Testing and Reconstruction of Lipschitz Functions

Sofya Raskhodnikova
Penn State University

Joint work with Madhav Jha (Penn State)
Lipschitz Continuous Functions

A function $f : D \to R$ has Lipschitz constant c if for all x, y in D,

$$\text{distance}_R(f(x), f(y)) \leq c \cdot \text{distance}_D(x, y).$$

A fundamental notion in

- mathematical analysis
- theory of differential equations

Example uses of a Lipschitz constant c of a given function f

- probability theory: in tail bounds via McDiarmid’s inequality
- program analysis: as a measure of robustness to noise
- data privacy: to scale noise added to preserve differential privacy
Computing a Lipschitz Constant?

- Infeasible

- Undecidable to even verify if \(f \) computed by a TM has Lipschitz constant \(c \)

- NP-hard to verify if \(f \) computed by a circuit has Lipschitz constant \(c \)
 - even for finite domains
Lipschitz Functions Over Finite Domains

We call a function Lipschitz if it has Lipschitz constant 1.

• can rescale by $1/c$ to get a Lipschitz function from a function with Lipschitz constant c

Examples

$f : \{1, \ldots, n\} \rightarrow \mathbb{R}$

$\begin{array}{cccc}
1 & 2 & 2 & 3 \\
2 & 3 & 2 & 3 \\
3 & 2 & 4 & 3 \\
4 & 3 & 3 & 2 \\
\end{array}$

Nodes = points in the domain; edges = points at distance 1

Node labels = values of the function
Application 1: Program Analysis

Certifying that a program computes a Lipschitz function

[Chaudhuri Gulwani Lublinerman Navidpour 10]

To ensure that a program

- is robust to noise in its inputs
 (e.g., caused by communication/ measurement errors)
- responds well to compiler optimizations that lead to an approximately equivalent program

Question: Can we test if a function is Lipschitz?
Application 2: Data Privacy

Typical examples: census, civic archives, medical records,…

[Dwork McSherry Nissim Smith 06]
Lipschitz functions can be released with little noise while satisfying differential privacy.

Question: Can we ensure that the server only answers queries about Lipschitz functions?
Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

Oracle

User

Oracle

Filter

User

for each \(f \) and \(r \), function \(g \) satisfies property \(P \)

w.h.p. \(g \) is close to \(f \) (in Hamming distance)

\(g(x) \) can be computed quickly

Local filter: \(g \) does not depend on queries \(x \)
Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

For each f and r, function g satisfies property P.

- $g = f$ if f satisfies property P.
- $g(x)$ can be computed quickly.
- **Local** filter: g does not depend on queries x.
Filter Mechanism for Data Privacy

Question:
Can we quickly (locally) reconstruct Lipschitz property?
Question:
Can we quickly locally reconstruct Lipschitz property for functions on the hypergrid domains?
Our Results: Lipschitz Testers

Line $f : \{1, \ldots, n\} \rightarrow R$

- **Upper bound:** $O(\log n / \varepsilon)$ time
 - applies to all discretely metrically convex spaces R
 - (\mathbb{R}^k, ℓ_p) for all $p \in [1, \infty)$, $(\mathbb{R}^k, \ell_{\infty})$, (\mathbb{Z}^k, ℓ_1), $(\mathbb{Z}^k, \ell_{\infty})$
 - the shortest path metric d_G for all graphs G
 - generalization of monotonicity tester via transitive-closure-spanners [Dodis Goldreich Lehman R Ron Samorodnitky 99, Bhattacharyya Grigorescu Jung R Woodruff 09]
 - applies to all edge-transitive properties that allow extension

- **Lower bound:** $\Omega(\log n)$ queries for nondaptive 1-sided error tests
 - holds even for range \mathbb{Z}
Metric Convexity

- a standard notion in geometric functional analysis

A metric space \((R, d_R)\) is **metrically convex** if for all \(u, v \in R\) and all positive \(\alpha, \beta \in \mathbb{R}\) satisfying \(d_R(u, v) \leq \alpha + \beta\) there exists \(w \in R\) such that \(d_R(u, w) \leq \alpha\) and \(d_R(w, v) \leq \beta\).
Discrete Metric Convexity

- a relaxation of
 a standard notion in geometric functional analysis

A metric space \((R, d_R)\) is **discretely** metrically convex
if for all \(u, v \in R\) and
all positive \(\alpha, \beta \in \mathbb{Z}\) satisfying \(d_R(u, v) \leq \alpha + \beta\)
there exists \(w \in R\) such that \(d_R(u, w) \leq \alpha\) and \(d_R(w, v) \leq \beta\)
A property is **edge-transitive** if

1) it can be expressed in terms conditions on **ordered** pairs of domain points

2) it is **transitive**: whenever \((x, y)\) and \((y, z)\) satisfy (1), so does \((x, z)\)

A property **allows extension** if

3) any function that satisfies (1) on a subset of the domain can be extended to a function with the property
Our Results: Lipschitz Testers

Line $f : \{1, \ldots, n\} \rightarrow R$

- **Upper bound:** $O(\log n / \varepsilon)$ time
 - Applies to all discretely metrically convex spaces R
 - $\left(\mathbb{R}^k, \ell_p\right)$ for all $p \in [1, \infty)$, $\left(\mathbb{R}^k, \ell_\infty\right)$, $\left(\mathbb{Z}^k, \ell_1\right)$, $\left(\mathbb{Z}^k, \ell_\infty\right)$
 - The shortest path metric d_G for all graphs G
 - Generalization of monotonicity tester via TC-spanners [DGLRRS99, BGJRW09]
 - Applies to all edge-transitive properties that allow extension

- **Lower bound:** $\Omega(\log n)$ queries for nondaptive 1-sided error tests
 - Holds even for range \mathbb{Z}
Our Results: Lipschitz Testers

Hypercube $f : \{0,1\}^d \rightarrow R$

- Upper bound: $O(d \cdot \min(d, \text{ImageDiam}(f))/ (\delta \varepsilon))$ time for range $\delta \mathbb{Z}$
 - same time to distinguish Lipschitz and ε-far from $(1+\delta)$-Lipschitz for range \mathbb{R}

- Lower bound: $\Omega(d)$ queries
 - tight for range $\{0,1,2\}$
 - reduction from a communication complexity problem
 (new technique due to [Blais Brody Matulef 11])
Our Results: Local Lipschitz Reconstructors

Hypergrid $f : \{1, \ldots, n\}^d \rightarrow \mathbb{R}$

- Upper bound: $O((\log n + 1)^d)$ time
- Lower bound: $\Omega\left(\frac{(\ln n - 1)^{d-1}}{d(4\pi)^d}\right)$ queries

for nonadaptive filters

Hypercube $f : \{0,1\}^d \rightarrow \mathbb{R}$

- Lower bound: $\Omega\left(2^{\alpha d}/d\right)$ queries, where $\alpha \approx 0.1620$

for nonadaptive filters
Hypercube Test: Important Special Case

Testing if \(f : \{0,1\}^d \rightarrow \mathbb{Z} \) is Lipschitz in \(O(d \cdot \min(d, \text{ImageDiam}(f)) / \varepsilon) \) time

- \(f \) is Lipschitz if its values on endpoints of every edge differ by at most 1.

- A an edge \(\{x,y\} \) is violated if \(|f(x) - f(y)| > 1 \)

Goal: Relate the number of violated edges, \(V(f) \), to the distance to the Lipschitz property.
Hypercube Test: Key Lemma

If $f : \{0,1\}^d \to \mathbb{Z}$ is ε-far from Lipschitz then $V(f) \geq \frac{\varepsilon \cdot 2^{d-1}}{\text{ImageDiam}(f)}$.

- **Enough to show:** we can make f Lipschitz by modifying $2 \cdot V(f) \cdot \text{ImageDiam}(f)$ values.

- **Then** $2 \cdot V(f) \cdot \text{ImageDiam}(f) \geq \varepsilon \cdot 2^d$ for ε-far f, implying Key Lemma.
Averaging Operator

Plan: Transform f into a Lipschitz function by repairing edges in one dimension at a time.

- As in the analysis of monotonicity tester in [DGLRRS99, GGLRS00]
 - Worked only for Boolean functions
 - General range was handled by induction on the size of the range
 - Function with range $\{0,1\}$ are all Lipschitz,
 with range $\{0,2\}$ are trivially testable
Plan: Repairing edges in one dimension at a time.

Averaging Operator

For each violated edge \(\{x, y\} \) along dimension \(i \) with \(f(x) < f(y) + 1 \)

\[
\text{Averaging in dimension } i \quad \frac{f(x) + f(y)}{2} \quad \text{Averaging in dimension } i
\]

Issue: might increase the # of violated edges in other dimensions

Intuition: violation is “spread” among the edges in dimension \(j \)
Potential Function Argument

Idea: Take into account the magnitude of violations.

<table>
<thead>
<tr>
<th>Violation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Violation score $\text{vs}({x, y}) = \max(0,</td>
</tr>
<tr>
<td>• VS^j = sum of violation scores of edges along dimension j</td>
</tr>
</tbody>
</table>

Want to show: Averaging in dimension i does not increase VS^j for all dimensions $j \neq i$

Issue: averaging operator is complicated
Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

<table>
<thead>
<tr>
<th>Basic Step Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each violated edge ({x, y}) along dimension (i) with (f(x) < f(y) + 1)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 f(x) &\quad \text{Basic Step in dimension } i \\
 f(y) &\quad f(x) + 1 \\
 f(y) - 1 \\
\end{align*}
\]

Averaging in dimension \(i \) = multiple Basic Steps in dimension \(i \)
Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

<table>
<thead>
<tr>
<th>Basic Step Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each violated edge ({x, y}) along dimension (i) with (f(x) < f(y) + 1)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
 f(x) \quad \quad f(y) \\
 \text{Basic Step in dimension } i \\
 f(x) + 1 \quad \quad f(y) - 1
\end{array}
\]

Averaging in dimension \(i = \) multiple Basic Steps in dimension \(i \)
Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

<table>
<thead>
<tr>
<th>Basic Step Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each violated edge ({x, y}) along dimension (i) with (f(x) < f(y) + 1)</td>
</tr>
</tbody>
</table>

\[
f(x) \quad f(y) \quad \text{Basic Step in dimension } i \quad f(x) + 1 \quad f(y) - 1
\]

Averaging in dimension \(i = \) multiple Basic Steps in dimension \(i \)
Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

<table>
<thead>
<tr>
<th>Basic Step Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each violated edge {x, y} along dimension (i) with (f(x) < f(y) + 1)</td>
</tr>
</tbody>
</table>

\[
f(x) \xrightarrow{\text{Basic Step in dimension } i} f(x) + 1 \xrightarrow{\text{Basic Step in dimension } i} f(y) - 1
\]

Averaging in dimension \(i\) = multiple Basic Steps in dimension \(i\)

Enough to show:

Basic Step in dimension \(i\) does not increase \(VS^j\) \(\forall\) dimensions \(j \neq i\).
Basic Step in dimension i does not increase V_{S^j}

Enough to prove it for squares

Can be proved by simple case analysis
Analysis of the Averaging Operator

Know: Averaging dimension i

1. repairs all violated edges in dimension i (brings VS^i down to 0)
2. doesn’t increase $VS^j \ \forall \text{dimensions } j \neq i$

- Averaging in dimensions $i = 1, \ldots, d$ repairs all violations because $VS^j = 0$ means “no violated edges in dimension i“

![Diagram](image.png)
Analysis of the Averaging Operator

How many function values are changed when averaging dimension \(i \)?

\[
2 \cdot (\text{# of violated edges in dimension } i \text{ after averaging dimensions } 1, \ldots, i - 1)
\]

- Let \(V^i(f) \) be the \# of edges in dimension \(i \) violated by \(f \)

\[
V^i(f) \leq VS^i(f) \leq V^i(f) \cdot \text{ImageDiam}(f)
\]

- Dimension \(i \) starts and ends up with \(VS^i \leq V^i(f) \cdot \text{ImageDiam}(f) \)

- \# of violated edges in dimension \(i \) never exceeds \(V^i(f) \cdot \text{ImageDiam}(f) \)

\# of changes

\[
= 2 \cdot (\text{# of violated edges in dimension } i \text{ after averaging dimensions } 1, \ldots, i - 1)
\leq 2 \cdot V(f) \cdot \text{ImageDiam}(f)
\]
Lipschitz Test for Functions $f : \{0,1\}^d \rightarrow \mathbb{Z}$

Key Lemma

If $f : \{0,1\}^d \rightarrow \mathbb{Z}$ is ε-far from Lipschitz then $V(f) \geq \frac{\varepsilon \cdot 2^{d-1}}{\text{ImageDiam}(f)}$

- i.e., fraction of violated edges is $\geq \frac{\varepsilon}{d \cdot \text{ImageDiam}(f)}$
- Enough to sample $\Theta(d \cdot \text{ImageDiam}(f)/\varepsilon)$ edges

Issue: $\text{ImageDiam}(f)$ can be $> 2^d$

Observation: A Lipschitz function on $\{0,1\}^d$ has image diameter at most d.

Algorithm

1. Sample $\Theta(1/\varepsilon)$ domain points x
2. $r = \max_{x} f(x) - \min_{x} f(x)$
3. If $r > d$, reject
4. Sample $\Theta(d \cdot r/\varepsilon)$ edges, and reject if any edge is violated
Analysis of Lipschitz Hypercube Test

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample $\Theta(1/\varepsilon)$ domain points x</td>
</tr>
<tr>
<td>2. $r = \max_{x} f(x) - \min_{x} f(x)$</td>
</tr>
<tr>
<td>3. If $r > d$, reject</td>
</tr>
<tr>
<td>4. Sample $\Theta(d \cdot r/\varepsilon)$ edges, and reject if any edge is violated</td>
</tr>
</tbody>
</table>

If f is Lipschitz, it is always accepted. ✓

Suppose f is ε-far from Lipschitz.
- If $r > d$, the algorithm rejects. ✓
- It remains to consider the case $r \leq d$.

![Diagram showing function f and distance $\geq \varepsilon$]
Analysis of Lipschitz Hypercube Test

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample $\Theta(1/\varepsilon)$ domain points x</td>
</tr>
<tr>
<td>2. $r = \max_x f(x) - \min_x f(x)$</td>
</tr>
<tr>
<td>3. If $r > d$, reject</td>
</tr>
<tr>
<td>4. Sample $\Theta(d \cdot r/\varepsilon)$ edges, and reject if any edge is violated</td>
</tr>
</tbody>
</table>

Suppose f is ε-far from Lipschitz and $r \leq d$.

- W.h.p. r is such that f is $\varepsilon/2$-close to having image diameter r
 That is, some function g at distance $< \varepsilon/2$ has image diameter r
- Let $a_{\min} = \min_x g(x)$ and $a_{\max} = \max_x g(x)$
 Let $\tilde{f}(x) = \begin{cases}
 a_{\min} & \text{if } f(x) < a_{\min} \\
 a_{\max} & \text{if } f(x) > a_{\max} \\
 f(x) & \text{otherwise}
 \end{cases}$
- \tilde{f} has image diameter r and is at distance $< \varepsilon/2$ from f \Rightarrow it is $\varepsilon/2$-far from Lipschitz
Analysis of Lipschitz Hypercube Test

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample $\Theta(1/\epsilon)$ domain points x</td>
</tr>
<tr>
<td>2. $r = \max_x f(x) - \min_x f(x)$</td>
</tr>
<tr>
<td>3. If $r > d$, reject</td>
</tr>
<tr>
<td>4. Sample $\Theta(d \cdot r/\epsilon)$ edges, and reject if any edge is violated</td>
</tr>
</tbody>
</table>

Suppose f is ϵ-far from Lipschitz and $r \leq d$.

- **We have:** \tilde{f} has image diameter r and is $\epsilon/2$-far from Lipschitz
- By Key Lemma, $V(\tilde{f}) \geq \frac{\epsilon/2}{d \cdot \text{ImageDiam}(\tilde{f})} = \frac{\epsilon}{2d \cdot r}$
- An edge is violated by \tilde{f} only if it is violated by f
 \[V(f) \geq V(\tilde{f}) \geq \frac{\epsilon}{2d \cdot r} \]
- Algorithm rejects w.h.p.
Our Results for the Lipschitz Property

TESTERS

Line \(f : \{1, \ldots, n\} \rightarrow \mathbb{R} \)

Hypercube \(f : \{0,1\}^d \rightarrow \mathbb{R} \)

- Upper bound: \(O(d \cdot \min(d, \text{ImageDiam}(f)) / (\delta \varepsilon)) \) time for range \(\delta \mathbb{Z} \)
 - same time to distinguish Lipschitz and \(\varepsilon \)-far from \((1+\delta)\)-Lipschitz for range \(\mathbb{R} \)

- Lower bound: \(\Omega(d) \) queries
 - tight for range \(\{0,1,2\} \)

LOCAL RECONSTRUCTORS

Hypergrid \(f : \{1,\ldots, n\}^d \rightarrow \mathbb{R} \)

Hypercube \(f : \{0,1\}^d \rightarrow \mathbb{R} \)
Open Questions

Lipschitz Property

• Tight bounds for testers on the hypercube
• Tester on the hypergrid
• Adaptive lower bounds for local filters on the hypercube/hypergrid
• (Nonlocal) reconstruction
• Explore more complicated ranges than \mathbb{R}
 – for testers on domains other than the line
 – for reconstructors

Other Properties

• Filters for data privacy mechanisms based on local notions of sensitivity
 – smooth sensitivity [Nissim Raskhodnikova Smith 07]