Sublinear Algorithms Lecture 2

Sofya Raskhodnikova

Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time approximation for graph problems.

Lecture 3. Properties of functions. Monotonicity and linearity testing.

Lecture 4. Techniques for proving hardness. Other models for sublinear computation.

Property Testing

Simple Examples

Testing if a List is Sorted

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

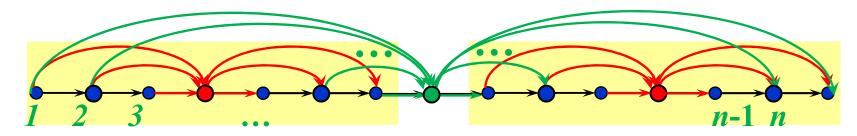
- Question: Is the list sorted? Requires reading entire list: $\Omega(n)$ time
- Approximate version: Is the list sorted or ϵ -far from sorted? (An ϵ fraction of x_i 's have to be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: $O((\log n)/\epsilon)$ time $\Omega(\log n)$ queries

- Attempts:
 - 1. Test: Pick a random *i* and reject if $x_i > x_{i+1}$.

2. Test: Pick random i < j and reject if $x_i > x_j$.

Fails on: 10213243546576 \leftarrow 1/2-far from sorted

Idea: Associate positions in the list with vertices of the directed line.



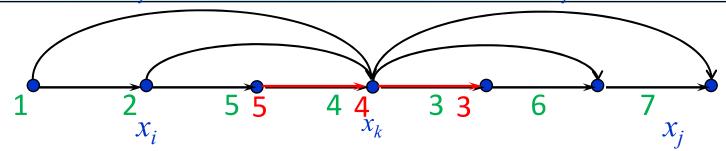
Construct a graph (2-spanner)

 $\leq n \log n$ edges

- by adding a few "shortcut" edges (i, j) for i < j
- where each pair of vertices is connected by a path of length at most 2

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and reject if $x_i > x_i$.



Analysis:

- Call an edge (x_i, x_i) violated if $x_i > x_i$, and good otherwise.
- If x_i is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Claim 1. All good numbers x_i are sorted.

Proof: Consider any two good numbers, x_i and x_i .

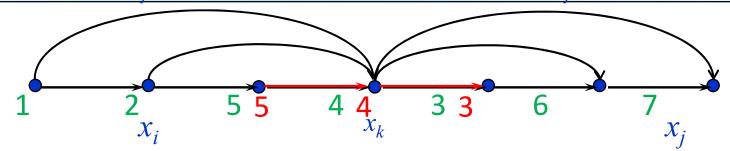
They are connected by a path of (at most) two **good** edges (x_i, x_k) , (x_k, x_i) .

$$\Rightarrow x_i \le x_k \text{ and } x_k \le x_i$$

$$\Rightarrow x_i \leq x_i$$

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and reject if $x_i > x_i$.



Analysis:

- Call an edge (x_i, x_i) violated if $x_i > x_i$, and good otherwise.
- If x_i is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Claim 1. All good numbers x_i are sorted.

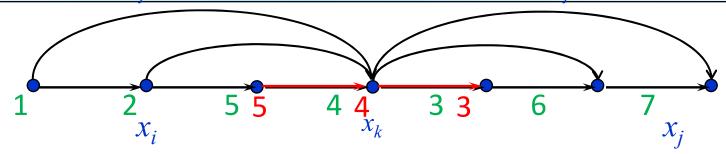
Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ϵ -far from sorted, it has $\geq \epsilon n$ bad numbers. (Claim 1)

 \Rightarrow 2-TC-spanner has $\geq \epsilon$ n/2 violated edges out of \leq n log n

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.



Analysis:

• Call an edge (x_i, x_i) violated if $x_i > x_i$, and good otherwise.

Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n)/\epsilon$ edges from 2-spanner.

Algorithm

Sample (4 log n)/ ϵ edges (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.

Guarantee: All sorted lists are accepted.

All lists that are ϵ -far from sorted are rejected with probability $\geq 2/3$.

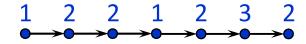
Time: O((log n)/ ϵ)

Comparison to Binary-Search-Based Test

- Binary-Search-Based Test worked only for testing if a sequence is strictly increasing.
 - There is a simple reduction from testing strict sortedness to testing non-strict sortedness.
- Spanner-based test is nonadaptive: queries can be determined in advance, before seeing answers to previous queries.
 - Binary-Search-Based Test can be made nonadaptive.

Lipschitz Property

• A list of *n* numbers $x_1, x_2, ..., x_n$ is Lipschitz if the numbers do not change too quickly: $|x_i - x_{i-1}| \le 1$ for all *i*.



The spanner-based test for sortedness can test the Lipschitz property in $O(\log n / \varepsilon)$ time.

It applies to a more general class of properties.

Randomized Approximation in sublinear time

Simple Examples

Reminder: a Toy Example

Input: a string $w \in \{0,1\}^n$

Goal: Estimate the fraction of 1's in w (like in polls)

It suffices to sample $s = 1 / \varepsilon^2$ positions and output the average the fraction of 1's $\pm \varepsilon$ (i.e., additive error ε) with probability $\geq 2/3$

to get

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1] and

let
$$Y = \sum_{i=1}^{3} Y_i$$
 (sample sum). Then $Pr[|Y - E[Y]| \ge \delta] \le 2e^{-2\delta^2/s}$.

$$Y_i$$
 = value of sample i . Then $E[Y] = \sum_{i=1}^{s} E[Y_i] = s \cdot \text{(fraction of 1's in } w\text{)}$

Pr[|(sample average) – (fraction of 1's in
$$w$$
)| $\geq \varepsilon$] = Pr [|Y – E[Y]| $\geq \varepsilon s$] $\leq 2e^{-2\delta^2/s} = 2e^{-2} < 1/3$

Apply Hoeffding Bound with $\delta = \varepsilon s$ substitute $s = 1 / \varepsilon^2$

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on n vertices

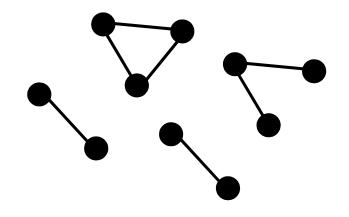
- in adjacency lists representation
 (a list of neighbors for each vertex)
- maximum degree d

Exact Answer: $\Omega(dn)$ time

Additive approximation: # of CC ±ɛn

with probability $\geq 2/3$

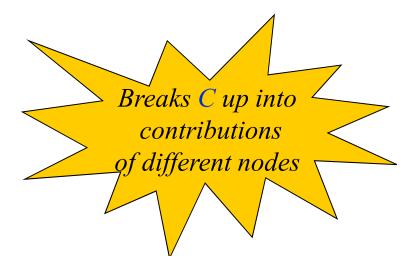
- Known: $O\left(\frac{d}{\varepsilon^2}\log\frac{1}{\varepsilon}\right)$, $\Omega\left(\frac{d}{\varepsilon^2}\right)$
- Today: $O\left(\frac{d}{\varepsilon^3} \cdot \log \frac{1}{\varepsilon}\right)$



Approximating # of CCs: Main Idea

- Let *C* = number of components
- For every vertex u, define n_u = number of nodes in u's component
 - for each component **A**: $\sum_{u \in A} \frac{1}{n_u} = 1$

$$\sum_{u \in V} \frac{1}{n_u} = C$$



- Estimate this sum by estimating n_u 's for a few random nodes
 - If u's component is small, its size can be computed by BFS.
 - If u's component is big, then $1/n_u$ is small, so it does not contribute much to the sum
 - Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

Approximating # of CCs: Algorithm

Estimating n_u = the number of nodes in u's component:

- Let estimate $\hat{n}_u = \min \{n_u, \frac{2}{s}\}$
 - When u's component has \leq 2/ ϵ nodes , $\widehat{n}_u = n_u$
 - $\text{ When } u\text{'s component has } \leq 2/\epsilon \text{ nodes , } \hat{n}_u = n_u \\ \text{ Else } \hat{n}_u = 2/\epsilon \text{, and so } 0 < \frac{1}{\hat{n}_u} \frac{1}{n_u} < \frac{1}{\hat{n}_u} = \frac{\epsilon}{2} \\ \left| \frac{1}{\hat{n}_u} \frac{1}{n_u} \right| \leq \frac{\epsilon}{2}$

$$\left. \left| \frac{1}{\hat{n}_u} - \frac{1}{n_u} \right| \le \frac{\varepsilon}{2} \right|$$

Corresponding estimate for C is $\hat{C} = \sum_{u \in V} \frac{1}{\hat{n}_u}$. It is a good estimate: $|\hat{C} - C| =$

$$\left| \sum_{u \in V} \frac{1}{\hat{n}_u} - \sum_{u \in V} \frac{1}{n_u} \right| \leq \sum_{u \in V} \left| \frac{1}{\hat{n}_u} - \frac{1}{n_u} \right| \leq \frac{\varepsilon n}{2}$$

\triangle APPROX_#_CCs (G, d, ε)

- **Repeat** $s=\Theta(1/\epsilon^2)$ times:
- pick a random vertex u
- compute \hat{n}_u via BFS from u, storing all discovered nodes in a sorted list and stopping after at most 2/ε new nodes
- **Return** \tilde{C} = (average of the values $1/\hat{n}_u$) · n

Run time:
$$O\left(\frac{d}{\varepsilon^3} \cdot \log \frac{1}{\varepsilon}\right)$$

Approximating # of CCs: Analysis

Want to show:
$$\Pr\left[\left|\tilde{C} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] \leq \frac{1}{3}$$

Hoeffding Bound

Let Y_1, \dots, Y_s be independently distributed random variables in [0,1] and

let
$$Y = \sum_{i=1}^{3} Y_i$$
 (sample sum). Then $Pr[|Y - E[Y]| \ge \delta] \le 2e^{-2\delta^2/s}$.

Let $Y_i = 1/\hat{n}_u$ for the ith vertex u in the sample

•
$$\mathbf{Y} = \sum_{i=1}^{s} \mathbf{Y_i} = \frac{s\tilde{c}}{n}$$
 and $\mathbf{E}[\mathbf{Y}] = \sum_{i=1}^{s} \mathbf{E}[\mathbf{Y_i}] = s \cdot \mathbf{E}[\mathbf{Y_1}] = s \cdot \frac{1}{n} \sum_{u \in V} \frac{1}{\hat{n}_v} = \frac{s\hat{c}}{n}$

$$\Pr\left[\left|\frac{\tilde{c}}{\tilde{c}} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[\left|\frac{n}{s}Y - \frac{n}{s}E[Y]\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[\left|Y - E[Y]\right| > \frac{\varepsilon s}{2}\right] \le 2e^{-\frac{\varepsilon^2 s}{2}}$$

• Need $s = \Theta\left(\frac{1}{\varepsilon^2}\right)$ samples to get probability $\leq \frac{1}{3}$

Approximating # of CCs: Analysis

So far:
$$\left|\hat{C} - C\right| \le \frac{\varepsilon n}{2}$$

$$\Pr\left[\left|\tilde{C} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] \le \frac{1}{3}$$

• With probability $\geq \frac{2}{3}$,

$$\left|\tilde{C} - C\right| \le \left|\tilde{C} - \hat{C}\right| + \left|\hat{C} - C\right| \le \frac{\varepsilon n}{2} + \frac{\varepsilon n}{2} \le \varepsilon n$$

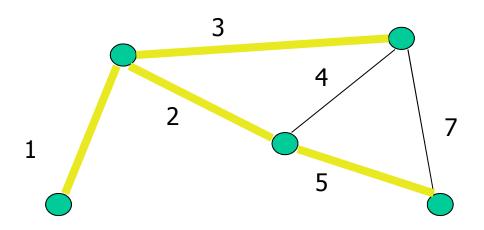
Summary:

The number of connected components in n-vertex graphs of degree at most d can be estimated within $\pm \varepsilon n$ in time $O\left(\frac{d}{\varepsilon^3} \cdot \log \frac{1}{\varepsilon}\right)$.

Minimum spanning tree (MST)

What is the cheapest way to connect all the dots?

Input: a weighted graph with n vertices and m edges



- Exact computation:
 - Deterministic $O(m \cdot \text{inverse-Ackermann}(m))$ time [Chazelle]
 - Randomized O(m) time [Karger Klein Tarjan]

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on n vertices

- in adjacency lists representation
- maximum degree d and maximum allowed weight w
- weights in {1,2,...,w}

Output: $(1+\varepsilon)$ -approximation to MST weight, w_{MST}

Number of queries:

- Known: $O\left(\frac{dw}{\varepsilon^3}\log\frac{dw}{\varepsilon}\right)$, $\Omega\left(\frac{dw}{\varepsilon^2}\right)$
- Today: $small\ polynomial\ in\ d, w, 1/\varepsilon$

Idea Behind Algorithm

- Characterize MST weight in terms of number of connected components in certain subgraphs of G
- Already know that number of connected components can be estimated quickly

MST and Connected Components: Warm-up

Recall Kruskal's algorithm for computing MST exactly.

Suppose all weights are 1 or 2. Then MST weight

= (#

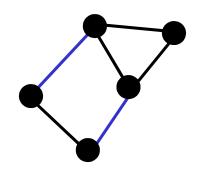
weight-1 edges in MST) + 2 · (# weight-2 edges in MST)

$$= n - 1 + (\# \text{ of weight-2 edges in MST})$$

MST has n-1 edges

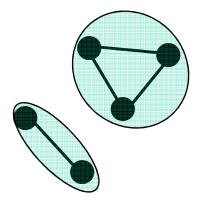
$$= n - 1 + (\# \text{ of CCs induced by weight-1 edges}) - 1$$

By Kruskal

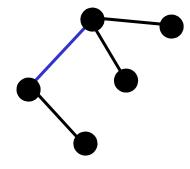


weight 1

weight 2



connected components induced by weight-1 edges



MST

MST and Connected Components

In general: Let G_i = subgraph of G containing all edges of weight $\leq i$ C_i = number of connected components in G_i Then MST has $C_i - 1$ edges of weight > i.

Claim

$$w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$$

- Let β_i be the number of edges of weight > i in MST
- Each MST edge contributes 1 to w_{MST} , each MST edge of weight >1 contributes 1 more, each MST edge of weight >2 contributes one more, ...

$$w_{MST}(G) = \sum_{i=0}^{w-1} \beta_i = \sum_{i=0}^{w-1} (C_i - 1) = -w + \sum_{i=0}^{w-1} C_i = n - w + \sum_{i=1}^{w-1} C_i$$

Algorithm for Approximating W_{MST}

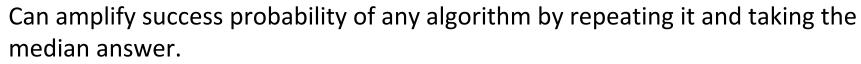
$\triangle APPROX_MSTweight (G, w, d, \epsilon)$

Claim. $w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$

- **1.** For i = 1 to w 1 do:
- 2. $\tilde{C}_i \leftarrow APPROX_\#CCs(G_i, d, \varepsilon/w)$.
- 3. Return $\widetilde{w}_{MST} = n w + \sum_{i=1}^{w-1} \widetilde{C}_i$.

Analysis:

- Suppose all estimates of C_i 's are good: $\left| \tilde{C}_i C_i \right| \leq \frac{\varepsilon}{w} n$. Then $\left| \widetilde{w}_{MST} - w_{MST} \right| = \left| \sum_{i=1}^{w-1} (\tilde{C}_i - C_i) \right| \leq \sum_{i=1}^{w-1} \left| \tilde{C}_i - C_i \right| \leq w \cdot \frac{\varepsilon}{w} n = \varepsilon n$
- $Pr[all \ w 1 \ estimates \ are \ good] \ge (2/3)^{w-1}$
- Not good enough! Need error probability $\leq \frac{1}{3w}$ for each iteration
- Then, by Union Bound, $Pr[error] \le w \cdot \frac{1}{3w} = \frac{1}{3}$



Can take more samples in APPROX_#CCs. What's the resulting run time?

Multiplicative Approximation for W_{MST}

For MST cost, additive approximation \Rightarrow multiplicative approximation

$$w_{MST} \ge n - 1 \implies w_{MST} \ge n/2 \text{ for } n \ge 2$$

• εn -additive approximation:

$$w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n$$

• $(1 \pm 2\varepsilon)$ -multiplicative approximation:

$$w_{MST}(1-2\varepsilon) \le w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n \le w_{MST}(1+2\varepsilon)$$