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Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time 
approximation for graph problems.

Lecture 3. Properties of functions. Monotonicity and linearity 
testing.

Lecture 4. Techniques for proving hardness. Other models for 
sublinear computation.



Property Testing

Simple Examples



Testing if a List is Sorted

Input: a list of n numbers  x1 , x2 ,..., xn

• Question: Is the list sorted?

Requires reading entire list: Ω(n) time 

• Approximate version: Is the list sorted or ε-far from sorted?

(An ε fraction of xi ’s have to be changed to make it sorted.)

[Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/ε) time 

Ω(log n) queries

• Attempts:

1. Test:  Pick a random i and reject if xi > xi+1 .

Fails on:  1 1 1 1 1 1 1 0 0 0 0 0 0 0 ← 1/2-far from sorted

2. Test:  Pick random i < j and reject if xi > xj.

Fails on:  1 0 2 1 3 2 4 3 5 4 6 5 7 6             ← 1/2-far from sorted
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Is a list sorted or εεεε-far from sorted?

Idea:  Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by  adding a few “shortcut” edges (i, j) for i < j

• where each pair of vertices is connected by a path of length at most 2
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……

≤ n log n edges

1    2     3            …                                                       n-1 n



Is a list sorted or εεεε-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7

Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj. 

They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj).

⇒ xi ≤ xk and xk ≤ xj

⇒ xi ≤ xj
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5            4            3
xi                                                                                               xjxk

Claim 1. All good numbers xi  are sorted.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]



Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Is a list sorted or εεεε-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7

Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Proof: If a list is ε-far from sorted, it has  ≥ ε n bad numbers.  (Claim 1)

⇒ 2-TC-spanner has  ≥ ε n/2 violated edges out of ≤ n log n 
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5            4            3
xi                                                                                               xjxk

Claim 1. All good numbers xi  are sorted.

Claim 2. An ε-far list violates ≥ ε /(2 log n) fraction of edges in 2-spanner.



Is a list sorted or εεεε-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7

Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

By Witness Lemma, it suffices to sample (4 log n )/ε edges from 2-spanner.

Sample (4 log n)/ ε edges (xi ,xj) from the 2-spanner and reject if xi > xj. 

Guarantee: All sorted lists are accepted.

All lists that are ε-far from sorted are rejected with probability ≥2/3.

Time: O((log n)/ε)               
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5            4            3
xi                                                                                               xjxk

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Algorithm

Claim 2. An ε-far list violates ≥ ε /(2 log n) fraction of edges in 2-spanner.



Comparison to Binary-Search-Based Test

• Binary-Search-Based Test worked only for testing if a sequence is 

strictly increasing.

– There is a simple reduction from testing strict sortedness to testing 

non-strict sortedness.

• Spanner-based test is nonadaptive: queries can be determined in 

advance, before seeing answers to previous queries.

– Binary-Search-Based Test can be made nonadaptive.
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Lipschitz Property

• A list of n numbers  x1 , x2 ,..., xn is Lipschitz if the numbers do not 

change too quickly: |�� � ����| � 1 for all 	. 
• The spanner-based test for sortedness can test the Lipschitz

property in 
�log �	/�� time.

• It applies to a more general class of properties.
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Randomized Approximation in 
sublinear time

Simple Examples



Reminder: a Toy Example

Input: a string � ∈ 0,1 �
Goal: Estimate the fraction of 1’s in � (like in polls)

It suffices to sample � = 1 ⁄ �� positions and output the average                         to get 

the fraction of 1’s ±� (i.e., additive error �) with probability≥ 2/3

Y� = value of sample 	. Then E[Y]= ∑!�"�E[Y�] = � ⋅ (fraction of 1’s in �)Pr (sample average)	 � fraction	of	1′s	in	� ≥ � = Pr Y � E Y ≥ ��� 2e��45/! = 26�� < 1/3
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Let Y�, … , Y: be independently distributed random variables in [0,1] and 

let Y = ∑!�"�Y� (sample sum). Then Pr Y � E Y ≥ δ � 2e��45/!.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

< = ��Apply Hoeffding Bound with < = �� � = 1 ⁄ ��substitute � = 1 ⁄ ��



Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph = = �>, ?� on n vertices

• in adjacency lists representation 

(a list of neighbors for each vertex) 

• maximum degree d

Exact Answer: Ω(dn) time

Additive approximation:  # of CC ±εn

with probability≥ 2/3

Time: 

• Known:
 @A5 log �A , Ω
@A5

• Today:  
 @AB ⋅ log �A	 No dependence on n!

13Partially based on slides by Ronitt Rubinfeld: http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Breaks C up into

contributions

of different nodes

Approximating # of CCs: Main Idea

• Let C = number of components

• For every vertex D, define�D = number of nodes in u’s component

– for each component A:   ∑ ��E = 1	F∈G∑F∈H 1
�F = C

• Estimate this sum by estimating �D’s for a few random nodes

– If D’s component is small, its size can be computed by BFS.

– If D’s component is big, then 1/�D is small, so it does not 

contribute much to the sum

– Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
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Approximating # of CCs: Algorithm

Estimating	�D	= the number of nodes in D’s component: 

• Let estimate �IF = min �F, �A
– When D’s component has  ≤ 2/ε nodes , �IF = �F
– Else  �IF = 2/ε, and so 0 < ��IE � ��E < ��IE = A�

• Corresponding estimate for C is CK = ∑ ��IEF∈H .  It is a good estimate: CK � C =
∑ ��IEF∈H � ∑ ��EF∈H � ∑ ��IE � ��E � A��F∈H

1. Repeat s=Θ(1/ε2) times:

2. pick a random vertex D
3. compute �IF via BFS from D, storing all discovered nodes in a sorted list and 

stopping after at most 2/ε new nodes

4. Return CL	= (average of the values 1/�IF) ∙ �
Run time: 
 @AB ⋅ log �A	 15

MNO P	 1�IF � 1�F � �2

APPROX_#_CCs (G, d, ε)



Approximating # of CCs: Analysis

Want to show: Pr CL � CK > A�� � �R

Let Y� = 1/�IFfor the ith vertex D in the sample

• Y = ∑!�"�Y� = !TL� and E[Y] 	= ∑!�"�E[Y�] = � ⋅ E[Y�] = � ⋅ ��∑ ��IUF∈H = !TK�
Pr CL � CK > A�� = Pr �! V � �! ? V > A�� = Pr Y � E Y > A!� �26�W5X5
• Need � = Θ �A5 samples to get probability � �R
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Let Y�, … , Y: be independently distributed random variables in [0,1] and 

let Y = ∑!�"�Y� (sample sum). Then Pr Y � E Y ≥ δ � 2e��45/!.
Hoeffding Bound



Approximating # of CCs: Analysis

So far: CK � C � A��Pr CL � CK > A�� � �R
• With probability ≥ �R ,

CL � C � CL � CK + CK � C � ��2 + ��2 � ��
Summary: 

The number of connected components in �-vertex graphs of degree at 

most [ can be estimated within	±�� in time 
 @AB ⋅ log �A	 .
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Minimum spanning tree (MST)

• What is the cheapest way to connect all the dots?
Input: a  weighted graph 

with n vertices and m edges

• Exact computation:

– Deterministic 
�\ ∙ inverse-Ackermann�\��	time [Chazelle]

– Randomized 
�\�	time [Karger Klein Tarjan]

1

3

7

5

2

4

18Partially based on slides by Ronitt Rubinfeld: http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph = = �>, ?�	on n vertices

• in adjacency lists representation 

• maximum degree d and maximum allowed weight w

• weights in {1,2,…,w}

Output:  (1+ ε)-approximation to MST weight, �]^_
Number of queries: 

• Known: 
 @`AB log @À , Ω
@`A5

• Today:  �\Maa	bcad�c\	Ma		�	[, �, 1/�
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No dependence on n!



Idea Behind Algorithm

• Characterize MST weight in terms of number of  connected 

components in certain subgraphs of G

• Already know that number of connected components can be 

estimated quickly
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• Recall Kruskal’s algorithm for computing MST exactly.

Suppose all weights are 1 or 2.  Then MST weight                      = (# 

weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST)= 		�	– 	1	 +	(# of weight-2 edges in MST)= 		�	– 	1	 +	(# of CCs induced by weight-1 edges)	�1

weight 1

weight 2
connected components

induced by weight-1 edges

MST

MST and Connected Components: Warm-up

� � 1MST has  � � 1 edges
By Kruskal



MST and Connected Components

In general:   Let	=� = subgraph	of	=	containing	all	edges	of	weight � 	C� = number	of	connected	components	in	=�
Then MST has C� � 1 edges of weight  > 		.

• Let n� 	be	the	number	of	edges	of	weight > 		in	MST
• Each MST edge contributes 1 to �]^_, each MST edge of weight >1 contributes 1 

more, each MST edge of weight >2 contributes one more, …

�]^_ = = r n�`��
�"s = r�C�`��

�"s � 1� = �� + r C�`��
�"s = � � � + r C�`��

�"�
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�]^_ = = � � � + r C�`��
�"�

Claim



APPROX_MSTweight (G, w, d, ε)

Algorithm for Approximating tuvw
1. For 	 = 1	to	� � 1 do:

2. CL� ←APPROX_#CCs(=� 	, [, �/w).

3. Return�y]^_ = � � � + ∑ CL�`���"� .
Analysis:

• Suppose all estimates of C�’s are good: CL� � C� � À 	�.
Then �y]^_ � �]^_ = | ∑ �CL��C��| �	`���"� ∑ |CL� � C�| � � ⋅	`���"� À 	� = ��

• Pr[all � � 1	estimates are good]≥ 2/3 `��
• Not good enough! Need error probability � �R` for each iteration

• Then, by Union Bound, Pr[error]� � ⋅ �R` = �R
• Can amplify success probability of any algorithm by repeating it and taking the 

median answer.

• Can take more samples in APPROX_#CCs. What’s the resulting run time?
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Claim.   �]^_ = = � � � + ∑ C�`���"�



Multiplicative Approximation for tuvw
For MST cost, additive approximation ⟹ multiplicative approximation�]^_ ≥ � � 1 ⟹ �]^_ ≥ �/2 for � ≥ 2
• ��-additive approximation: �]^_ � �� � �{]^_ � �]^_ + ��
• �1 ± 2��-multiplicative approximation: �]^_ 1 � 2� � �]^_ �  �� � �{]^_ � �]^_ + �� � �]^_ 1 + 2�
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