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Abstract. File-sharing worms have been terrorizing Peer-to-peer (P2P) systems
in recent years. Existing defenses relying on users’ individual recoveries or limit-
ing users’ file-sharing activities are ineffective. Automated patching tools such as
Microsoft Windows Update and Symantec Security Update are currently the most
popular vehicles for eliminating and containing Internet worms, but they are not
necessarily the best fits for combating P2P file-sharing worms, which propagate
within a relatively smaller community. In this paper, we propose a complementary
P2P-tailored patching system which utilizes the existing file-sharing mechanisms
to internally disseminate security patches to those participating peers in a timely
and distributed fashion. Specifically, we examine the effectiveness of leveraging
the file downloading or searching process to notify vulnerable end hosts of the
surging worms and push corresponding security updates to these hosts. We show
through in-depth analysis and extensive experiments that both methods are scal-
able and effective in combating existing P2P worms.

1 Introduction

P2P file-sharing programs such as KaZaA, iMesh, Morpheus arepopular Internet ap-
plications that allow users to download and share electronic files. As one of the most
popular networks, KaZaA has four million simultaneous users. The powerful data ac-
cess feature, however, brings about unique privacy and security threats in these systems.
In addition to adware and spyware, P2P hosts are placed at therisk of various viruses
and malicious codes [13].

Our focus in this paper isfile-sharing worms1, which are malware spreading through
file-sharing activities within P2P systems. Specifically, auser searches for a file in the
network and acquires a list of accessible targets among which there could be a disguised
one provided by some infected machine. Unwittingly she downloads the file and opens
it, resulting in her own machine being infected. Recently, many file-sharing worms have
been reported, e.g., Benjamin.a, Franvir, Bare.a, Darby.m, and Duload worm that are ac-
tively attacking KaZaA, Gnutella, and eDonkey2000 networks [3, 7]. One experimental
study reported that 44% of the 4,788 executable files downloaded through a KaZaA
client program contain malicious code [25]; another experimental study revealed that

1 Like mass-mailing worms, file-sharing worms also require human’s operations to propagate. As such, they are sometimes
referred to as viruses or malware.



12% of the KaZaA client hosts were infected by over 40 different worms in February
and May, 2006 [21]. Some disastrous consequences of attacksfrom file-sharing worms
include opening backdoors, changing system registries andclient configurations, and
collecting clients’ confidential data [7].

It would not be surprising that worms will increasingly exploit file-sharing applica-
tions as their major infection vector. However, research onthese imminent threats has
just started and most existing work focused on modeling wormbehavior such as infec-
tions and propagation in file-sharing environments [11, 17,23]. The problem of quaran-
tining these worms has not been adequately addressed. Currently the best defense mir-
rors the strategy against Internet computer viruses with the inception of security patches
from vendors (e.g., Microsoft, Symantec, McAfee). The method of automated security
update is widely employed by security servers to automatically push the latest security
patches to Internet hosts[24]. This generic solution certainly helps protect Internet hosts
at the earliest stage of worm spreads, but it is not P2P-oriented. That is, security servers
either have to blindly deliver P2P patches to all the Internet hosts (including those non-
P2P machines and those who have installed P2P software but are not executing it), or
have to scan for currently running P2P client programs within each Internet host before
sending a patch to it. In both cases, system resources and network bandwidth could
be greatly wasted. Moreover, unnecessary security updatescould cause annoying ma-
chine reboots (sometimes required for a complete security update), which unavoidably
interrupt those non-related users’ on-going tasks runningon their hosts.

Contribution: In this paper,we study the feasibility of utilizing the existing file-
sharing infrastructure to internally push security updates to the participating nodes in
P2P systems. We propose two BitTorrent-like mechanisms for distributing the security
patches. In file-sharing networks such as Gnutella, a very small fraction (5%) of hosts
usually provide a large fraction of the shared files (70%) [14]. Exploiting this asymme-
try in file-sharing, we consider first disseminating the security patches to these popular
hosts, such that most of the other participating hosts can receive the patches from these
popular hosts when they actively download files from them. Our second approach is
based on the belief that P2P users as a community should help each other in combating
worm attacks. Therefore, when a host detects worm infectionfrom a downloaded file, it
first re-performs a search on the infected file to identify those hosts possessing the same
file, and then it collaboratively notifies these hosts of the worm information as well as
the security patch. Based on a modified fluid model, we analyzeworm spreads and eval-
uate the effectiveness of our approaches in unstructured networks. Our result demon-
strates that both schemes can help a file-sharing system with20, 000 hosts achieve a
high immunity rate (90%) within a few dozens of hours after the initial worm surge.

Our solutions are not a substitution for the existing automatic patching systems but
rather a nice complement to them. Our proposed techniques are not necessarily very
complex, but our work, backed up with solid analytic modelling and extensive exper-
iments, makes a concrete movement towards solving the important security problem
facing many P2P users. Also, our solution is scalable and easy to deploy by leverag-
ing the existing P2P infrastructure, without involving a dedicated Content Distribution
Network (CDN) (e.g., Akamai).



Organization: The rest of the paper is organized as follows. Section 2 describes
an attack model for the network, as well as the design principles and the assumptions.
Section 3 and 4 introduce two internal patching schemes for securing participating hosts
in P2P systems. We evaluate the schemes in Section 6 and describe the related work in
Section 7. We conclude in Section 8.

2 Preliminaries

Network Model Many P2P file-sharing systems are actively running in these days
(a comparison can be found in [2]). The most popular ones include eMule, KaZza,
Gnutella, and BitTorrent. For concreteness, however, our discussion will focus on those
unstructured networks such as Gnutella and KaZza. In Section 5 we will briefly mention
how our approaches can be extended to other P2P systems such as BitTorrent.

We use Gnutella as an example to describe the file-sharing process. Specifically,
each node uses ashared folderto store those files it wishes to share. When a request-
ing node initiates a download request for a specific file, it places a search for the target
node(s) responsible for the given file identifier. The searchrequest is routed through a
two-tiered system of ultra-peers and leave nodes in the Gnutella overlay. In response,
the requester collects a list of peers, each of which contains a file copy (probably with
different versions). The requester then connects to one target node in the list and down-
loads the copy. Finally, she opens the downloaded file for use.
Attack Model A file-sharing worm usually copies itself to a host’s shared folder and
publishes it with an attractive name, for example, as a popular song or movie. Some-
times attackers replace real movie or sound files with their malicious copies or add
executable extensions to such files. When a host searches forsome file and finds an
match from an infected machine, it downloads and opens the file without being aware
of the threat. Consequently, the worm is activated and it copies/attaches itself to all the
files in the shared folder(s) of this new victim. In this way, afile-sharing worm continues
its spread cycle.

We define two states for a file in P2P systems:normalandabnormal. A file is nor-
mal when it is valid and clean, and it becomes abnormal once malicious codes have been
injected or attached to it. Also, we define three states with respect to a surging worm
for each host in the systems:vulnerable, infected, and immune. A vulnerable host is
not well-protected against the worm, hence it gets infectedwhen exposed to the attack.
For example, when a user opens an downloaded file which is abnormal, all files inside
the shared folder(s) of this infected machine consequentlybecome abnormal. A vul-
nerable/infected node becomes immunized once the protection (e.g., a patch) has been
in place. Fig 1 illustrates the node state transitions. We note that in real applications,
some P2P users could voluntarily install the vendor patch ontheir machines. Therefore,
these nodes are initially immunized to the worm. For simplicity, we assume no such
individual recoveries occur during the period of defense.

We notice that a few elaborated worms such as Worm.Win32.Hofox were recently
reported to be able to block the anti-virus protection services or kill anti-virus pro-
grams on P2P hosts. Clearly, at the system level, some local countermeasures will be
devised to protect defense tools from being eliminated, andthe arms race will continue.
In this paper, however, we assume that P2P worms cannot disable the patching protocol
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Fig. 1. Node state transition during the defense of internal patching. Initial recoveries include
individual updates from security vendors; its percentage is relatively low as a new worm surges.

deployed in end hosts, so that an infected host can receive patches and become immu-
nized as it is expected. Note that this assumption will not affect the correctness of our
approaches, and our analysis model presented later can be slightly changed for the case
when this assumption does not hold.
System Design OverviewTo effectively combat file-sharing worms, we cannot merely
rely on users’ precaution and worm elimination skills; rather, we needan automated
and systematic approach to disseminate security patches tothe P2P users. Existing au-
tomated patching systems can be utilized to secure P2P hostsas well by simply treating
them as normal Internet hosts; however, they are not necessarily the best-fit choices
because not all Internet hosts are equally exposed to those P2P worms. For P2P users
who often download files, their machines are more likely to beaffected by P2P worms,
whereas for non-P2P users, their machines will not be affected by worms exploiting
P2P applications. Moreover, a traditional centralized model of patch distribution could
cause single-point failure or overloading on the patch servers.

As such, we are motivated to study a P2P-tailored automated patching mechanism
as a supplement to existing solutions and examine its effectiveness. Our approach uti-
lizes the existing file-sharing infrastructure to internally push security updates (alerts)
to the participating peers. It has several good features. First, it is customized for P2P
environments and delivers security updates to P2P hosts only. This avoids unnecessary
consumption of network/computer resources. Second, it adopts a distributed manner to
disseminate security patches to those vulnerable peers in need and no longer strains the
central servers. Third, our push-based scheme delivers security updates more promptly
than the traditional once-a-day update adopted by existingpatching systems.

Internal patching should leverage the existing file-sharing infrastructure for dis-
tributing security patches. Approaches utilizing IP address scanning or topology ex-
ploration to locate alive patching targets bring extra computation and communication
overhead to P2P systems. Moreover, these methods could be easily exploited by mali-
cious users and used as the vehicle for rapid worm spread and denial-of-service attacks.

In this paper, we study two push-based patching mechanisms for P2P systems. We
first examine a download-based approach, in which a small fraction of popular nodes
(also referred askey nodes) act as early patch distributors and a node which downloads
a file from a key node will also be offered with a security patch/alert. Thus, the patch
is propagated to many active hosts along with the file-download process. We then ex-
amine a search-based approach, in which once a key node detects worm infection in a



downloaded file, it re-performs a file search to identify those active hosts that possibly
possess the abnormal file and disseminates the patch to immunize/disinfect them.

3 A Download-based Approach

In our download-based approach, a small set of key nodes internally push the security
patches to participating peers through the file-downloading process. Nodes that are noti-
fied of the approaching threat hence have a good chance of being immunized/disinfected
against the worm. Our design of the scheme answers the following questions.

– Which hosts are determined as the key nodes so that they can distribute patches
to others in a most efficient and timely manner? Key nodes cannot be determined
in a centralized mode because no node in the system holds a global knowledge of
file-sharing activities of others.

– What is a user’s strategy to choose the download source and what is the impact on
patch dissemination? How should the existing P2P file transfer protocol be adapted
to support the patch dissemination?

– How does a recipient authenticate a patch that it receives? In a distributed envi-
ronment, even if a public key infrastructure (PKI) is deployed to provide sender
authentication, it cannot prevent malicious peers from injecting worm codes in-
stead of security patches. In other words, a node cannot fully trust others in the P2P
system. Moreover, how does the recipient deal with the patchand how does her
decision affect the immunity level of the system?

3.1 Scheme Description

Bootstrapping Key NodesThe first important issue is the choice of key nodes. In
most decentralized systems such as Gnutella and KaZaA, downloading traffic is highly
focused around a small minority of popular targets and thesepopular files tend to be
gradually concentrated in a small set of providers. For example, in Gnutella, 50% of
all files are served by just 1% of nodes and 98% of all files are shared by the top 20%
nodes [14]; in KaZaA, 10% most popular files generate 60% of the download traffic and
70% of the highly popular files will remain popular for at least 10∼15 days [18]. These
are strong indications that a small fraction of popular hosts sharing the most interesting
files could be conveniently leveraged as the early distributors, which effectively push
security patches to active downloaders in the system.

We consider a distributed algorithm for bootstrapping suchkey nodes in the P2P
systems. Specifically, a small set of key nodes are individually decided according to a
predefined policy. These key nodes then automatically pull (download and launch) the
patch from vendor, so that they become immunized against thesurging worm. To de-
scribe this algorithm in detail, we first introduce a node parameter namedfile-offering
rate φO, which is defined as the number of files a node offers to its requesters in unit
time. Note that this parameter reflects the popularity degree of the node. Each node
calculates itsφO based on its own file-sharing history. For example, nodei may de-
rive φO(i) = Dout(i)/Tf , whereDout(i) denotesi’s out-degree in its file-access graph



within its neighborhood time windowTf . Thus, we can adopt the following policy to
bootstrap the key nodes:key nodes are selected from a subset of popular nodes with the
highest file-offering rates in the system.Specifically, each candidate nodei refers to its
recent file-offering rateφO(i) and decides to be a key node only ifφO(i) ≥ HO satis-
fies. HereHO is a globally defined threshold, which controls the fractionof key nodes.
This policy can be automatically enforced through the client program. Once a node de-
cides to become a key node, it should automatically fetch thelatest security updates (if
there are any) from the trusted vendor(s) and immediately launch the protection on the
local machine (another option is they register to the vendors so that the vendors may
push the latest security patch to them once available). Thus, key nodes get immunized
against the surging worm and are ready to secure other file requesters. We note that as
an active holder of more popular files, the user has to sacrifice a little bit convenience
(patch activation if needed) and bandwidth (patch transfer) for the sake of the security
of the entire system. On the other hand, a key node could be malicious or a regular node
may claim to be a key node. We will discuss the related security issue shortly.
Disseminating Security PatchesNext, we discuss the message format of a security
patch generated by the key node. This patch is used to notify the receivers of the worm
threat and to provide the source of the security update. As illustrated in Fig 2, a patch
messageMSGa typically contains two parts: a message header which contains the key
nodes’s identifier, and a message payload which contains (1)the worm alert (name,
type, severity level, etc..), (2) the security patch itself(e.g., a Microsoft XP patch in
binary delta compression format [6]) or simply a link to the URL of that patch (e.g.,
the Microsoft Security Bulletin), (3) a vendor signature of(1) and (2). We note that
for a specific worm (identified by a specific vendor), the payload of its security patch
message is unique. In addition, the security patch isself-verifiable: either the signature
from a well-known vendor is attached to the patch, or the patch link can be directly
verified through the vendor’s website. This mechanism does not require a recipient to
authenticate the intermediate patch distributors. Instead, it verifies the authenticity of
the message content with the vendor or through its web site – these are considered
more reliable and trustable.��� ���������	
	�� ���
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Fig. 2.Message format of security patchMSGa

The next issue is how key nodes leverage the existing P2P file transfer protocol
to internally distribute the security patch to file downloaders. Using Gnutella 0.6 sys-
tem as an example, search results are directly delivered to aclient (requester) through
UDP packets. If the client chooses a resulting node for file download, it typically sends



an HTTP Request to the provider and reads the bit stream of filecontent that follows
the HTTP Response [1]. We propose that the client also includes its latest patch ver-
sion in the HTTP Request. Thus, a key node verifies the requestbefore its file transfer
and decide whether to distribute the latest security patch.To notify the recipient of the
patch existence, the key node simply sets an indicator and the patch length in its HTTP
Response. Both sides may establish an additional channel oruse the existing control
channel to perform patch transfer. In the case when the provider is behind a firewall, a
PUSH process is executed to establish the connection [1] andthe remainder of the file
download and patch dissemination is similar as we have described.

Client Strategy and User BehaviorIn response to a file search, a client receives a set
of replies pointing to different file providers. The main decision that the client needs
to make is which one of these node to ask for a copy of the file. This choice clearly
has some influence on the defense. We consider the following three major selection
strategies:

Random. The client selects a random node, independent of the node’sadvertised
resources. In this mode, when there areα percentage of key nodes in the system, every
client has an equal chance ofα to download the file from a key node. This also implies
that every client will eventually receive the security patch from key nodes.

Best. The client selects the node that advertises the best performance, i.e., the node
with the lowest estimated delay (the node’s queue length times the file size times the
maximum number of simultaneous uploads divided by the access link bandwidth). Un-
like the random mode, in this mode every client has a higher chance of downloading
files from key nodes (i.e., those popular file holders). However, a small fraction of nodes
which are not interested in the popular files may not have a chance to receive the secu-
rity patch from key nodes.

Redundant. The client performs redundant download from either randomly chosen
C nodes orC nodes with the lowest estimated delay. Once the first download finished
and the content is verified for correctness, the other downloads are stopped. When the
file download from a key node is aborted, the client cannot receive the patch that fol-
lows.

Next, we discuss how recipients react to the security patch.Although our scheme
effectively leverages the internal infrastructure to expedite patch dissemination and en-
sures most participating pees receive the update as the file downloads proceed, the
immunity level of the system is still in some degree dependent on individual users’
responses to the patch. Upon receiving a patch messageMSGa, the client program
first examines the payload and compares it with the existing version in order to discard
out-dated or duplicated patch content. An accepted patch notifies the user of a surging
worm and reminds her to launch immediate protection. If the user accepts the patch, the
client program authenticates the patch payload either by directly examining the vendor
signature or by visiting the trusted vendor site and verifying if the patch link provides
consistent worm information. The program applies the new patch (a download is possi-
bly needed) on the local machine immediately after a successful verification. Thus, the
local machine gets immunized/disinfected against the wormand consequently all the
files in its shared folder are/become normal. However, when auser declines the offer,
either unwilling to follow the link or failing to activate the patch, her machine remains



vulnerable to the worm. We quantitatively analyze the impact of user behavior on the
system immunity in Section 3.2.

Table 1.Notation for worm propagation model

Note. Explanation
N the total number of hosts in the network
V (t) the number of vulnerable hosts
If (t) the number of infected hosts
Im(t) the number of immune hosts
F (t) the total number of files
h(t) the proportion of abnormal files in the system
s(t) the average size of a shared folder
λd the average rate of file download (files/hour)
λa the probability a user activates the downloaded file
α the percentage of key nodes in the system
β the probability at which a user accepts a patch

3.2 Security and Performance Analysis

We derive a new fluid model for worm propagation and analyze the security and perfor-
mance of the download-based approach. We refer to notation in Table 1.

A Fluid Model for Worm Propagation We first consider the case when no defense
has been deployed in the system. Each node is either in vulnerable or immune state,
i.e., relationN = V (t) + If (t) always satisfies. We show the evolution status of the
system under the worm threat. The vulnerable population decreases as some nodes un-
fortunately download abnormal files, activate these files and get infected. We have

dV (t)

dt
= −λdλa · V (t) · h(t). (1)

Here1/λd is the average time a node takes to download a file, andh(t) reflects the
percentage of abnormal files at timet. Solving the above differential equation, we get

V (t) = N − If (t) = V (0) · e
−λdλa

∫
t

0
h(τ)dτ

, (2)

whereV (0) denotes the initial number of vulnerable hosts. This equation indicates that
the vulnerable population in the system decreases exponentially as there are more file
downloads and activations; the increase of the proportion of abnormal files accelerates
the worm spread. We further derive the file state.

Lemma 1 In a P2P file-sharing system, the percentage of abnormal filescan be com-

puted ash(t) = h(0) · e
λd·λa

N

∫
t

0
V (τ)dτ , whereh(0) is the initial abnormal rate. An

approximation ofh(t) can be computed ash(t) ≈
If (t)

N
, assumingλa → 1.



This lemma is proved in Appendix A. It shows that user behavior has significant impact
on the percentage of abnormal files: more file downloads and activations lead to more
infections. However, as the amount of files increases and thevulnerable population
decreases, worm infection is gradually slowed down.

Analysis of the Download-based Defense Time PerformanceNext, we examine the
download-based defense. For simplicity, we assume users always adopt the random
strategy to choose file providers (see 3.1) and all infected hosts have a patch accep-
tance probabilityβ. We defineimmunity ratei(t) as the fraction of immune nodes
i(t) = Im(t)/N , and let the initial immune population beIm(0). Note that these nodes,
including the key nodes, either have applied the patch or does not expose the software
vulnerability to the worm.

To study how long it takes to achieve a certain level of immunity rate, we formalize
the problem as finding a lower boundt0 for time t, so that we havei(t) ≥ Ψ when
t ≥ t0, whereIm(0)

N
≤ Ψ ≤ 1 is a predefined threshold.

Lemma 2 In a file-sharing system which adopts the download-based defense, the num-
ber of immune nodes isIm(t) = N + (Im(0) − N) · e−λdαβt and the system takes at
leastt0 = 1

αβλd
ln N−Im(0)

N(1−Ψ) hours to achieve an immunity rateΨ .

Proof. From the state diagram in Fig 1, we know thatN = V (t)+If (t)+Im(t) always
holds. Each time when a node downloads a file from a key node, italso receives a patch
and the user decides whether or not to accept it. Note that only infected and vulnerable
(If (t) + V (t)) nodes are immunized/disinfected in this process. We derivethe change
of immunity rate.

dIm(t)

dt
= (If (t) + V (t))λdαβ = (N − Im(t)) · λdαβ. (3)

Hereα also denotes the probability that each client selects a key node as the provider.
Solving this differential equation forIm(t), we get the number of immune nodes in the
system

Im(t) = N + (Im(0) − N) · e−λdαβ·t. (4)

From the given conditioni(t) = Im(t)/N ≥ Ψ , we may further derivet ≥ t0 =
1

αβλd
ln N−Im(0)

N(1−Ψ) .

Fig 3 illustrates the change of immunity ratei(t) when the percentage of key nodes
(α) varies from5% to 15%. Clearly, as there are more patch distributors, the system
takes less time to reach a certain level of immunity rate (in our case 90%). For example,
whenα = 5%, it takes 60 hours for90% of nodes to receive the patch, whereas it takes
20 hours whenα = 15%. This figure also shows that in the random selection mode,
each downloader (including those not interested in the popular files) will eventually
receive the patch from a key node.
System Evolution StatusWe also examine the evolution status of the system which
adopts the download-based defense. During the worm containment, a vulnerable host
either (1) becomes infected when it downloads and activatesan abnormal file from a
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non-key node, or (2) gets immunized when it downloads a file from a key node and
accepts the patch. Hence, we set up the following equation for the change of the vul-
nerable population.

dV (t)

dt
= −λdλa(1 − α) · V (t) · h(t) − λdαβ · V (t). (5)

Note that hereλdλa(1−α) ·V (t) ·h(t) computes the reduction caused by (1) (1−α de-
notes the probability of downloading from a non-key nodes) andλdαβ ·V (t) computes
the reduction caused by (2). We use the approximationh(t) ≈

If (t)
N

and the solution
in Equ.4 to solve this differential equation forV (t). We also computeIf (t) using the
relationN − Im(t) − V (t). Fig 4 illustrates the evolution status of a file-sharing sys-
tem. Initially, the percentage of infected nodes increasesas the worm surges. However,
when more and more file downloaders receive the patch, worm infections are gradually
cleansed from the network and the infected population starts to decrease. Eventually,
immune nodes become the major population. The figures also indicate that the immune
timet0 is determined by several factors: the fraction of the key nodes(α), the file down-
loading rate(λd), patch acceptance rate(β) and the initial immunity rate. Our analytical
result has been validated in Section 6 (Fig 8).

4 A Search-based Approach

This section proposes a search-based approach, in which once a key node detects worm
infection in a file it has just downloaded from other participating peers, it immediately
infer from a new search result a set of suspicious targets, towhich it directly pushes
the security patch and disinfect/immunize them. Given the latest vendor updates, we
assume key nodes are able to detect on-going worm attacks based on techniques such as
worm signature matching, taint analysis or anomaly detection [9, 16, 20, 19]. We answer
the following questions in our design.

– Which hosts in the system should be chosen as the key nodes, sothat they detect
file anomalies in the system and distribute patches to othersin a most efficient and
timely manner? Key nodes should be bootstrapped in a distributed way.



– Once a key node detects file anomaly, how does it infer a set of suspicious nodes
by examining the query response and how to deal with network dynamics?

– How does a key node disseminate the patch to those suspiciousnodes? To be scal-
able, how should a key node limit its bandwidth for patch delivery?

– What is the user’s reaction towards the patch and how does it influence the immu-
nity level of the system?

4.1 Scheme Description

Bootstrapping Key NodesTo address the first issue, we consider a distributed algo-
rithm to bootstrap key nodes in our search-based scheme. Similar to the algorithm in
Section 3.1, key nodes automatically pull (download and install) the latest vendor patch
so that they become immunized against the surging worm. However, here we adopt
a different policy for determining key nodes in a distributed way. We first introduce
a node parameter namedfile-downloading rateφI , which is defined as the number of
files a node downloads from others in unit time. This parameter reflects a node’s activity
level of file downloads. Each nodei derivesφI(i) = Din(i)/Tf , whereDin(i) denotes
the number of filesi has downloaded within the time windowTf . Now we can adopt
the following policy to bootstrap the key nodes:key nodes are selected among a subset
of nodes with the highest file-downloading rates in the system.Specifically, each candi-
date nodei refers to its recent file-downloading rateφI(i) and decides to be a key node
only if φI(i) ≥ HD satisfies. HereHD is a globally defined threshold which controls
the fraction of key nodes. This bootstrapping policy is automatically enforced through
the client program within an end host.

The above policy chooses those active file requesters as the key nodes because these
nodes keep actively acquiring files from various origins, hence their chance of being
infected is relatively higher than hosts with relatively low downloading rate. Keeping
these nodes updated with the latest vendor patch also enables them to explore more
worm infections from file providers. Our search-based scheme requires a key nodeP
immediately examines the file state after it finishes downloading a file fp. Once an
anomaly has been identified, the key node composes a securitypatch messageMsga.
Distributing Security Patches The next issue is to which nodes the security patch
should be distributed. Pushing the patch directly to the provider who has uploaded the
abnormal file is effective. However, this is not efficient because the key node has a good
reason to suspect that other file-owners may have also been infected. On the other hand,
simply flooding the patch or locating the targets by IP address scanning or topology
exploration is not scalable. Our solution is to let the key nodes exploit the file search list
to locate thosesuspiciousfile providers and push the patch to these targets. However,
there exist a time gap (could be in hours) between the original search and the worm
detection. During this period, nodes frequently join and leave the network. A good
strategy for the key node is to re-perform a file search once ithas detected a file anomaly.

We propose a distributed algorithm for patch dissemination, as illustrated in Fig 5.
Specifically, once a key nodeP has detected worm infection in a downloaded filefp, it
immediately re-perform a search onfp and consequently receives multiple QueryHit re-
sponses, based on which it sorts the destination nodes according to theactivity leveland
constructs arankedsearch listSp. Here a nodei’s activity levelLa(i) is derived from



three parameters: the bandwidth of its access linkSpd(i), the queue lengthQLen(i)
and the number of simultaneous uploadsNup(i). These parameters for nodei are in-
cluded in the QueryHit message, i.e., we haveLa(i) = f(Spd(i), QLen(i), Nup(i)),
wheref is a monotonically increasing function. The application inthe key node then
computes an activity lower boundHL(P ) based on the bandwidthSpd(P ) and the cur-
rent number of connections (ongoing P2P traffic) in the localmachine. Finally, the key
node chooses fromSp topk target nodes whose activity level satisfiesLa ≥ HL(P ) and
establishes a direct HTTP connection with each of these suspicious targets to push the
security patch. Note that such patch transfers are out-of-band (not through the Gnutella
overlay).
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Fig. 5. An illustration of the search-based approach. In this example, key nodeP detects an
infected filefp and delivers patchMSG′

a to k = 6 suspicious nodes in the search listSp.

Here a security patchMSG′
a also contains the identifier of the infected filefp.

Upon receiving the patch, each nodej needs to verify the existence offp and then
displays a warning in the local machine. If the user accepts the patch, the application
first authenticates the patch content/link. Once the patch has been successfully applied,
nodej becomes immunized to the worm and its shared folder will be immediately
scanned and cleansed. We quantitatively analyze the impactof user behavior on the
system immunity level in Section 4.2.

4.2 Security and Performance Analysis

Time Performance We analyze the effectiveness of the search-based defense. Let k
denote the average number of suspicious targets to which a key node distributes the
security patch, we first derive how long the system takes to achieve an immunity rateΨ .
According to the state diagram in Fig 1,N = V (t)+If (t)+Im(t) always holds. In the
search-based scheme, the increased immune population comes from either vulnerable
nodes or infected nodes. Hence, the rate at which the immune population increases can
be computed as

dIm(t)

dt
= Nλd · αh(t)(

N − Im(t)

N
) · kβ

= a(N − Im(t)) · h(t), (6)



Wherea = αβλdk. Note thatαh(t)(N−Im(t)
N

) computes the probability that a key node
downloads an abnormal file from those non-immune hosts.

Also, the decrease of the vulnerable population could be caused either by (1) worm
infections or (2) by host immunizations (or disinfections). Therefore, the rate at which
vulnerable nodes become either infected or immunized is

dV (t)

dt
= −λaλdV (t)h(t) − Nλd · αh(t)(

V (t)

N
) · kβ

= −(a + b)V (t)h(t). (7)

whereb = λaλd. HereλaλdV (t)h(t) computes the reduction caused by (1);Nλd ·

αh(t)(V (t)
N

) · kβ computes the reduction caused by (2), in whichαh(t)(V (t)
N

) denotes
the probability a key node downloads an abnormal file from a vulnerable host (not
infected yet). In this case, the latter receives the patch and could be immunized.

Finally, we know that the infected population (1) increaseswhen some vulnerable
nodes get infected, and (2) decreases when some victim nodeshave been disinfected.
Hence we derive the following differential equation.

dIf (t)

dt
= λaλdV (t)h(t) − Nλd · αh(t)(

If (t)

N
) · kβ

= bV (t)h(t) − aIf (t)h(t). (8)

Note that hereλaλdV (t)h(t) computes the increase of infected nodes caused by (1);

Nλd ·αh(t)(
If (t)

N
) · kβ computes the reduction of infected nodes caused by (2), where

αh(t)(
If (t)

N
) denotes the probability a key node downloads an abnormal filefrom an

infected host. In this case, the latter receives the patch and could be disinfected. To
solve these differential equations, we derive the immune populationIm(t). We divide
Equ.6 by Equ.7 and get

V (t) = V
− b

a

0 · (N − Im(t))
a+b

a , (9)

whereV0 = V (0) denotes the initial vulnerable population in the system. Wethen apply
the approximationh(t) ≈

If (t)
N

= N−Im(t)−V (t)
N

and substitute Equ.9 into Equ.6. Thus,
we have

du

dt
= −

a · V0

N
· u2(1 − u

b
a ) (10)

whereu = (N − Im(t))/V0. We further solve this equation forIm(t) and illustrate
the change ofIm(t) in Fig 6. This figure indicates that under an average sizek = 30,
the search-based approach only needs to deploys 5% nodes as key nodes and help the
system achieve a 90% immunity rate within 60 hours.
System Evolution StatusAdopting the similar method as above to solve Equ. 6, 7, 8,
we derive the following

dV (t)

dt
= −

a + b

N
(c · V 1+ a

a+b (t) − V 2(t)), (11)

wherec = V
b

a+b

0 . Hence we may computeV (t). UsingIf (t) = N − V (t) − Im(t),
we may further derive the infected populationIf (t). We illustrate the system evolution
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search-based scheme

status in Fig 7. The figure shows that the infected populationinitially increases due to
the surging worm. However, this triggers the defense and many suspicious nodes receive
the patch. Eventually worm infections are eliminated and immune nodes become the
major population. The above analytical result has been validated in Section 6 (Fig 8).

5 Security Analysis

We discuss two attacks that may happen in both schemes.
Fake Security Alerts A malicious node, either a key node or a regular node claiming
to be a key node, may replace security patches with worms and deliver them to other
hosts. This attack will fail because our signature-based mechanism allows a receiver to
verify if the patch truly comes from a trusted vendor or the link to the patch is correct.
On the other hand, we notice that a lot of false messages may cause a DoS attack to
other hosts. Since we do not assume a PKI, P2P nodes may not be able to authenticate
each other. Indeed, even a PKI is available, it does not solvethis type of insider attacks.
A simple solution is that a node blacklists the nodes reporting false alerts based on their
IP addresses. To prevent IP spoofing, before a node accepts a security alert, it challenges
the source.
Patch Suppression AttackA malicious (or selfish) candidate key node may not prop-
agate security patches. That is, in the download-based approach, it does not offer the
security patches to downloaders and in the search-based scheme it does not care about
other susceptible nodes. This patch suppression attack will degrade the effectiveness of
our schemes. However, it only decreases the actualα. As long as they are not a lot, our
schemes will still work. Otherwise, we should increase the value ofα.

6 Evaluation

Environmental Setup We evaluated and compared our schemes in a variety of file-
sharing systems. For unstructured networks we implementeda Gnutella simulator based
on Gnutellasim from limewire.org; for structured networkswe used P2PSim ([5]) to
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Fig. 8.Comparing time performance of the approaches in Gnutella 0.6; N=20k nodes, M=1k files,
λd=1 file/hour,λa= 1.0,α=10%,β=0.7

construct a basic Chord [22] infrastructure for routing queries and responses. We im-
plemented a protocol similar as NeuroGrid [15] to generate large-scale file-sharing traf-
fic on top of the routing infrastructures. We studied the casewhen a file-sharing worm
Benjamin.a [4] surges in the network and evaluated the effectiveness of our counter-
measures.

We adopted the following metrics in our evaluations:t0, time takes to reach an im-
munity rateΨ = 90%; h(t0), the the percentage of abnormal files at timet0, which also
reflects the infection rateIf/N(t0) whenλa → 1; If (max), the maximum infection
rate which indicates how severe the system has been attacked. For each scheme, we also
investigated the system evolution status, the impacts fromuser behavior and the mes-
sage overhead. To examine the schemes’ tolerance against node dynamics (joins/departures),
our implementation followed the observations from Gnutella 0.6, i.e., 45% of the nodes
quit the network in less than4 ∼ 5 hours, and 22% persistent node tend to stay in the
network for longer than 24 hours. Each of our experiments takes 100 runs. We report
the mean of the measurement results. Unless otherwise indicated, in all our tests, the to-
tal populationN = 20, 000 nodes. The number of files (with different contents) varies
from 1, 000 to 10, 000 and the average size of shared folders ranges from5 to 50 files.
We set the initial the percentage of abnormal filesh(0) = 1.5%, the initial infection
If (0)/N = 0 and the initial immunity ratei(0) = 15%. Among these immune nodes,
α = 5 ∼ 10% of the entire population were bootstrapped as key nodes and each of
them obtained the latest security updates from vendors.

Scheme EffectivenessWe compared the time performance and the system evolution
status of different approaches, using the same set of parameters (e.g.,λa, λd, α and
β). We also used the no-defense case as the base line. Our test results are shown in
Fig 8. Fig 8(a) illustrates the change of immune population over time. Without any de-
fenses, the system keeps a low immunity rate and has to rely onindividuals’ patch up-
dates. The download-based approach and the search-based approach both significantly
increase the immunized population. The former takes around35.5 hours to achieve a
90% immunity rate while the latter takes around 62.5 hour dueto its reactive nature.
The download-based approach largely depends on the activity level of file downloads
and the search-based approach is triggered by worm detections. Fig 8(b) shows the
change of the infected population over time. Without any defenses, the worm spreads



in a relatively high speed and infects all the vulnerable hosts within 9.5 hours. Both our
schemes effectively help the system reduce the infected population by internally push-
ing the security patch to disinfect those victims. A furthercomparison indicates that the
search-based approach has a relatively slower disinfection speed; it takes 62.5 hours to
reduce the overall infection rate to below 10%. However, it keeps a lower maximum in-
fection rate (If (max)/N = 37%). On the contrary, the download-based approach takes
45 hours to reach an infection rate below 5%, but it yields a higher maximum infection
rate (If (max)/N = 44%) in the system. Fig 8(c) illustrates the change of vulnerable
population over time. Without any defenses, the vulnerablepopulation quickly drops to
zero (within 10 hours) as more and more nodes get infected during file downloads. Our
schemes effectively slow down this process by either immunizing the vulnerable hosts
or disinfecting the victims. We can see that after around 62.5 hours, there remain few
vulnerable nodes and victims in the system and the immunity rate exceeds 90%.
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Fig. 9. Impact from user behavior on the defense scheme (Gnutella 0.6)

User Impacts and OverheadWe evaluated the impacts of system parameters and user
behavior on the defense. Fig 9 illustrates the test result inGnutella 0.6 system. Fig
9(a) shows that both schemes take less time (t0) to achieve an 90% immunity rate as
the speed of file download (λd) increases. For the download-based approach, a higher
download speed results in a faster patching process; for thesearch-based approach,
a higher download speed leads to more worm infections and this in turn speeds up the
patching process. The figure also indicates that in the download-based approach,t0 gets
reduced as users become more willing to accept the patch (β increases). However, this is
not distinct in the search-based scheme due to its reactive nature. When more users are
patched, the defense also gets slowed down. Fig 9(b) shows that in the download-based
scheme, the severity level of worm attacks (If (max)) quickly drops asβ increases.
Whenβ ≥ 0.85, the maximum infection rate in the system is below that of thesearch-
based scheme.

Fig 10 illustrates the message overhead of the defense schemes. Using Microsoft XP
as an example, the patches during SP2 are in binary delta compression format [6] and
the mean patch size is 32.9 KBytes [12]. This patch and its vendor signature (typically
around 300 Bytes) constitute the main part of the payload in an alert message. Thus,



the average length of a patch message is 33.2 KBytes. The figure shows that whenβ
increases from 0.6 to 1.0, the message count of the download-based approach decreases
until finally it reaches around20, 000 × (90% − 15%) = 15, 000. We examined three
cases for the search-based scheme: (1)worst casein which each key node simply deliv-
ers the patch to its targets. Patch messages could be duplicated and the message count
is above 50, 000; (2)average casein which a key node does not deliver a patch to the
same target and the message count is above 28,000; (3)optimal casewhen key nodes
collaborate to avoid patch duplicates or each node indicates its current patch version in
the QueryHit response. Hence, there are few patch duplicates and the message count
approaches 15, 000 whenβ → 1.
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Fig. 10.Message overhead of the defense scheme (N = 20,000 nodes,Ψ = 90%); the download-
based approach has less overhead than the search-based one due to no alert duplicates.

7 Related Work

File-sharing worms have recently attracted much attentionin research community. The
initial studies mainly focused on understanding the threats and modeling the behavior
of such imminent worms. Dimitriu et al. [11] demonstrated that worm spreads highly
depend on user behavior, such as willingness to share files and quickness in removing
infected files. Kumar et al. [17] developed a suite of fluid models that characterize pol-
lution proliferation in file-sharing systems. Thommes et al. [23] derived deterministic
epidemiological models for file-sharing viruses spreadingin file-sharing systems.

The problem of throttling these worms have not been adequately addressed. Exist-
ing defenses mirror the strategy against Internet computerviruses. Generic automated
patching tools (e.g., Microsoft Window Update, Symantec Update, McAfee VirusScan)
are widely adopted to launch protection on P2P hosts. Vojnovic et al. [24] studied the
effectiveness of automatic patching and quantified the speed of patch dissemination re-
quired for worm containment. Gkantsidis et al. [12] provided general guidelines on how
to design a fast planet-scale patching system based on theirstudies on Window Update.
They also suggested alternative patching strategies such as caching. Costa et al. [10]
proposed Vigilante, an end-to-end approach in which hosts run instrumented software
to detect worms and broadcast self-certifying alerts (SCA)upon worm detection. Zhou
et al. [26] further applied Vigilante in P2P systems to contain fast-spreading topological
worms. Our work differs from the above in that we provide internal patching mecha-
nisms exclusively for file-sharing systems. Our focus is noton generating anti-worm



code on-the-fly to combat zero-day worms, but on studying good patching schemes
which both save network bandwidth and avoid unnecessary host interruptions.

8 Conclusions and Future Work

File-sharing worms are becoming the most dominating and devastating security threats
to P2P systems. Current defenses relying on individual recoveries or limiting file-sharing
activities are not adequate. As a complement to the existingcentralized patching mode,
we proposed internal patching mechanism which conveniently leverages file-sharing
infrastructure to disseminate security updates to participating peers in an automated
and distributed way. We studied a download-based approach which exploits the file
download process and a search-based approach which exploits the file search process
for notifying P2P hosts of the worm attack and pushing the security patch to them. In
spite of some remaining issues such as host diversity and user diversities, the free-rider
problem [8] in patching, our study suggests some interesting directions for designing
countermeasures against worms in distributed environments. We address remaining is-
sues in our future work.
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A Percentage of Abnormal Files

Proof. We refer to Table 1 for notation. LetA(t) denote the number of abnormal files at timet,
we haveh(t) = A(t)/F (t). The change rate of the total number of filesF (t) is

dF (t)

dt
= λdN i.e., F (t) = F0 + λdN · t, (12)

whereF0 is the initial number of files in the system. A newly added abnormal file could be
caused either by a vulnerable host activating another abnormal file in the same folder, or by a
node directly downloading an abnormal copy from others. Therefore, we have the change rate of
the number of abnormal files

dA(t)

dt
= λd · λa · V (t) · h(t) · (s(t) − 1) + Nλdh(t). (13)

Considerings(t) − 1 ≈ F (t)/N andA(t) = F (t) · h(t), we solve equation 13 and finally get

h(t) = h(0) · e
λd·λa

N

∫
t

0
V (τ)dτ

, (14)

whereh(0) is the initial percentage of abnormal files.
We may compute an approximation forh(t). Assuming all the nodes have a similar size of

s(t) for their shared folders and the user parameterλa approaches 1, which means every client
usually activates (opens) the file he has just downloaded, all the abnormal files should gradually

be kept by those infected hosts in the system. Hence, we may derive h(t) ≈
If (t)

N
.


