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Abstract. File-sharing worms have been terrorizing Peer-to-peeP)Bgstems

in recent years. Existing defenses relying on users’ iddiai recoveries or limit-

ing users’ file-sharing activities are ineffective. Autdethpatching tools such as
Microsoft Windows Update and Symantec Security Update anently the most

popular vehicles for eliminating and containing Internetrms, but they are not
necessarily the best fits for combating P2P file-sharing womich propagate
within a relatively smaller community. In this paper, wepose a complementary
P2P-tailored patching system which utilizes the existitgggharing mechanisms
to internally disseminate security patches to those ppsiing peers in a timely
and distributed fashion. Specifically, we examine the ¢iffeness of leveraging
the file downloading or searching process to notify vulnkramd hosts of the
surging worms and push corresponding security updategse thosts. We show
through in-depth analysis and extensive experiments ththtinethods are scal-
able and effective in combating existing P2P worms.

1 Introduction

P2P file-sharing programs such as KaZaA, iMesh, Morpheup@palar Internet ap-

plications that allow users to download and share eleatrfileis. As one of the most
popular networks, KaZaA has four million simultaneous as&he powerful data ac-
cess feature, however, brings about unique privacy andiggthreats in these systems.
In addition to adware and spyware, P2P hosts are placed askhef various viruses

and malicious codes [13].

Our focus in this paper fle-sharing wormy which are malware spreading through
file-sharing activities within P2P systems. Specificallyser searches for a file in the
network and acquires a list of accessible targets amongwthére could be a disguised
one provided by some infected machine. Unwittingly she doaats the file and opens
it, resulting in her own machine being infected. Recentlgngnfile-sharing worms have
beenreported, e.g., Benjamin.a, Franvir, Bare.a, DarfanchDuload worm that are ac-
tively attacking KaZaA, Gnutella, and eDonkey2000 netvgdk 7]. One experimental
study reported that 44% of the 4,788 executable files dowieiddhrough a KaZzaA
client program contain malicious code [25]; another experital study revealed that

1. . ) . . , . .
Like mass-mailing worms, file-sharing worms also requirmho’s operations to propagate. As such, they are sometimes
referred to as viruses or malware.



12% of the KaZaA client hosts were infected by over 40 diffén@orms in February
and May, 2006 [21]. Some disastrous consequences of aftackdile-sharing worms
include opening backdoors, changing system registriesch@aat configurations, and
collecting clients’ confidential data [7].

It would not be surprising that worms will increasingly eajpffile-sharing applica-
tions as their major infection vector. However, researclhase imminent threats has
just started and most existing work focused on modeling wieehmavior such as infec-
tions and propagation in file-sharing environments [1128Y., The problem of quaran-
tining these worms has not been adequately addressedn@uttee best defense mir-
rors the strategy against Internet computer viruses wélirtbeption of security patches
from vendors (e.g., Microsoft, Symantec, McAfee). The métbf automated security
update is widely employed by security servers to automiatipash the latest security
patches to Internet hosts[24]. This generic solution adstaelps protect Internet hosts
at the earliest stage of worm spreads, but it is not P2P-mdehat is, security servers
either have to blindly deliver P2P patches to all the Intehosts (including those non-
P2P machines and those who have installed P2P softwaredonbaexecuting it), or
have to scan for currently running P2P client programs widsich Internet host before
sending a patch to it. In both cases, system resources andrkebandwidth could
be greatly wasted. Moreover, unnecessary security updatdd cause annoying ma-
chine reboots (sometimes required for a complete secupitiate), which unavoidably
interrupt those non-related users’ on-going tasks runamtheir hosts.

Contribution: In this paperwe study the feasibility of utilizing the existing file-
sharing infrastructure to internally push security update the participating nodes in
P2P systemsaNe propose two BitTorrent-like mechanisms for distribgtthe security
patches. In file-sharing networks such as Gnutella, a vesll$maction %) of hosts
usually provide a large fraction of the shared fil&é&%) [14]. Exploiting this asymme-
try in file-sharing, we consider first disseminating the sitgyatches to these popular
hosts, such that most of the other participating hosts azgiwve the patches from these
popular hosts when they actively download files from themr §acond approach is
based on the belief that P2P users as a community should &afpogher in combating
worm attacks. Therefore, when a host detects worm infeét@mn a downloaded file, it
first re-performs a search on the infected file to identifysthbosts possessing the same
file, and then it collaboratively notifies these hosts of tleerwinformation as well as
the security patch. Based on a modified fluid model, we analyzen spreads and eval-
uate the effectiveness of our approaches in unstructureebries. Our result demon-
strates that both schemes can help a file-sharing systen2®;t000 hosts achieve a
high immunity rate (90%) within a few dozens of hours aftex ithitial worm surge.

Our solutions are not a substitution for the existing autiicrEatching systems but
rather a nice complement to them. Our proposed techniqeesarnecessarily very
complex, but our work, backed up with solid analytic modwgjliand extensive exper-
iments, makes a concrete movement towards solving the batosecurity problem
facing many P2P users. Also, our solution is scalable ang teadeploy by leverag-
ing the existing P2P infrastructure, without involving alated Content Distribution
Network (CDN) (e.g., Akamai).



Organization: The rest of the paper is organized as follows. Section 2 descr
an attack model for the network, as well as the design priesignd the assumptions.
Section 3 and 4 introduce two internal patching scheme®farring participating hosts
in P2P systems. We evaluate the schemes in Section 6 andbaetber related work in
Section 7. We conclude in Section 8.

2 Preliminaries

Network Model Many P2P file-sharing systems are actively running in thesesd
(a comparison can be found in [2]). The most popular onesudecleMule, KaZza,
Gnutella, and BitTorrent. For concreteness, however, maudsion will focus on those
unstructured networks such as Gnutella and KaZza. In Sestiee will briefly mention
how our approaches can be extended to other P2P systemsssBitficarent.

We use Gnutella as an example to describe the file-sharingepso Specifically,
each node usesshared folderto store those files it wishes to share. When a request-
ing node initiates a download request for a specific file,atpk a search for the target
node(s) responsible for the given file identifier. The seaecfuest is routed through a
two-tiered system of ultra-peers and leave nodes in the €lauiverlay. In response,
the requester collects a list of peers, each of which costaiiile copy (probably with
different versions). The requester then connects to ogetaode in the list and down-
loads the copy. Finally, she opens the downloaded file for use
Attack Model A file-sharing worm usually copies itself to a host’s shareldiér and
publishes it with an attractive name, for example, as a @omdng or movie. Some-
times attackers replace real movie or sound files with theiligious copies or add
executable extensions to such files. When a host searchssifw file and finds an
match from an infected machine, it downloads and opens thevithout being aware
of the threat. Consequently, the worm is activated and ites#attaches itself to all the
files in the shared folder(s) of this new victim. In this wafile-sharing worm continues
its spread cycle.

We define two states for a file in P2P systems:malandabnormal A file is nor-
mal when it is valid and clean, and it becomes abnormal ondieimas codes have been
injected or attached to it. Also, we define three states vesipect to a surging worm
for each host in the systemgulnerable infected andimmune A vulnerable host is
not well-protected against the worm, hence it gets infeatieen exposed to the attack.
For example, when a user opens an downloaded file which isratahcall files inside
the shared folder(s) of this infected machine consequdr@tome abnormal. A vul-
nerable/infected node becomes immunized once the prote(@ig., a patch) has been
in place. Fig 1 illustrates the node state transitions. We tfwat in real applications,
some P2P users could voluntarily install the vendor patctnein machines. Therefore,
these nodes are initially immunized to the worm. For siniglisve assume no such
individual recoveries occur during the period of defense.

We notice that a few elaborated worms such as Worm.Win32Xakre recently
reported to be able to block the anti-virus protection smwior kill anti-virus pro-
grams on P2P hosts. Clearly, at the system level, some locatermeasures will be
devised to protect defense tools from being eliminated th@drms race will continue.
In this paper, however, we assume that P2P worms cannoteltbedpatching protocol
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Fig. 1. Node state transition during the defense of internal patchinitial recoveries include
individual updates from security vendors; its percentageliatively low as a new worm surges.

deployed in end hosts, so that an infected host can receiebgsmand become immu-
nized as it is expected. Note that this assumption will nf#tcafthe correctness of our
approaches, and our analysis model presented later caigbiysthanged for the case
when this assumption does not hold.

System Design Overviewo effectively combat file-sharing worms, we cannot merely
rely on users’ precaution and worm elimination skills; eattwe needan automated
and systematic approach to disseminate security patchibetB2P usersExisting au-
tomated patching systems can be utilized to secure P2Pdsostsl| by simply treating
them as normal Internet hosts; however, they are not nedgses best-fit choices
because not all Internet hosts are equally exposed to tHiRevBrms. For P2P users
who often download files, their machines are more likely taffected by P2P worms,
whereas for non-P2P users, their machines will not be &bty worms exploiting
P2P applications. Moreover, a traditional centralized etodl patch distribution could
cause single-point failure or overloading on the patchesstv

As such, we are motivated to study a P2P-tailored automattthimg mechanism
as a supplement to existing solutions and examine its afeaetss. Our approach uti-
lizes the existing file-sharing infrastructure to inteipglush security updates (alerts)
to the participating peers. It has several good featurest, Hi is customized for P2P
environments and delivers security updates to P2P hostsTinik avoids unnecessary
consumption of network/computer resources. Second, ptadodistributed manner to
disseminate security patches to those vulnerable peeeeithand no longer strains the
central servers. Third, our push-based scheme deliveusisegpdates more promptly
than the traditional once-a-day update adopted by exig@tiching systems.

Internal patching should leverage the existing file-stwaiinfrastructure for dis-
tributing security patches. Approaches utilizing IP addrecanning or topology ex-
ploration to locate alive patching targets bring extra catapjon and communication
overhead to P2P systems. Moreover, these methods couldibhe edgloited by mali-
cious users and used as the vehicle for rapid worm spreadesmal-af-service attacks.

In this paper, we study two push-based patching mechansni®2fP systems. We
first examine a download-based approach, in which a smaliiéraof popular nodes
(also referred akey nodekact as early patch distributors and a node which downloads
a file from a key node will also be offered with a security pé&tdrt. Thus, the patch
is propagated to many active hosts along with the file-doaahlorocess. We then ex-
amine a search-based approach, in which once a key nodesietsm infection in a



downloaded file, it re-performs a file search to identify #hastive hosts that possibly
possess the abnormal file and disseminates the patch to irefdisinfect them.

3 A Download-based Approach

In our download-based approach, a small set of key nodesaitg push the security
patches to participating peers through the file-downlogidhocess. Nodes that are noti-
fied of the approaching threat hence have a good chance afio@munized/disinfected
against the worm. Our design of the scheme answers the falijpguestions.

— Which hosts are determined as the key nodes so that they suibalie patches
to others in a most efficient and timely manner? Key nodesadne determined
in a centralized mode because no node in the system hold®al gdoowledge of
file-sharing activities of others.

— What is a user’s strategy to choose the download source aatlisvthe impact on
patch dissemination? How should the existing P2P file teanmsfotocol be adapted
to support the patch dissemination?

— How does a recipient authenticate a patch that it receivesdistributed envi-
ronment, even if a public key infrastructure (PKI) is demdyto provide sender
authentication, it cannot prevent malicious peers froredtipg worm codes in-
stead of security patches. In other words, a node canngtifult others in the P2P
system. Moreover, how does the recipient deal with the patechhow does her
decision affect the immunity level of the system?

3.1 Scheme Description

Bootstrapping Key NodesThe first important issue is the choice of key nodes. In
most decentralized systems such as Gnutella and KaZaA |dading traffic is highly
focused around a small minority of popular targets and tipegeilar files tend to be
gradually concentrated in a small set of providers. For g@lamn Gnutella, 50% of
all files are served by just 1% of nodes and 98% of all files aseeshby the top 20%
nodes [14]; in KaZaA, 10% most popular files generate 60%etithwnload traffic and
70% of the highly popular files will remain popular for at led8~15 days [18]. These
are strong indications that a small fraction of popular &sstaring the most interesting
files could be conveniently leveraged as the early distitsytwhich effectively push
security patches to active downloaders in the system.

We consider a distributed algorithm for bootstrapping skey nodes in the P2P
systems. Specifically, a small set of key nodes are indiViyldecided according to a
predefined policy. These key nodes then automatically pollvhload and launch) the
patch from vendor, so that they become immunized againstuhging worm. To de-
scribe this algorithm in detail, we first introduce a nodegpagter namedlle-offering
rate ¢o, which is defined as the number of files a node offers to itsestguis in unit
time. Note that this parameter reflects the popularity degifethe node. Each node
calculates itspo based on its own file-sharing history. For example, nodeay de-
rive ¢o (i) = Dout(i)/Ty, whereD,,,. (i) denotes’s out-degree in its file-access graph



within its neighborhood time windo@;. Thus, we can adopt the following policy to
bootstrap the key nodelsey nodes are selected from a subset of popular nodes with the
highest file-offering rates in the systeBpecifically, each candidate nodeefers to its
recent file-offering rat@o (¢) and decides to be a key node only)i (i) > Ho satis-
fies. HereH is a globally defined threshold, which controls the fractibkey nodes.
This policy can be automatically enforced through the ¢lpngram. Once a node de-
cides to become a key node, it should automatically fetchattest security updates (if
there are any) from the trusted vendor(s) and immediatelydh the protection on the
local machine (another option is they register to the vesdorthat the vendors may
push the latest security patch to them once available)., Haysnodes get immunized
against the surging worm and are ready to secure other fileesters. We note that as
an active holder of more popular files, the user has to sazifilittle bit convenience
(patch activation if needed) and bandwidth (patch trap$éerthe sake of the security
of the entire system. On the other hand, a key node could beimad or a regular node
may claim to be a key node. We will discuss the related sgcisstie shortly.
Disseminating Security Patches\ext, we discuss the message format of a security
patch generated by the key node. This patch is used to nhéfyeiceivers of the worm
threat and to provide the source of the security update.l@stiated in Fig 2, a patch
messaged/ SG,, typically contains two parts: a message header which austhe key
nodes’s identifier, and a message payload which containghéljvorm alert (name,
type, severity level, etc..), (2) the security patch itgely., a Microsoft XP patch in
binary delta compression format [6]) or simply a link to th&Uof that patch (e.g.,
the Microsoft Security Bulletin), (3) a vendor signature(tj and (2). We note that
for a specific worm (identified by a specific vendor), the paylof its security patch
message is unique. In addition, the security patdeisverifiable either the signature
from a well-known vendor is attached to the patch, or thelpéitdk can be directly
verified through the vendor’s website. This mechanism de¢saquire a recipient to
authenticate the intermediate patch distributors. Imstéaverifies the authenticity of
the message content with the vendor or through its web siteesetare considered
more reliable and trustable.

|l Header | Payload 5
Key Node Worm Alert | Patch Content / URL Link Yendor S
TIdentifier Signature

Additional
info.

Name

Type | Severity Level

Fig. 2. Message format of security patdd.SG,

The next issue is how key nodes leverage the existing P2Prdifesfer protocol
to internally distribute the security patch to file downleasl Using Gnutella 0.6 sys-
tem as an example, search results are directly deliveredaliers (requester) through
UDP packets. If the client chooses a resulting node for filerdoad, it typically sends



an HTTP Request to the provider and reads the bit stream afdiléent that follows
the HTTP Response [1]. We propose that the client also iedts latest patch ver-
sion in the HTTP Request. Thus, a key node verifies the redpeéste its file transfer
and decide whether to distribute the latest security paihotify the recipient of the
patch existence, the key node simply sets an indicator angatch length in its HTTP
Response. Both sides may establish an additional channeeothe existing control
channel to perform patch transfer. In the case when the ggois behind a firewall, a
PUSH process is executed to establish the connection [1jrenemainder of the file
download and patch dissemination is similar as we have itbestr

Client Strategy and User Behaviorln response to a file search, a client receives a set
of replies pointing to different file providers. The main @gen that the client needs

to make is which one of these node to ask for a copy of the filés Ghoice clearly
has some influence on the defense. We consider the follovireg tmajor selection
strategies:

Random. The client selects a random node, independent of the nade&rtised
resources. In this mode, when there arpercentage of key nodes in the system, every
client has an equal chance®@to download the file from a key node. This also implies
that every client will eventually receive the security pafiom key nodes.

Best The client selects the node that advertises the best peafure, i.e., the node
with the lowest estimated delay (the node’s queue lengthdithe file size times the
maximum number of simultaneous uploads divided by the ad@d@sbandwidth). Un-
like the random mode, in this mode every client has a highancé of downloading
files from key nodes (i.e., those popular file holders). Havex small fraction of nodes
which are not interested in the popular files may not have aahto receive the secu-
rity patch from key nodes.

Redundant The client performs redundant download from either rangiamosen
C nodes orC' nodes with the lowest estimated delay. Once the first dovdfioished
and the content is verified for correctness, the other doadd@re stopped. When the
file download from a key node is aborted, the client cannativecthe patch that fol-
lows.

Next, we discuss how recipients react to the security pa&tthough our scheme
effectively leverages the internal infrastructure to akfeepatch dissemination and en-
sures most participating pees receive the update as thedidaldads proceed, the
immunity level of the system is still in some degree depehdenindividual users’
responses to the patch. Upon receiving a patch mestb§€',, the client program
first examines the payload and compares it with the existargion in order to discard
out-dated or duplicated patch content. An accepted pattfiesathe user of a surging
worm and reminds her to launch immediate protection. If ther accepts the patch, the
client program authenticates the patch payload either tectly examining the vendor
signature or by visiting the trusted vendor site and venifyif the patch link provides
consistent worm information. The program applies the neietpé download is possi-
bly needed) on the local machine immediately after a sufwessification. Thus, the
local machine gets immunized/disinfected against the wamnch consequently all the
files in its shared folder are/become normal. However, whesea declines the offer,
either unwilling to follow the link or failing to activate thpatch, her machine remains



vulnerable to the worm. We quantitatively analyze the impdaiser behavior on the
system immunity in Section 3.2.

Table 1. Notation for worm propagation model

Note.|Explanation

N |the total number of hosts in the network

V(t) |the number of vulnerable hosts

I4(t) |the number of infected hosts

I, (t) |the number of immune hosts

F(t) |the total number of files

h(t) |the proportion of abnormal files in the system
s(t) [|the average size of a shared folder

Ad  |the average rate of file download (files/hour)
Ao |the probability a user activates the downloaded file
@ the percentage of key nodes in the system

B the probability at which a user accepts a patch

3.2 Security and Performance Analysis

We derive a new fluid model for worm propagation and analyeestiturity and perfor-
mance of the download-based approach. We refer to notatidable 1.

A Fluid Model for Worm Propagation We first consider the case when no defense
has been deployed in the system. Each node is either in aldleeor immune state,
i.e., relationN = V(t) + I;(t) always satisfies. We show the evolution status of the
system under the worm threat. The vulnerable populatioredses as some nodes un-
fortunately download abnormal files, activate these filabget infected. We have

dv (t
% = —XaAq - V(¢) - h(t). 1)
Here1/)\, is the average time a node takes to download a file, /gy reflects the
percentage of abnormal files at timeSolving the above differential equation, we get

V() = N = I;(t) = V(0) - e e Jy hndr @)

whereV (0) denotes the initial number of vulnerable hosts. This equatidicates that

the vulnerable population in the system decreases expalignais there are more file
downloads and activations; the increase of the proporti@bnormal files accelerates
the worm spread. We further derive the file state.

Lemma 1 In a P2P file-sharing system, the percentage of abnormaldaesbe com-

2d Aa ft V(r)dr . P
puted ash(t) = h(0)-e ¥ Jo , whereh(0) is the initial abnormal rate. An

approximation of:(¢) can be computed dg(t) ~ IfT(t) assuming\, — 1.



This lemma is proved in Appendix A. It shows that user behavéas significant impact
on the percentage of abnormal files: more file downloads ativhéions lead to more
infections. However, as the amount of files increases andstheerable population
decreases, worm infection is gradually slowed down.

Analysis of the Download-based Defense Time Performandédext, we examine the
download-based defense. For simplicity, we assume usewsysladopt the random
strategy to choose file providers (see 3.1) and all infectestshhave a patch accep-
tance probabilitys. We defineimmunity ratei(¢) as the fraction of immune nodes
i(t) = I, (t)/N, and let the initial immune population g, (0). Note that these nodes,
including the key nodes, either have applied the patch os doeexpose the software
vulnerability to the worm.

To study how long it takes to achieve a certain level of imnyrate, we formalize
the problem as finding a lower bourgl for time ¢, so that we haveé(t) > ¥ when

Im(0)

t > to, where—g—= < ¥ < 1is a predefined threshold.

Lemma 2 In afile-sharing system which adopts the download-baseshdef the num-
ber of immune nodes &,,(t) = N + (1,,(0) — N) - e~*¢*5t and the system takes at

leastty = 5= In ]]VV_(fj‘é,o)) hours to achieve an immunity rate

Proof. From the state diagramin Fig 1, we know thét= V'(¢) + 1/ (¢) + I, (t) always
holds. Each time when a node downloads a file from a key nodksatreceives a patch
and the user decides whether or not to accept it. Note thgtiigicted and vulnerable
(I(t) + V(t)) nodes are immunized/disinfected in this process. We déieehange
of immunity rate.

dl,, (t)
dt
Here« also denotes the probability that each client selects a kdg as the provider.

Solving this differential equation faf,,, (¢), we get the number of immune nodes in the
system

= s (t) + V(£)AaaB = (N = I (1)) - Aacef3. 3)

In(t) = N + (I,,(0) — N) - e~ 2aoB 1, (4)

From the given conditioni(t) = I,,(¢t)/N > ¥, we may further derivé > t, =

1 N_IW'L 0
a5 0 N(lfg(b))'

Fig 3 illustrates the change of immunity rate) when the percentage of key nodes
(a) varies from5% to 15%. Clearly, as there are more patch distributors, the system
takes less time to reach a certain level of immunity rate (inoase 90%). For example,
whena = 5%, it takes 60 hours fod0% of nodes to receive the patch, whereas it takes
20 hours whenv = 15%. This figure also shows that in the random selection mode,
each downloader (including those not interested in the laogiles) will eventually
receive the patch from a key node.
System Evolution StatusWe also examine the evolution status of the system which
adopts the download-based defense. During the worm conéait) a vulnerable host
either (1) becomes infected when it downloads and activategbnormal file from a
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Fig. 3. Immunity rate as a func-
tion of time an and key nodes

non-key node, or (2) gets immunized when it downloads a fdenfa key node and
accepts the patch. Hence, we set up the following equatiothéochange of the vul-
nerable population.

dv (t)
dt

Note that here\ A\, (1 — ) -V (¢)- h(t) computes the reduction caused by (I}-(« de-
notes the probability of downloading from a non-key nodes).&;«5 - V' (t) computes
the reduction caused by (2). We use the approximaiign ~ IfT(t) and the solution
in Equ.4 to solve this differential equation fof(¢). We also computé;(t) using the
relationN — I,,(¢t) — V(¢). Fig 4 illustrates the evolution status of a file-sharing sys
tem. Initially, the percentage of infected nodes increasate worm surges. However,
when more and more file downloaders receive the patch, wdientions are gradually
cleansed from the network and the infected populationsstartiecrease. Eventually,
immune nodes become the major population. The figures alécaite that the immune
timet, is determined by several factors: the fraction of the keyasod), the file down-
loading rate{\;), patch acceptance rgté) and the initial immunity rate. Our analytical
result has been validated in Section 6 (Fig 8).

= —Aada(l— @) - V(t) - h(t) — AgafB - V(2). )

4 A Search-based Approach

This section proposes a search-based approach, in whiehadtay node detects worm
infection in a file it has just downloaded from other partating peers, it immediately
infer from a new search result a set of suspicious targetshioh it directly pushes
the security patch and disinfect/immunize them. Given #test vendor updates, we
assume key nodes are able to detect on-going worm attaokd basechniques such as
worm signature matching, taint analysis or anomaly deiadf), 16, 20, 19]. We answer
the following questions in our design.

— Which hosts in the system should be chosen as the key noddststhey detect
file anomalies in the system and distribute patches to othersnost efficient and
timely manner? Key nodes should be bootstrapped in a disédbvay.



— Once a key node detects file anomaly, how does it infer a satggfiGous nodes
by examining the query response and how to deal with netwypmnkahics?

— How does a key node disseminate the patch to those suspiticies? To be scal-
able, how should a key node limit its bandwidth for patchaely?

— What is the user’s reaction towards the patch and how doefllience the immu-
nity level of the system?

4.1 Scheme Description

Bootstrapping Key NodesTo address the first issue, we consider a distributed algo-
rithm to bootstrap key nodes in our search-based schemdaGtmthe algorithm in
Section 3.1, key nodes automatically pull (download anthifyghe latest vendor patch
so that they become immunized against the surging worm. Mexvéere we adopt

a different policy for determining key nodes in a distriblitgay. We first introduce

a node parameter naméte-downloading ratep;, which is defined as the number of
files a node downloads from others in unit time. This paranmeftects a node’s activity
level of file downloads. Each nodelerivesy; (i) = D;,,(i)/Ts, whereD;,, (i) denotes
the number of files has downloaded within the time windadf%. Now we can adopt
the following policy to bootstrap the key nodégy nodes are selected among a subset
of nodes with the highest file-downloading rates in the sys&pecifically, each candi-
date node refers to its recent file-downloading rate(i) and decides to be a key node
only if ¢;(i) > Hp satisfies. Herdd, is a globally defined threshold which controls
the fraction of key nodes. This bootstrapping policy is auatically enforced through
the client program within an end host.

The above policy chooses those active file requesters agyheokles because these
nodes keep actively acquiring files from various originqydestheir chance of being
infected is relatively higher than hosts with relativelwldownloading rate. Keeping
these nodes updated with the latest vendor patch also entdialm to explore more
worm infections from file providers. Our search-based sahemguires a key nod®
immediately examines the file state after it finishes dowdilog a file f,,. Once an
anomaly has been identified, the key node composes a sepatity messagé/ sg,.
Distributing Security Patches The next issue is to which nodes the security patch
should be distributed. Pushing the patch directly to thevigier who has uploaded the
abnormalfile is effective. However, this is not efficient bese the key node has a good
reason to suspect that other file-owners may have also bfsgted. On the other hand,
simply flooding the patch or locating the targets by IP adglsEsanning or topology
exploration is not scalable. Our solution is to let the keglemexploit the file search list
to locate thoseuspicioudile providers and push the patch to these targets. However,
there exist a time gap (could be in hours) between the ollig@arch and the worm
detection. During this period, nodes frequently join anaviethe network. A good
strategy for the key node is to re-perform a file search orfeesiletected a file anomaly.

We propose a distributed algorithm for patch disseminatarillustrated in Fig 5.
Specifically, once a key node has detected worm infection in a downloaded fileit
immediately re-perform a search gnand consequently receives multiple QueryHit re-
sponses, based on which it sorts the destination nodestegdo theactivity leveland
constructs aankedsearch listS,. Here a node’s activity level L, () is derived from



three parameters: the bandwidth of its access fipk(i), the queue lengtly) Len(7)
and the number of simultaneous uplodds,(i). These parameters for nodere in-
cluded in the QueryHit message, i.e., we h#@ivgi) = f(Spd(:), QLen(i), Nyup(1)),
where f is a monotonically increasing function. The applicatiorthie key node then
computes an activity lower bourfd, (P) based on the bandwid8pd(P) and the cur-
rent number of connections (ongoing P2P traffic) in the locathine. Finally, the key
node chooses froifi, top k target nodes whose activity level satisfies> H;, (P) and
establishes a direct HTTP connection with each of thesdaasp targets to push the
security patch. Note that such patch transfers are outnétiinot through the Gnutella
overlay).

P,
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Fig.5. An illustration of the search-based approach. In this exakey nodeP detects an
infected filef,, and delivers patc/ SG/, to k = 6 suspicious nodes in the search st

Here a security patcti/ SG/, also contains the identifier of the infected fifg.
Upon receiving the patch, each nogeeeds to verify the existence ¢f and then
displays a warning in the local machine. If the user accepgatch, the application
first authenticates the patch content/link. Once the padstbleen successfully applied,
nodej becomes immunized to the worm and its shared folder will bmédiately
scanned and cleansed. We quantitatively analyze the ingfacter behavior on the
system immunity level in Section 4.2.

4.2 Security and Performance Analysis

Time Performance We analyze the effectiveness of the search-based defeesg. L
denote the average number of suspicious targets to whicly adde distributes the
security patch, we first derive how long the system takesh@sae an immunity raté.
According to the state diagram in Figl, = V' (¢) + I;(t) + I, (¢) always holds. In the
search-based scheme, the increased immune populatiors dmneeither vulnerable
nodes or infected nodes. Hence, the rate at which the immaméation increases can
be computed as

dL,, (t)
dt

= V- an(0( D) g

=a(N = In(t)) - h(t), (6)




Wherea = a3\k. Note thatvh (t) (Y=L (2) computes the probability that a key node
downloads an abnormal file from those non-immune hosts.

Also, the decrease of the vulnerable population could beezhaither by (1) worm
infections or (2) by host immunizations (or disinfectioriBjerefore, the rate at which
vulnerable nodes become either infected or immunized is

%it) = =MV (E)A(t) — NAg - ah(t)(%) kB

= —(a+b)V()h(). ()

whereb = A\ Aq. Here A\, \gV (t)h(t) computes the reduction caused by (A, -
ah(t)(%) - k3 computes the reduction caused by (2), in det(t)(%) denotes
the probability a key node downloads an abnormal file from kenable host (not
infected yet). In this case, the latter receives the patdcanld be immunized.

Finally, we know that the infected population (1) increaaés®n some vulnerable
nodes get infected, and (2) decreases when some victim haslesheen disinfected.
Hence we derive the following differential equation.

i) ) AV ORE) — NAg- ah(t)(Ith)> -k

dt
= DV (D)A(t) — alf(t)h(t). 8)

Note that here\,\;V (¢)h(t) computes the increase of infected nodes caused by (1);
NAg- ah(t)(lf—J\(,t)) - k8 computes the reduction of infected nodes caused by (2),avher

ah(t)(IfT(t)) denotes the probability a key node downloads an abnormdtdita an
infected host. In this case, the latter receives the patchcanld be disinfected. To
solve these differential equations, we derive the immunmufasion,, (t). We divide
Equ.6 by Equ.7 and get

_b atb
o atb

V() =Vy © - (N = In(t) ", 9)
wherel, = V(0) denotes the initial vulnerable population in the systemtiéa apply
the approximation(t) ~ IfT(t) = M and substitute Equ.9into Equ.6. Thus,
we have J v

L0 21—yt
o N U (1 —ua) (10)

whereu = (N — I,,,(t))/Vo. We further solve this equation fdr, (¢) and illustrate
the change of,,,(¢) in Fig 6. This figure indicates that under an average &ize 30,
the search-based approach only needs to deploys 5% nodeg asdes and help the
system achieve a 90% immunity rate within 60 hours.
System Evolution StatusAdopting the similar method as above to solve Equ. 6, 7, 8,
we derive the following

dv(t)  a+b

dt N

(c- VTt (t) = V2 (1), (11)

b
wherec = V;**". Hence we may compufé(¢). UsingI;(t) = N — V(t) — I, (),
we may further derive the infected populatibi(t). We illustrate the system evolution
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Fig.6. Immune population vs. Fig. 7. System evolution status in
time and key nodes search-based scheme

status in Fig 7. The figure shows that the infected populatiiially increases due to
the surging worm. However, this triggers the defense and/miaspicious nodes receive
the patch. Eventually worm infections are eliminated andchime nodes become the
major population. The above analytical result has beexagdd in Section 6 (Fig 8).

5 Security Analysis

We discuss two attacks that may happen in both schemes.

Fake Security Alerts A malicious node, either a key node or a regular node claiming
to be a key node, may replace security patches with worms aelicedthem to other
hosts. This attack will fail because our signature-basechagism allows a receiver to
verify if the patch truly comes from a trusted vendor or thk lio the patch is correct.
On the other hand, we notice that a lot of false messages mee @DoS attack to
other hosts. Since we do not assume a PKI, P2P nodes may nblehi® authenticate
each other. Indeed, even a PKl is available, it does not $hisaype of insider attacks.

A simple solution is that a node blacklists the nodes repgffalse alerts based on their
IP addresses. To prevent IP spoofing, before a node accequsréitgalert, it challenges
the source.

Patch Suppression AttackA malicious (or selfish) candidate key node may not prop-
agate security patches. That is, in the download-baseaagplprit does not offer the
security patches to downloaders and in the search-basethsdhdoes not care about
other susceptible nodes. This patch suppression attacegitade the effectiveness of
our schemes. However, it only decreases the actuak long as they are not a lot, our
schemes will still work. Otherwise, we should increase thlei& ofa.

6 Evaluation

Environmental Setup We evaluated and compared our schemes in a variety of file-
sharing systems. For unstructured networks we implemen@litella simulator based
on Gnutellasim from limewire.org; for structured networks used P2PSim ([5]) to
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construct a basic Chord [22] infrastructure for routing rigeand responses. We im-
plemented a protocol similar as NeuroGrid [15] to geneiaigd-scale file-sharing traf-
fic on top of the routing infrastructures. We studied the aalsen a file-sharing worm

Benjamin.a [4] surges in the network and evaluated the &ffress of our counter-
measures.

We adopted the following metrics in our evaluatiotys:time takes to reach an im-
munity rate? = 90%; h(to), the the percentage of abnormal files at titenhich also
reflects the infection raté; /N (to) when\, — 1; Iy(maz), the maximum infection
rate which indicates how severe the system has been attdakeshch scheme, we also
investigated the system evolution status, the impacts freem behavior and the mes-
sage overhead. To examine the schemes’ tolerance agaitestipoamics (joins/departures),
our implementation followed the observations from Gnatél, i.e., 45% of the nodes
quit the network in less tha# ~ 5 hours, and 22% persistent node tend to stay in the
network for longer than 24 hours. Each of our experimentsgdl00 runs. We report
the mean of the measurement results. Unless otherwiseatedidn all our tests, the to-
tal populationV = 20, 000 nodes. The number of files (with different contents) varies
from 1,000 to 10,000 and the average size of shared folders ranges froob0 files.

We set the initial the percentage of abnormal fil€8) = 1.5%, the initial infection
I;(0)/N = 0 and the initial immunity raté(0) = 15%. Among these immune nodes,
a = 5 ~ 10% of the entire population were bootstrapped as key nodes actul &
them obtained the latest security updates from vendors.

Scheme Effectivenes$Ve compared the time performance and the system evolution
status of different approaches, using the same set of ptesne.g.\., A¢, @ and
3). We also used the no-defense case as the base line. Ouedalit rare shown in
Fig 8. Fig 8(a) illustrates the change of immune populatieerdime. Without any de-
fenses, the system keeps a low immunity rate and has to ratydariduals’ patch up-
dates. The download-based approach and the search-bgsedepboth significantly
increase the immunized population. The former takes ar@&n8l hours to achieve a
90% immunity rate while the latter takes around 62.5 hour tduiés reactive nature.
The download-based approach largely depends on the sdeévitl of file downloads
and the search-based approach is triggered by worm detsctiag 8(b) shows the
change of the infected population over time. Without anyedsés, the worm spreads



in a relatively high speed and infects all the vulnerablaswagthin 9.5 hours. Both our
schemes effectively help the system reduce the infectedlatpn by internally push-
ing the security patch to disinfect those victims. A furtbemparison indicates that the
search-based approach has a relatively slower disinfesfieed; it takes 62.5 hours to
reduce the overall infection rate to below 10%. Howeveregps a lower maximum in-
fection rate {;(max)/N = 37%). On the contrary, the download-based approach takes
45 hours to reach an infection rate below 5%, but it yieldsgléi maximum infection
rate ((maz)/N = 44%) in the system. Fig 8(c) illustrates the change of walbke
population over time. Without any defenses, the vulnerpbfrulation quickly drops to
zero (within 10 hours) as more and more nodes get infectadglfile downloads. Our
schemes effectively slow down this process by either imaingithe vulnerable hosts
or disinfecting the victims. We can see that after aroun® &@urs, there remain few
vulnerable nodes and victims in the system and the immuatg/exceeds 90%.
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Fig. 9. Impact from user behavior on the defense scheme (Gnutélja 0.

User Impacts and OverheadWe evaluated the impacts of system parameters and user
behavior on the defense. Fig 9 illustrates the test resu@nntella 0.6 system. Fig
9(a) shows that both schemes take less titgetp achieve an 90% immunity rate as
the speed of file download\g) increases. For the download-based approach, a higher
download speed results in a faster patching process; fos¢hech-based approach,
a higher download speed leads to more worm infections asdritiurn speeds up the
patching process. The figure also indicates that in the dmxehbased approachy,gets
reduced as users become more willing to accept the patickc{eases). However, this is
not distinct in the search-based scheme due to its reactiveen When more users are
patched, the defense also gets slowed down. Fig 9(b) shawmtthe download-based
scheme, the severity level of worm attack$((nax)) quickly drops as3 increases.
Wheng > 0.85, the maximum infection rate in the system is below that ofsbarch-
based scheme.

Fig 10illustrates the message overhead of the defense ssh&ising Microsoft XP
as an example, the patches during SP2 are in binary deltaressipn format [6] and
the mean patch size is 32.9 KBytes [12]. This patch and itsl@esignature (typically
around 300 Bytes) constitute the main part of the payloadialart message. Thus,



the average length of a patch message is 33.2 KBytes. The faaws that whepy
increases from 0.6 to 1.0, the message count of the dowrlased approach decreases
until finally it reaches aroungl0, 000 x (90% — 15%) = 15, 000. We examined three
cases for the search-based schemew(i¥t casen which each key node simply deliv-
ers the patch to its targets. Patch messages could be dedli@ad the message count
is above 50, 000; (2average casé which a key node does not deliver a patch to the
same target and the message count is above 28,000p(i&)al casavhen key nodes
collaborate to avoid patch duplicates or each node indigegeurrent patch version in
the QueryHit response. Hence, there are few patch dupdieatd the message count
approaches 15, 000 wheéh— 1.

El download-based

Il search-based (worst)
[ search—based (average)
[ search-based (optimal)

Message count (x 1000)

06 0.7 08 09 10
Users’ patch acceptance probability: B

Fig. 10.Message overhead of the defense scheme (N = 20,000 nbde$0%); the download-
based approach has less overhead than the search-basaddoad alert duplicates.

7 Related Work

File-sharing worms have recently attracted much attentisasearch community. The
initial studies mainly focused on understanding the tlr@ad modeling the behavior
of such imminent worms. Dimitriu et al. [11] demonstratedtttvorm spreads highly
depend on user behavior, such as willingness to share fitbg@okness in removing
infected files. Kumar et al. [17] developed a suite of fluid migdhat characterize pol-
lution proliferation in file-sharing systems. Thommes ef{2B] derived deterministic
epidemiological models for file-sharing viruses spreadinije-sharing systems.

The problem of throttling these worms have not been adetyuadielressed. Exist-
ing defenses mirror the strategy against Internet commirtases. Generic automated
patching tools (e.g., Microsoft Window Update, Symantedatp, McAfee VirusScan)
are widely adopted to launch protection on P2P hosts. Vagnetval. [24] studied the
effectiveness of automatic patching and quantified thedspépatch dissemination re-
quired for worm containment. Gkantsidis et al. [12] prowdgneral guidelines on how
to design a fast planet-scale patching system based orsthdies on Window Update.
They also suggested alternative patching strategies sichching. Costa et al. [10]
proposed Vigilante, an end-to-end approach in which hestsnstrumented software
to detect worms and broadcast self-certifying alerts (S@#9)n worm detection. Zhou
et al. [26] further applied Vigilante in P2P systems to canfast-spreading topological
worms. Our work differs from the above in that we provide int# patching mecha-
nisms exclusively for file-sharing systems. Our focus is aroigenerating anti-worm



code on-the-fly to combat zero-day worms, but on studyingdgeatching schemes
which both save network bandwidth and avoid unnecessatyiritesruptions.

8 Conclusions and Future Work

File-sharing worms are becoming the most dominating andstating security threats
to P2P systems. Current defenses relying on individuameries or limiting file-sharing
activities are not adequate. As a complement to the exiséngralized patching mode,
we proposed internal patching mechanism which convenideterages file-sharing
infrastructure to disseminate security updates to ppdtaig peers in an automated
and distributed way. We studied a download-based appro&ithvexploits the file
download process and a search-based approach which expleifile search process
for notifying P2P hosts of the worm attack and pushing theisgcpatch to them. In
spite of some remaining issues such as host diversity andlivegsities, the free-rider
problem [8] in patching, our study suggests some intergstirections for designing
countermeasures against worms in distributed envirorsnéve address remaining is-
sues in our future work.
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A Percentage of Abnormal Files

Proof. We refer to Table 1 for notation. Let(¢) denote the number of abnormal files at time
we haveh(t) = A(t)/F(t). The change rate of the total number of file&) is

%}Et) = AN i.e., F(t) = Fo+ A\gN - t, (12)
where Fy is the initial number of files in the system. A newly added abmal file could be
caused either by a vulnerable host activating another ataldile in the same folder, or by a
node directly downloading an abnormal copy from othersr&tuee, we have the change rate of
the number of abnormal files

dA(t)

5 = Ad - Aa - V(E)-h(t) - (s(t) — 1) + NAgh(t). (13)
Considerings(t) — 1 ~ F(t)/N and A(t) = F(t) - h(t), we solve equation 13 and finally get
Agda [t
h(t) = h(0) - ¢~ N Jo vemer (14)

whereh(0) is the initial percentage of abnormal files.

We may compute an approximation fb(t). Assuming all the nodes have a similar size of
s(t) for their shared folders and the user paramateapproaches 1, which means every client
usually activates (opens) the file he has just downloadétheahbnormal files should gradually

be kept by those infected hosts in the system. Hence, we mag dgt) ~ IfT“)



