS
pl

itt
er

Br
an

ch
In

ve
rte

r
Bu

gg
yC

od
e

C
la

ss
Sp

lit
te

r
C

on
st

an
tP

oo
lR

eo
rd

er
er

D
up

lic
at

eR
eg

is
te

rs
D

yn
am

ic
In

lin
er

Fa
ls

eR
ef

ac
to

r
Fi

el
dA

ss
ig

nm
en

t
In

lin
er

In
se

rtO
pa

qu
eP

re
di

ca
te

s
In

te
ge

rA
rra

yS
pl

itt
er

In
te

rle
av

eM
et

ho
ds

Irr
ed

uc
ib

ilit
y

M
er

ge
Lo

ca
lIn

te
ge

rs
M

et
ho

dM
er

ge
r

O
bj

ec
tif

y
O

pa
qu

eB
ra

nc
hI

ns
er

tio
n

O
ve

rlo
ad

N
am

es
Pr

om
ot

eP
rim

iti
ve

R
eg

is
te

rs
Pu

bl
ic

iz
eF

ie
ld

s
R

an
do

m
D

ea
dC

od
e

R
en

am
eR

eg
is

te
rs

R
eo

rd
er

In
st

ru
ct

io
ns

R
eo

rd
er

Pa
ra

m
et

er
s

Si
m

pl
eO

pa
qu

eP
re

di
ca

te
s

Sp
lit

C
la

ss
es

St
at

ic
M

et
ho

dB
od

ie
s

Tr
an

sp
ar

en
tB

ra
nc

hI
ns

er
tio

n
Va

ria
bl

eR
ea

ss
ig

ne
r

O
th

er
Pr

og
ra

m
/g

re
p

O
th

er
Pr

og
ra

m
/g

un
zi

p
O

th
er

Pr
og

ra
m

/g
zi

p
O

th
er

Pr
og

ra
m

/s
or

t
O

th
er

Pr
og

ra
m

/w
c

C
on

ta
in

m
en

t (
%

)

(b) Comparison between JFlex and different programs (JLex and its obfuscated ones)

 0

 20

 40

 60

 80

 100

O
rig

in
al

Ar
ra

yS
pl

itt
er

Bl
oc

kM
ar

ke
r

Bl
ud

ge
on

Si
gn

at
ur

es
Bo

ol
ea

nS
pl

itt
er

Br
an

ch
In

ve
rte

r
Bu

gg
yC

od
e

C
on

st
an

tP
oo

lR
eo

rd
er

er
D

up
lic

at
eR

eg
is

te
rs

Fa
ls

eR
ef

ac
to

r
Fi

el
dA

ss
ig

nm
en

t
In

se
rtO

pa
qu

eP
re

di
ca

te
s

In
te

ge
rA

rra
yS

pl
itt

er
M

er
ge

Lo
ca

lIn
te

ge
rs

M
et

ho
dM

er
ge

r
O

bj
ec

tif
y

O
pa

qu
eB

ra
nc

hI
ns

er
tio

n
O

ve
rlo

ad
N

am
es

Pa
ra

m
Al

ia
s

Pr
om

ot
eP

rim
iti

ve
R

eg
is

te
rs

Pr
om

ot
eP

rim
iti

ve
Ty

pe
s

Pu
bl

ic
iz

eF
ie

ld
s

R
an

do
m

D
ea

dC
od

e
R

en
am

eR
eg

is
te

rs
R

eo
rd

er
In

st
ru

ct
io

ns
R

eo
rd

er
Pa

ra
m

et
er

s
Si

m
pl

eO
pa

qu
eP

re
di

ca
te

s
Sp

lit
C

la
ss

es
St

at
ic

M
et

ho
dB

od
ie

s
Tr

an
sp

ar
en

tB
ra

nc
hI

ns
er

tio
n

Va
ria

bl
eR

ea
ss

ig
ne

r

C
on

ta
in

m
en

t (
%

)

(c) Comparison between original JFlex and its obfuscated ones

 0

 20

 40

 60

 80

 100

O
rig

in
al

Ar
ra

yS
pl

itt
er

Bl
oc

kM
ar

ke
r

Bl
ud

ge
on

Si
gn

at
ur

es
Bo

ol
ea

nS
pl

itt
er

Br
an

ch
In

ve
rte

r
Bu

gg
yC

od
e

C
on

st
an

tP
oo

lR
eo

rd
er

er
D

up
lic

at
eR

eg
is

te
rs

Fa
ls

eR
ef

ac
to

r
Fi

el
dA

ss
ig

nm
en

t
In

se
rtO

pa
qu

eP
re

di
ca

te
s

In
te

ge
rA

rra
yS

pl
itt

er
M

er
ge

Lo
ca

lIn
te

ge
rs

M
et

ho
dM

er
ge

r
O

bj
ec

tif
y

O
pa

qu
eB

ra
nc

hI
ns

er
tio

n
O

ve
rlo

ad
N

am
es

Pa
ra

m
Al

ia
s

Pr
om

ot
eP

rim
iti

ve
R

eg
is

te
rs

Pr
om

ot
eP

rim
iti

ve
Ty

pe
s

Pu
bl

ic
iz

eF
ie

ld
s

R
an

do
m

D
ea

dC
od

e
R

en
am

eR
eg

is
te

rs
R

eo
rd

er
In

st
ru

ct
io

ns
R

eo
rd

er
Pa

ra
m

et
er

s
Si

m
pl

eO
pa

qu
eP

re
di

ca
te

s
Sp

lit
C

la
ss

es
St

at
ic

M
et

ho
dB

od
ie

s
Tr

an
sp

ar
en

tB
ra

nc
hI

ns
er

tio
n

Va
ria

bl
eR

ea
ss

ig
ne

r
O

th
er

Pr
og

ra
m

/g
re

p
O

th
er

Pr
og

ra
m

/g
un

zi
p

O
th

er
Pr

og
ra

m
/g

zi
p

O
th

er
Pr

og
ra

m
/s

or
t

O
th

er
Pr

og
ra

m
/w

c

C
on

ta
in

m
en

t (
%

)

(d) Comparison between JLex and different programs (JFlex and its obfuscated ones)

Figure 4. The resiliency and credibility of SCSSB system call birthmark.

compilers: GCC, TCC and Watcom. We used the three
compilers to generate executables for each of the three
programs (e.g., bzip2-gcc, bzip2-tcc) we used before. The
generated executables were executed with the same input and
a system call sequence is recorded for the each executable.
We compared the results of GCC to the results of TCC
and Watcom. While the system call sequences of TCC and
GCC (both with default optimization levels) are exactly the
same, the system call sequences of GCC and Watcom look
different. By checking the compilers, we found that the
differences were caused by different standard C libraries
used by the compilers. Both GCC and TCC use glibc while
Watcom uses its own implementation. Although the system
call sequences between GCC and Watcom looked different,
we found such differences can be removed by our system call
abstraction component. As such, our proposed birthmarks
can survive under different compilers.

C. SCSSB Experiment I: M1, M3, M4

To show the resiliency of birthmark SCSSB to obfuscation
techniques in whole program theft, we use JLex and JFlex.
JLex and JFlex, both written in Java, are two individual
programs that were written for the same purpose. They
understand the same input syntax, and generate very similar
lexical analyzers. The authors of each program claim that the
two projects do not share any code in common. We verified
this claim by manually comparing both programs using code
comparison features of SandMark.

Each of JLex and JFlex is compared to the obfuscated

versions of itself using SCSSB with 5-long system call
sequences. As a dynamic analysis, SCSSB may not reliably
justify (non-)theft based on a single high containment score.
Hence, in this experiment, we use 20 different inputs and
compute the average containment scores. The result is shown
in Figure 4, where the x-axis shows totally 34 obfuscation
techniques2, and the y-axis shows the containment scores.
From Figure4(a) and Figure4(c), we can observe that the
containment scores between a original program and its
obfuscated versions are more than 90%.

In order to verify the credibility of system call birthmarks
on independently developed but similar software, JLex is
compared to original/obfuscated JFlex while JFLex is also
compared to original/obfuscated JLex. In addition, we com-
pare JLex and JFlex to five totally different programs (grep,
gunzip, gzip, sort, and wc). From Figure4(b) and Figure4(d),
we can observe that the containment scores between JLex
and JFlex obfuscated versions or between JFLex and JLex
obfuscated versions are less than 67%, between JLex/JFlex
and other different programs are no more than 20%. Hence,
with appropriate detection thresholds, the detection system
based on SCSSB can accurately report the detection results.

We also notice that a code plagiarist may attempt to
hide by heavily transforming a stolen program through a
series of obfuscators. Therefore, evaluating resiliency of
SCSSB against multiple obfuscation techniques applied to

2We could not test all 39 obfuscators because some of them failed in
transforming JLex and JFlex

Table I
MULTIPLE OBFUSCATION TECHNIQUES APPLIED TO JLEX AND JFLEX

(a) Control obfuscation
Obfuscators JLex JFlex
Transparent Branch Insertion

√ √
Simple Opaque Predicates

√ √
Inliner

√
Insert Opaque Predicates

√ √
Dynamic Inliner

√
Interleave Methods

√ √
Method Merger

√ √
Opaque Branch Insertion

√
Reorder Instructions

√ √

(b) Data obfuscation
Obfuscators JLex JFlex
Array Splitter
Array Folder

√
Integer Array Splitter

√ √
String Encoder
Promote Primitive Registers

√
Variable Reassigner

√ √
Promote Primitive Types
Duplicate Registers

√ √
Boolean Splitter

√ √
Merge Local Integers

√ √

a single program is necessary. Although it is theoretically
possible for a series of multiple obfuscators to transform
a program, applying many obfuscators to a single program
raises practical issues of maintaining the correctness of a
target program and its efficiency. For example, we attempted
to apply all the 39 obfuscation techniques of SandMark to
each of JLex and JFlex, but, after trying several obfuscation
orders, only some of them could be successfully applied.
To address this problem, we selected obfuscation techniques
from two groups following the classification of Collberg et
al. [7]: data obfuscation and control obfuscation. We created
four test programs by transforming JLex and JFlex through
the two groups of obfuscators. As shown in Table I, we could
apply eight control obfuscators and seven data obfuscators to
JLex and seven control obfuscators and five data obfuscators
to JFlex.

We compared the four multi-obfuscated JLex and JFlex
to their original programs. The containment scores of JLex
to control obfuscated JLex and data obfuscated JLex are
87.9% and 85.2%, respectively. The containment scores of
control and data obfuscated JFlex compared to original JFlex
are both 96%. This experiment shows that SCSSB is also
effective in detecting heavily obfuscated programs.

D. SCSSB Experiment II : M2

In this experiment, we demonstrate SCSSB’s ability to
detect stolen components, using the layout engines in web
browsers. A layout engine is a software component that
renders web contents (such as HTML, XML, image files,
etc.) combined with formatting information (such as CSS,
XSL, etc.) onto the display units or printers. It is not only the
core components of a web browser, but also used by many
applications that need to render and/or edit web documents.

Gecko [11] is an layout engine used in all Mozilla
software and its derivatives. We compute the containment
of Gecko in a number of browsers using both SCSSB
birthmarks with and without noise. These web browsers
include Epiphany, Firefox, Flock, Songbird, Kazehakase,
Amaya, Konqueror and Dillo. The first five web browsers
are Gecko-based, and the other three are not. Table II(a)
shows their relation with the Gecko engine.

Table II

(a) The first set of programs
Program Type Gecko Engine

Firefox 3.0.4 Web Browser Yes
Flock 1.0.8 Web Browser Yes

Epiphany 2.22.2 Web Browser Yes
Kazehakase 0.5.2 Web Browser Yes

Songbird 0.2.5 Media player Yes
Web Browser

Konqueror 3.5.10 Web Browser No
Amaya 10 Web Browser No
Dillo 0.8.6 Web Browser No

(b) The second set of programs
Program Type Gecko Engine

Opera 9.52 Web Browser No
Evolution 2.22.3 Email Client No

Gimp 2.4.5 Graph Editor No
Kile 2.0.0 Latex Editor No

Open Office 2.4.1 Office No
Totem 2.22.1 Movie Player No
Pdfedit 0.3.2 PDF Editor No

To feed the web browsers the same input, we launch
a web browser, open the web site “http://en.wikipedia.org/
wiki/Rome”, and quit whenever we record the system call
sequence. For Firefox, we record the system call trace of
the target component (i.e., Gecko). For the other browsers,
we recorded their system call sequences through out entire
program. Fig5(a) shows the SCSSB containment scores of
Gecko, with the x-axis representing the lengths of system
call sequences. Although we can observe that the contain-
ment of Gecko in Gecko-based browsers is larger than
in non-Gecko browsers, the difference is not significant
enough for us to draw any conclusion. This indicates that
two different programs may overlap significantly in their
system call sequence sets. As a result, SCSSB is not a good
birthmark without removing noise here. Therefore, we must
eliminate noise in the system call sequence sets to obtain a
useful SCSSB.

To see the effect of noise removal, we use a set of
different programs (shown in Table II(b)) to prune, from the
system call sequence sets of the browsers we have tested,
the noisy system call sequences that are commonly found
in other programs. In this set of programs, only Opera is
a web browser and we generate its system call sequence
sets as before. For the other programs, we do the following:
launch the program, open a file and then quit. Their system
call traces are recorded during the operations. Figure 5(b)
shows the containment of Gecko in these browsers, using
SCSSB with noise removal. It shows significant differences

between Gecko-based browsers and non-Gecko browsers.
We can also see that five is a good choice for the length of
short system call sequences in distinguishing Gecko-based
browsers from non-Gecko browsers.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

Th
e

co
nt

ai
nm

en
t o

f t
he

 G
ec

ko
 e

ng
in

e
(%

)

The length of system call short sequences

gecko-epiphany
gecko-flock

gecko-songbird
gecko-kazehakase

gecko-amaya
gecko-konqueror

gecko-dillo

(a) The containment score before noise removal

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

Th
e

co
nt

ai
nm

en
t o

f t
he

 G
ec

ko
 e

ng
in

e
(%

)

The length of system call short sequences

Epiphany
Flock

Songbird
Kazehakase

Amaya
Konqueror

Dillo

(b) The containment score after noise removal

Figure 5. The containment of Gecko in the browsers.

E. IDSCSB Experiment I : M1, M3, M4
In the third experiment, we use JLex and JFlex again

to show the obfuscation resiliency of IDSCSB in whole
program plagiarism. Each of JLex and JFlex is compared
to the obfuscated versions of itself, using IDSCSB. The
containment scores between original and obfuscated JLex
are 100%. We also observed 100% containment with JFlex.

In order to verify the credibility of system call birthmarks,
we did the similar experiments using SCSSB. The contain-
ment scores between JLex and obfuscated JFlex or between
JFLex and obfuscated JLex are less than 46%, between
JLex/JFlex and other programs are no more than 7%. Hence,
with appropriate thresholds, the detection system based on
IDSCSB can accurately report plagiarism.

We also compared the four multi-obfuscated JLex and
JFlex (data obfuscated JLex, control obfuscated JLex, data
obfuscated JFlex, and control obfuscated JFlex) to their
original programs for IDSCSB. We observed containment
scores of the multi-obfuscated JLex/JFlex compared to cor-
responding original versions were all 100%. This experiment
shows that IDSCSB is very effective in detecting heavily
obfuscated plagiarisms, outperforming SCSSB.

F. IDSCSB Experiment II : M2
Next we evaluate IDSCSB on web browsers and their

layout engines. There are three steps to generate input

dependent system call sequence birthmarks. First, we gen-
erate a system call sequence for an input. As the input
to each browser, we follow a simple scenario: launch the
web browser, visit the web site “http://en.wikipedia.org/wiki/
Germany”, and quit. To remove noise, we run the program
three times with the same input to find the common subse-
quence of the three system call traces. Second, we generate a
system call sequence for another input “http://www.us.gov”.
The same method as in the first step is used to remove noise.
Finally, the result from above two steps are compared. The
input dependent system call sequence birthmark is generated
by extracting system calls which appear only in the result
from the first step.

We also generated IDSCSB for inputs “http://www.cnn.
com” and “http://www.msnbc.com”. The result shown in
Figure 6 indicates significant differences between Gecko-
based browsers and non-Gecko browsers.

 0

 20

 40

 60

 80

 100

wikipedia/germany cnn.com msnbc.com

C
on

ta
in

m
en

t s
co

re
 (%

)

Input

Epiphany
Flock

Songbird

Kazehakase
Amaya

Konqueror

Dillo

Figure 6. The containment of Gecko in the browsers.

V. DISCUSSION

A. Counterattacks

One of the possible counterattacks to our system call
based birthmarks is the system call injection attack. An
attacker may insert arbitrary system calls in the plagiarism
program to reduce the containment score of SCSSB without
compromising its original semantics. However, this attack
would not bypass the detection of IDSCSB. The containment
score of IDSCSB detection will not decrease because (1)
these injected system calls will likely be filtered out in the
first place, (2) we use longest common subsequence (LCS) to
identify similarity between two system call sequences, thus
IDSCSB is robust to noise injection attack by its nature.

Another type of possible attacks is the system call re-
ordering attack. An attacker may change the order of system
calls in the execution path to fool SCSSB and IDSCSB.
However, it has quite limited applicability to reorder system
calls without affecting the semantics of an original program,
due to many reasons including data and control dependencies
between the system calls. Moreover, reordering of system
calls often affects semantics of the machine instructions
surrounding the system calls, which makes the attack much

harder to be accomplished. We will study the feasibility of
such attacks in the future.

B. Limitations

Both SCSSB and IDSCSB bear the following fundamental
limitation. First, they do not apply if the program of interest
does not involve any system calls or has very few system
calls, for example, when there are only arithmetic operations
in the program. Second, they are not applicable to the pro-
grams which do not have unique system call behaviors. For
example, the only behavior of a sorting program is to read an
unsorted file and print the sorted data. This behavior, which
is common to other sorting programs or even irrelevant
programs, is not unique. As such, our tool should be used
with caution, especially for tiny common programs with
few system calls. Third, as a detection system, it bears the
same limitation of intrusion detection systems; that is, there
exists a fundamental tradeoff between false positives and
false negatives. The detection result of our tool depends on
the threshold a user defines. To have higher confidence, one
should use a large threshold, thus it is likely to increase
false negative. In contrast, reducing the detection threshold
will increase false positive. Unfortunately, without many
real-world plagiarism samples, we are unable to show some
concrete results on such false rates although we have showed
system call birthmarks exist for all the programs we studied.
As such, rather than applying our tool to “prove” software
plagiarisms, in practice one may use it to collect some initial
evidences before taking further investigations, which often
involve nontechnical actions. More discussion can be found
in our follow-up work [17].

VI. RELATED WORK

We roughly group the literature into two categories:
software birthmark and clone detection.
Software Birthmark: There are four classes of software
birthmark.

Static source code based birthmark: Tamada [3] et al.
proposed four types of static birthmark: Constant Values
in Field Variables Birthmark (CVFV), Sequence of Method
Calls Birthmark (SMC), Inheritance Structure Birthmark
(IS) and Used Classes Birthmark (UC). All of the four types
are vulnerable to obfuscation techniques mentioned in [8].
In addition, they need to access source code and only work
for object-oriented programming language.

Static executable code based birthmark: Myles and Coll-
berg [8] proposed a opcode-level k-gram based static birth-
mark. Opcode sequences of length k are extracted from
a program and k-gram techniques which were used to
detect similarity of documents are exploited to the opcode
sequences. Although the k-gram static birthmark is more
robust than Tamadas birthmark, it is still strongly vulnerable

to some well-known obfuscations such as statement reorder-
ing, junk instruction insertion and other semantic-preserved
transformation techniques such as compiler optimization.

Dynamic WPP based birthmark: Myles and Collberg
[5] proposed a whole program path (WPP) based dynamic
birthmark. WPP is originally used to represent the dynamic
control flow of a program. WPP birthmark is robust to some
control flow obfuscations such as opaque prediction, but is
still vulnerable to many semantic-preserving transformation
such as loop unwinding. Moreover, WPP birthmark may not
work for large-scale programs due to overwhelming volume
of WPP traces.

Dynamic API based birthmark: Tamada et al. [6], [18]
also introduced two types of dynamic birthmark for Win-
dows applications: Sequence of API Function Calls Birth-
mark (EXESEQ) and Frequency of API Function Calls
Birthmark (EXEFREQ). In EXESEQ, the sequence of Win-
dows API calls are recorded during the execution of a
program. These sequences are directly compared to find
similarity. In EXEFREQ, the frequency of each Windows
API calls are recorded during the execution of a program.
The frequency distribution is used as the birthmark. Schuler
et al. [4] proposed a dynamic birthmark for Java. The call
sequences to Java standard API are recorded and the short
sequences at object level are used as a birthmark. Their
experiments showed that API birthmarks are more robust to
obfuscation than WPP birthmark in their evaluation. Unlike
the Java or Windows API based birthmarks that are platform
dependent, system call birthmarks can be used on any
platform. In addition, system call birthmarks are more robust
to counter-attacks than API-based ones. To evade API-based
birthmarks, attackers may hide API calls by embedding
their own implementation of some API routines. However,
there are no easy ways to replace “system calls” without
recompiling the kernel because because system call is the
only way to gain privilege in modern operating systems.
More importantly, existing API-based birthmarks have not
been evaluated to protect core components theft.
Clone Detection: A close research field to software birth-
mark is clone detection. Clone detection is a technique to
find the duplicate code (“clones”) in a large-scale program.
Existing techniques for clone detection can be classified into
four categories: String-based [19], AST-based [20], [21],
Token-based [22]–[24] and PDG-based [25], [26]. String-
based: Each line of source code is considered as a string and
the whole program is considered as a sequence of strings.
A code fragment is labelled as clone if the corresponding
sequence of strings is the same as another code fragment
from original program. AST-based: The abstract syntax
trees (AST) are extracted from programs by analyzing their
syntax. Then the ASTs are directly compared. If there are
common subtrees, clone may exist. Token-based: A program
is first parsed to a sequence of tokens. The sequences of
tokens are compared to find clone. PDG-based: A program

dependency graph is a graph which represents the control
flow and data flow relations between the statements in a
program procedure. To find clone, two PDGs are extracted
from two programs (by some static analysis tools) and
compared to find relaxed subgraph isomorphism.

Besides to be used to decrease code size and facilitate
maintenance, clone detection can be also be used to de-
tect software plagiarism. However, existing clone detection
techniques are not robust to code obfuscation. String-based
schemes are fragile even by simply renaming identifiers
in programs. AST-based schemes are resilient to identifier
renaming, but weak against statement reordering and control
replacement. Token-based schemes are resilient to identi-
fier renaming, but weak against junk code insertion and
statement reordering. Because PDGs contain semantic infor-
mation of programs, PDG-based schemes are more robust
than the other three types of existing schemes. However,
PDG-based is still vulnerable to many semantics-preserving
transformations such as inline and outline functions and
opaque predicates. Moreover, all clone detection techniques
need to access source code.

VII. CONCLUSION

In this paper, we propose two system call based software
birthmarks: SCSSB and IDSCSB. We evaluate them using
a set of real world programs. Our experiment results show
that all the plagiarisms obfuscated by the SandMark tool
are successfully discriminated. Unlike existing schemes that
are evaluated with small or toy software, we evaluate our
birthmarks (SCSSB and IDSCSB) with a set of large-scale
software (web browsers). The results show that SCSSB and
IDSCSB are effective and practical in detection of core
component theft of large-scale programs.

ACKNOWLEDGMENT

The authors would like to thank Jonas Maebe of Uni-
versity of Ghent for his help in compiling and using Loco
and Diablo; Semantic Designs, Inc. for donating C/C++
obfuscators.

REFERENCES

[1] C. Collberg and C. Thomborson, “Software watermarking:
Models and dynamic embeddings,” in Principles of Program-
ming Languages 1999, Jan. 1999.

[2] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, and
M. Stepp, “Dynamic path-based software watermarking,” in
Proceedings of the Conference on Programming Language
Design and Implementation, 2004.

[3] H. Tamada, M. Nakamura, A. Monden, and K. ichi Mat-
sumoto, “Design and evaluation of birthmarks for detecting
theft of java programs,” in Proc. IASTED International Con-
ference on Software Engineering, 2004.

[4] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birth-
mark for java,” in ASE ’07: Proc. of the twenty-second
IEEE/ACM international conference on Automated software
engineering, 2007.

[5] G. Myles and C. Collberg, “Detecting software theft via
whole program path birthmarks,” in ISC, 2004, pp. 404–415.

[6] H. Tamada, K. Okamoto, M. Nakamura, and A. Monden,
“Dynamic software birthmarks to detect the theft of windows
applications,” in International Symposium on Future Software
Technology 2004 (ISFST 2004), 2004.

[7] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” The Univeristy of Auckland,
Tech. Rep. 148, Jul. 1997.

[8] G. Myles and C. S. Collberg, “K-gram based software birth-
marks,” in SAC, 2005.

[9] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kem-
merer, “Behavior-based spyware detection,” in Proceedings of
the 15th conference on USENIX Security Symposium, 2006.

[10] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifi-
cations of malicious behavior,” in Proc. of ESEC/FSE, 2008.

[11] “Gecko,” http://en.wikipedia.org/wiki/Gecko layout engine.
[12] “KHTML,” http://en.wikipedia.org/wiki/KHTML.
[13] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–a tool

for software protection research,” IEEE Security and Privacy,
vol. 1, no. 4, pp. 40–49, 2003.

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for Unix processes,” in Proceedinges of the
1996 IEEE Symposium on Research in Security and Privacy,
1996.

[15] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 2007 ACM SIGPLAN conference on Programming
language design and implementation.

[16] “Elsa: An Elkhound-based C++ parser,” http://scottmcpeak.
com/elkhound/.

[17] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based soft-
ware theft detection,” in Proc. of the 16th ACM Conference
on Computer and Communications Security (CCS’09), 2009.

[18] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and
K. ichi Matsumoto, “Design and evaluation of dynamic soft-
ware birthmarks based on api calls,” Nara Institute of Science
and Technology, Technical Report, 2007.

[19] B. S. Baker, “On finding duplication and near duplication in
large software systems.” in Proc. of 2nd Working Conf. on
Reverse Engineering, 1995.

[20] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees.” in Int. Conf. on
Software Maintenance, 1998.

[21] K. Kontogiannis, M. Galler, and R. DeMori, “Detecting code
similarity using patterns.” in Working Notes of 3rd Workshop
on AI and Software Engineering, 1995.

[22] T. Kamiya, S. Kusumoto, and K. Inoue., “CCFinder: a mul-
tilinguistic token-based code clone detection system for large
scale source code.” IEEE Trans. Softw. Eng., vol. 28, no. 7,
2002.

[23] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding pla-
giarisms among a set of programs with jplag,” Universal
Computer Science, 2000.

[24] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing:
local algorithms for document fingerprinting.” in Proc. of
ACM SIGMOD Int. Conf. on Management of Data, 2003.

[25] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: detection of
software plagiarism by program dependence graph analysis,”
in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2006.

[26] J. Krinke, “Identifying similar code with program dependence
graphs.” in Proc. of 8th Working Conf. on Reverse Engineer-
ing, 2001.

