Sublinear Algorithms
Lecture 6

Sofya Raskhodnikova
Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.
Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds for other models of computation

Partially based on slides by Eric Blais
Goal: minimize the number of bits exchanged.

- **Communication complexity of a protocol** is the maximum number of bits exchanged by the protocol.

- **Communication complexity of a function** C, denoted $R(C)$, is the communication complexity of the best protocol for computing C.

Compute $C(x, y)$
Example: Set Disjointness DISJ_k

Input: $S \subseteq [n], |S| = k$.

Input: $T \subseteq [n], |T| = k$

Compute $\text{DISJ}_k(S, T)$

$$= \begin{cases}
\text{accept} & \text{if } S \cap T = \emptyset \\
\text{reject} & \text{otherwise}
\end{cases}$$

Theorem [Hastad Wigderson 07]

$$R(\text{DISJ}_k) \geq \Omega(k) \text{ for all } k \leq \frac{n}{2}.$$
A lower bound using CC method

Testing if a Boolean function is a k-parity
A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is \textit{linear} (also called \textit{parity}) if
\[f(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n \]
for some $a_1, \ldots, a_n \in \{0,1\}$.

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2: GF_2 and \mathbb{Z}_2.
 - Addition and multiplication is mod 2.
 - $x=(x_1, \ldots, x_n), y=(y_1, \ldots, y_n)$, that is, $x, y \in \{0,1\}^n$.
 - $x + y=(x_1 + y_1, \ldots, x_n + y_n)$.

\[\begin{array}{c}
 001001 \\
 + \\
 011001 \\
 \hline
 010000
\end{array} \]
A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is **linear** (also called *parity*) if

$$f(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n$$

for some $a_1, \ldots, a_n \in \{0,1\}$

x_1, \ldots, x_n for some $S \subseteq [n]$.

Notation: $\chi_S(x) = \sum_{i \in S} x_i$.

[n] is a shorthand for $\{1, \ldots, n\}$.
Testing if a Boolean function is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε-far from linear

($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in $O \left(\frac{1}{\varepsilon}\right)$ time
A function $f : \{0,1\}^n \to \{0,1\}$ is a k-parity if

$$f(x) = \chi_S(x) = \sum_{i \in S} x_i$$

for some set $S \subseteq [n]$ of size $|S| = k$.
Testing if a Boolean Function is a k-Parity

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and an integer k

Question: Is the function a k-parity or ε-far from a k-parity

($\geq \varepsilon 2^n$ values need to be changed to make it a k-parity)?

Time:

$O(k \log k)$ [Chakraborty Garcia–Soriano Matsliah]

$\Omega(\min(k, n-k))$ [Blais Brody Matulef 11]

- Today: $\Omega(k)$ for $k \leq n/2$

Today’s bound implies $\Omega(\min(k, n-k))$
Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

- Consider functions χ_S and χ_T where $S \neq T$.
 - Let i be an element on which S and T differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all n-bit strings: $(x, x^{(i)})$
 where $x^{(i)}$ is x with the i^{th} bit flipped.
 - For each such pair, $\chi_S(x) \neq \chi_S(x^{(i)})$
 but $\chi_T(x) = \chi_T(x^{(i)})$

So, χ_S and χ_T differ on exactly one of $x, x^{(i)}$.
- Since all x's are paired up,
 χ_S and χ_T differ on half of the values.

Corollary. A k'-parity function, where $k' \neq k$, is $\frac{1}{2}$-far from any k-parity.
Reduction from $\text{DISJ}_{k/2}$ to Testing k-Parity

- Let T be the best tester for the k-parity property for $\varepsilon = 1/2$
 - query complexity of T is $q(\text{testing } k\text{-parity})$.
- We will construct a communication protocol for $\text{DISJ}_{k/2}$ that runs T and has communication complexity $2 \cdot q(\text{testing } k\text{-parity})$.

Then $2 \cdot q(\text{testing } k\text{-parity}) \geq R(\text{DISJ}_{k/2}) \geq \Omega(k/2)$ for $k \leq n/2$

\[q(\text{testing } k\text{-parity}) \geq \Omega(k) \text{ for } k \leq n/2 \]

[Note: This inequality holds for CC of every protocol for DISJ_k]

[Hastad Wigderson 07]
Reduction from $\text{DISJ}_{k/2}$ to Testing k-Parity

Input: $S \subseteq [n], |S| = k/2$.
Compute: $f = \chi_S$

Output T’s answer

- T receives its random bits from the shared random string.

Input: $T \subseteq [n], |T| = k/2$
Compute: $g = \chi_T$
Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T

Correctness:

- $h = f + g \pmod{2} = \chi_S + \chi_T \pmod{2} = \chi_{S \Delta T}$
- $|S \Delta T| = |S| + |T| - 2|S \cap T|$

- $|S \Delta T| = \begin{cases} k & \text{if } S \cap T = \emptyset \\ \leq k - 2 & \text{if } S \cap T \neq \emptyset \end{cases}$

h is k-parity if $S \cap T = \emptyset$
h is k'-parity where $k' \neq k$ if $S \cap T \neq \emptyset$

1/2-far from every k-parity

Summary: $q(\text{testing } k\text{-parity}) \geq \Omega(k)$ for $k \leq n/2$
Testing Lipschitz Property on Hypercube

Lower Bound
Lipschitz Property of Functions f: $\{0,1\}^n \rightarrow \mathbb{R}$

[Jha Raskhodnikova]

- A function $f : \{0,1\}^n \rightarrow \mathbb{R}$ is Lipschitz if changing a bit of x changes $f(x)$ by at most 1.

- Is f Lipschitz or ε-far from Lipschitz (f has to change on many points to become Lipschitz)?
 - Edge $x - y$ is violated by f if $|f(x) - f(y)| > 1$.

Time:
 - $O(n^2/\varepsilon)$, logarithmic in the size of the input, 2^n
 - $\Omega(n)$
Testing Lipschitz Property

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Lipschitz property of functions $f: {0,1}^n \to {0,1,2}$ requires $\Omega(n)$ queries.</td>
</tr>
</tbody>
</table>

Prove it.
Summary of Lower Bound Methods

• Yao’s Principle
 – testing membership in 1*, sortedness of a list and monotonicity of Boolean functions

• Reductions from communication complexity problems
 – testing if a Boolean function is a k-parity
Other Models of Sublinear Computation
Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES

Accept with probability $\geq 2/3$

NO

Reject with probability $\geq 2/3$

Tolerant Property Tester

YES

Accept with probability $\geq 2/3$

δ-close to YES

Don’t care

ϵ-far from YES

Reject with probability $\geq 2/3$
Sublinear-Time “Restoration” Models

Local Decoding
Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

Program Checking
Input: A program P computing f correctly on most inputs.
Requirement: Self-correct program P: for a given input x, compute $f(x)$ by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that the reconstructed function g satisfies P, changing f only when necessary. For each input x, compute $g(x)$ with a few queries to f.
Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

• Compute the i-th character y_i of a legal output y.
• If there are several legal outputs for a given input, be consistent with one.
• Example: maximal independent set in a graph.
Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?
Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space complexity ≤ time complexity)
Data Stream Model

Motivation: internet traffic analysis

Model the stream as \(m \) elements from \([n]\), e.g.,

\[
\langle x_1, x_2, \ldots, x_m \rangle = 3, 5, 3, 7, 5, 4, \ldots
\]

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
A stream contains $n - 1$ distinct elements from $[n]$ in arbitrary order.

Problem: Find the missing element, using $O(\log n)$ space.
Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream $\langle x_1, x_2, ..., x_m \rangle$ of unknown length m

Algorithm

1. Initially, $s \leftarrow x_1$
2. On seeing the t^{th} element, $s \leftarrow x_t$ with probability $1/t$

Analysis:

What is the probability that $s = x_i$ at some time $t \geq i$?

$$\Pr[s = x_i] = \frac{1}{i} \cdot \left(1 - \frac{1}{i+1}\right) \cdot \cdots \cdot \left(1 - \frac{1}{t}\right)$$

$$\quad = \frac{1}{i} \cdot \frac{i}{i+1} \cdot \cdots \cdot \frac{t-1}{t} \cdot \frac{1}{t} = \frac{1}{t}$$

Space: $O(k \log n)$ bits to get k samples.
Sublinear algorithms are possible in many settings
• simple algorithms, more involved analysis
• nice combinatorial problems
• unexpected connections to other areas
• many open questions

In the remainder of the course, we will cover research papers in the area.