
On the Readability of Overlap Digraphs

Rayan Chikhi1,2, Paul Medvedev2, Martin Milanič3, and Sofya Raskhodnikova2

1CNRS, UMR 9189, France,
2The Pennsylvania State University, USA,

3University of Primorska, Slovenia

Abstract. We introduce the graph parameter readability and study it
as a function of the number of vertices in a graph. Given a digraph D,
an injective overlap labeling assigns a unique string to each vertex such
that there is an arc from x to y if and only if x properly overlaps y. The
readability of D is the minimum string length for which an injective over-
lap labeling exists. In applications that utilize overlap digraphs (e.g., in
bioinformatics), readability reflects the length of the strings from which
the overlap digraph is constructed. We study the asymptotic behaviour
of readability by casting it in purely graph theoretic terms (without any
reference to strings). We prove upper and lower bounds on readability
for certain graph families and general graphs.

1 Introduction

In this paper, we introduce and study a graph parameter called readability,
motivated by applications of overlap graphs in bioinformatics. A string x overlaps
a string y if there is a suffix of x that is equal to a prefix of y. They overlap
properly if, in addition, the suffix and prefix are both proper. The overlap digraph
of a set of strings S is a digraph where each string is a vertex and there is an arc
from x to y (possibly with x = y) if and only if x properly overlaps y. Walks in
the overlap digraph of S represent strings that can be spelled by stitching strings
of S together, using the overlaps between them. Overlap digraphs have various
applications, e.g., they are used by approximation algorithms for the Shortest
Superstring Problem [Swe00]. Their most impactful application, however, has
been in bioinformatics. Their variants, such as de Bruijn graphs [IW95] and
string graphs [Mye05], have formed the basis of nearly all genome assemblers
used today (see [MKS10,NP13] for a survey), successful despite results showing
that assembly is a hard problem in theory [BBT13,NP09,MGMB07]. In this
context, the strings of S represent known fragments of the genome (called reads),
and the genome is represented by walks in the overlap digraph of S. However,
do the overlap digraphs generated in this way capture all possible digraphs, or
do they have any properties or structure that can be exploited?

Braga and Meidanis [BM02] showed that overlap digraphs capture all possible
digraphs, i.e., for every digraph D, there exists a set of strings S such that their
overlap digraph is D. Their proof takes an arbitrary digraph and shows how
to construct an injective overlap labeling, that is, a function assigning a unique

string to each vertex, such that (x, y) is an arc if and only if the string assigned
to x properly overlaps the string assigned to y. However, the length of strings
produced by their method can be exponential in the number of vertices. In
the bioinformatics context, this is unrealistic, as the read size is typically much
smaller than the number of reads.

To investigate the relationship between the string length and the number of
vertices, we introduce a graph parameter called readability. The readability of a
digraph D, denoted r(D), is the smallest nonnegative integer r such that there
exists an injective overlap labeling of D with strings of length r. The result by
[BM02] shows that readability is well defined and is at most 2∆+1 − 1, where ∆
is the maximum of the in- and out-degrees of vertices in D. However, nothing
else is known about the parameter, though there are papers that look at related
notions [BFK+02,BFKK02,BHKdW99,GP14,LZ07,LZ10,PSW03,TU88].

In this paper, we study the asymptotic behaviour of readability as a function
of the number of vertices in a graph. We define readability for undirected bipar-
tite graphs and show that the two definitions of readability are asymptotically
equivalent. We capture readability using purely graph theoretic parameters (i.e.,
without any reference to strings). For trees, we give a parameter that charac-
terizes readability exactly. For the larger family of bipartite C4-free graphs, we
give a parameter that approximates readability to within a factor of 2. Finally,
for general bipartite graphs, we give a parameter that is bounded on the same
sets of graphs as readability.

We apply our purely graph theoretic interpretation to prove readability up-
per and lower bounds on several graph families. We show, using a counting
argument, that almost all digraphs and bipartite graphs have readability of at
least Ω(n/ log n). Next, we construct a graph family inspired by Hadamard codes
and prove that it has readability Ω(n). Finally, we show that the readability of
trees is bounded from above by their radius, and there exist trees of arbitrary
readability that achieve this bound.

2 Preliminaries
General definitions and notation. Let x be a string. We denote the length
of x by |x|. We use x[i] to refer to the ith character of x, and denote by x[i..j] the
substring of x from the ith to the jth character, inclusive. We let prei(x) denote
the prefix x[1..i] of x, and we let sufi(x) denote the suffix x [|x| − i+ 1..|x|].
Let y be another string. We denote by x · y the concatenation of x and y. We
say that x overlaps y if there exists an i with 1 ≤ i ≤ min{|x|, |y|} such that
sufi(x) = prei(y). In this case, we say that x overlaps y by i. If i < min{|x|, |y|},
then we call the overlap proper. Define ov(x, y) as the minimum i such that x
overlaps y by i, or 0 if x does not overlap y. For a positive integer n, we denote
by [n] the set {1, . . . , n}.

We refer to finite simple undirected graphs simply as graphs and to finite
directed graphs without parallel arcs in the same direction as digraphs. For a
vertex v in a graph, we denote the set of neighbors of v by N(v). A biclique is
a complete bipartite graph. Note that the one-vertex graph is a biclique (with
one of the parts of its bipartition being empty). Two vertices u, v in a graph are

called twins if they have the same neighbors, i.e., if N(u) = N(v). If, in addition,
N(u) = N(v) 6= ∅, vertices u, v are called non-isolated twins. A matching is a
graph of maximum degree at most 1, though we will sometimes slightly abuse
the terminology and not distinguish between matchings and their edge sets. A
cycle (respectively, path) on i vertices is denoted by Ci (respectively, Pi). For
graph terms not defined here, see, e.g., [BM08].

Readability of digraphs. A labeling ` of a graph or digraph is a function
assigning a string to each vertex such that all strings have the same length,
denoted by len(`). We define ov`(u, v) = ov(`(u), `(v)). An overlap labeling of
a digraph D = (V,A) is a labeling ` such that (u, v) ∈ A if and only if 0 <
ov`(u, v)) < len(`). An overlap labeling is said to be injective if it does not
generate duplicate strings. Recall that the readability of a digraph D, denoted
r(D), is the smallest nonnegative integer r such that there exists an injective
overlap labeling of D of length r. We note that in our definition of readability we
do not place any restrictions on the alphabet size. Braga and Meidanis [BM02]
gave a reduction from an overlap labeling of length ` over an arbitrary alphabet
Σ to an overlap labeling of length ` log |Σ| over the binary alphabet.

Readability of bipartite graphs. We also define a modified notion of read-
ability that applies to balanced bipartite graphs as opposed to digraphs. We
found that readability on balanced bipartite graphs is simpler to study but is
asymptotically equivalent to readability on digraphs. Let G = (V,E) be a bipar-
tite graph with a given bipartition of its vertex set V (G) = Vs ∪ Vp. (We also
use the notation G = (Vs, Vp, E).) We say that G is balanced if |Vs| = |Vp|. An
overlap labeling of G is a labeling ` of G such that for all u ∈ Vs and v ∈ Vp,
(u, v) ∈ E if and only if ov`(u, v) > 0. In other words, overlaps are exclusively
between the suffix of a string assigned to a vertex in Vs and the prefix of a string
assigned to a vertex in Vp. The readability of G is the smallest nonnegative in-
teger r such that there exists an overlap labeling of G of length r. Note that we
do not require injectivity of the labeling, nor do we require the overlaps to be
proper. As before, we use r(G) to denote the readability of G.

We note that in our definition of readability we do not place any restrictions
on the alphabet size. Braga and Meidanis [BM02] gave a reduction from an
overlap labeling of length ` over an arbitrary alphabet Σ to an overlap labeling
of length ` log |Σ| over the binary alphabet.

For a labeling `, we define inner i(`(v)) = sufi(`(v)) if v ∈ Vs and inner i(`(v)) =
prei(`(v)) if v ∈ Vp. Similarly, we define outer i(`(v)) = prei(`(v)) if v ∈ Vs and
outer i(`(v)) = sufi(`(v)) if v ∈ Vp.

Let Bn×n be the set of balanced bipartite graphs with nodes [n] in each part,
and let Dn be the set of all digraphs with nodes [n]. The readabilities of digraphs
and of bipartite graphs are connected by the following theorem, which implies
that they are asymptotically equivalent.

Theorem 1. There exists a bijection ψ : Bn×n → Dn with the property that for
all G ∈ Bn×n and D ∈ Dn, such that D = ψ(G), we have that r(G) < r(D) ≤
2 · r(G) + 1.

As a result, we can study readability of balanced bipartite graphs, with-
out asymptotically affecting our bounds. For example, we show in Section 4.2
(in Theorem 6) that there exists a family of balanced bipartite graphs with read-
ability Ω(n), which leads to the existence of digraphs with readability Ω(n).

3 Graph theoretic characterizations

In this section, we relate readability of balanced bipartite graphs to several purely
graph theoretic parameters, without reference to strings.

3.1 Trees and C4-free graphs

For trees, we give an exact characterization of readability, while for C4-free
graphs, we give a parameter that is a 2-approximation to readability. A decom-
position of size k of a bipartite graph G = (Vs, Vp, E) is a function on the edges
of the form w : E → [k]. Note that a labeling ` of G implies a decomposition
of G, defined by w(e) = ov`(e) for all e ∈ E. We call this the `-decomposition.
We say that a labeling ` of G achieves w if it is an overlap labeling and w is the
`-decomposition. Note that we can express readability as

r(G) = min{k | w is a decomposition of size k , ∃ a labeling ` that achieves w} .

Our goal is to characterize in graph theoretic terms the properties of w which
are satisfied if and only if w is the `-decomposition, for some `. While this is
challenging in general, we can achieve this for trees. We use a condition which
we call the P4-rule. A decomposition w satisfies the P4-rule if for every in-
duced four-vertex path P = (e1, e2, e3) in G, the following condition holds: if
w(e2) = max{w(e1), w(e2), w(e3)}, then w(e2) ≥ w(e1) + w(e3). We will prove
the following theorem.

Theorem 2. Let T be a tree. Then r(T) = min{k | w is a decomposition of
size k that satisfies the P4-rule}.

Note that for cycles, the equality does not hold. For example, consider the
decomposition w of C6 given by the weights 2, 4, 2, 2, 3, 1. This decomposition
satisfies the P4 rule but it can be shown using case analysis that there does not
exist a labeling ` achieving w.

However, we can give a characterization of readability for C4-free graphs
in terms of a parameter that is asymptotically equivalent to readability, us-
ing a condition which we call the strict P4-rule. The strict P4-rule is identi-
cal to the P4-rule accept that the inequality becomes strict. That is, w satis-
fies the strict P4-rule if for every induced four-vertex path P = (e1, e2, e3), if
w(e2) = max{w(e1), w(e2), w(e3)}, then w(e2) > w(e1) +w(e3). Note that a de-
composition that satisfies the strict P4-rule automatically satisfies the P4-rule,
but not vice-versa. We will prove the following theorem.

Theorem 3. Let G be a C4-free bipartite graph. Let t = min{k | w is a decom-
position of size k that satisfies the strict P4-rule}. Then t/2 < r(G) ≤ t.

We note that this characterization cannot be extended to graphs with a C4.
The example in Figure 1a shows a graph with a decomposition which satisfies
the strict P4-rule but it can be shown using case analysis that there does not
exists a labeling ` achieving this decomposition.

In the remainder of this section, we will prove these two theorems. We first
show that an `-decomposition satisfies the P4-rule (proof in the full version).

Lemma 1. Let ` be an overlap labeling of a bipartite graph G. Then the `-
decomposition satisfies the P4-rule.

Now, consider a C4-free bipartite graph G = (Vs, Vp, E) and let w be a
decomposition satisfying the P4-rule. We will prove both Theorem 2 and Theo-
rem 3 by constructing the following labeling. Let us order the edges e1, . . . , e|E|
in order of non-decreasing weight. For 0 ≤ j ≤ |E|, we define the graph Gj =
(Vs, Vp, {ei ∈ E | i ≤ j}). For a vertex u, define lenj(u) = max{w(ei) | i ≤
j, ei is incident with u}, if the degree of u in Gj is positive, and 0 otherwise. We
will recursively define a labeling `j of Gj such that |`j(u)| = lenj(u) for all u.
The initial labeling `0 assigns ε to every vertex. Suppose we have a labeling `j
for Gj , and ej+1 = (u, v). Recall that because w satisfies the P4-rule and G is
C4-free, w(u, v) ≥ lenj(u) + lenj(v) = |`j(u)|+ |`j(v)|. (Note that the inequality
holds also in the case when one of the two summands is 0.) Let A be a (possibly
empty) string of length w(u, v)−|`j(u)|−|`j(v)| composed of non-repeating char-
acters that do not exist in `j . Define `j+1 as `j+1(x) = `j(x) for all x /∈ {u, v},
and `j+1(u) = `j+1(v) = `j(v) ·A ·`j(u). We denote the labeling of G as ` = `|E|.
We will slightly abuse notation in this section, ignoring the fact that a labeling
must have labels of the same length. This is inconsequential, because strings can
always be padded from the beginning or end with distinct characters without
affecting any overlaps.

First, we state a useful Lemma, that two vertices share a character in the
labeling only if they are connected by a path (proof in the full version).

Lemma 2. Let c be a character that is contained in `j(u) and in `j(v), for some
pair of distinct vertices. Then there exists a path between u and v in Gj.

We are now ready to show that ` achieves w for trees, and, if w also satisfies
the strict P4-rule, for C4-free graphs.

Lemma 3. Let G be a C4-free bipartite graph and let w be a decomposition that
satisfies the P4-rule. Then the above defined labeling ` achieves w if w satisfies
the strict P4-rule or if G is acyclic.

Proof sketch. We prove by induction on j that `j achieves w on Gj . Suppose
that the Lemma holds for `j and consider the effect of adding ej+1 = (u, v).
Notice that to obtain `j+1 we only change labels by adding outer characters,
hence, any two vertices that overlap by i in `j will also overlap by i in `j+1.
Moreover, only the labels of u and v are changed, and an overlap between u

and v of length w(u, v) is created. It remains to show that no shorter overlap is
created between u and v and that no new overlap is created involving u or v,
except the one between u and v.

For the cases when w(u, v) > |`j(u)|+ |`j(v)| or w(u, v) = |`j(v)| or w(u, v) =
|`j(u)|, we show in the full version that `j+1 achieves w on Gj+1. We similarly
show in the full version that the case when w(u, v) = |`j(u)|+ |`j(v)| and `j(u) 6=
ε 6= `j(v) cannot arise if w satisfies the strict P4-rule.

Now, assume that G is acyclic, and suppose for the sake of contradiction
that the new labeling creates an overlap between v and a vertex u′ 6= u (the case
of an overlap between u and v′ 6= v is symmetric). Consider the character c at
position |`j(v)| + 1 of `j+1(v). The length of the overlap between `j+1(v) and
`j+1(u′) = `j(u

′) must be greater than |`j(v)|, otherwise it would have been an
overlap in `j . Thus, `j(u

′) must contain c. By construction of v’s new label, `j(u)
must also contain c. Applying Lemma 2, there must be a path between u′ and
u in Gj . On the other hand, the overlap between v and u′ spans (`j(v))[1], and
hence `j(v) and `j(u

′) must share a character. Applying Lemma 2, there must
exist a path between u′ and v in Gj . Consequently, there exists a path from u to
v in Gj . Combining this path with ej+1 = (u, v), we get a cycle in Gj+1, which
is a contradiction.

Finally, suppose for the sake of contradiction that `j+1(u) overlaps `j+1(v)
by some k < w(u, v). By the induction hypothesis, k > |`j(v)|. Consider the last
character c of `j(v). It must also appear as the inner position i = k− |`j(v)|+ 1
in `j+1(u). Since k ≤ w(u, v)−1, we have i ≤ w(u, v)−|`j(v)| = |`j(u)|, and the
ith inner position in `j+1(u) is also the the ith inner position in `j(u). Applying
Lemma 2 to c in `j(v) and `j(u), there must exist a path between u and v in
Gj . Combining this path with ej+1 = (u, v), we get a cycle in Gj+1, which is a
contradiction.

We can now prove Theorems 2 and 3.

Proof of Theorem 2. Let t = min{k | w is a decomposition of size k that satisfies
the P4-rule}. First, let w be a decomposition of size t satisfying the P4-rule.
Lemma 3 states that the above defined labeling ` achieves w and so r(T) ≤
maxe(we) = t. For the other direction, consider an overlap labeling b of T of
minimum length. By Lemma 1, the b-decomposition satisfies the P4-rule. Hence,
r(T) = len(b) ≥ t.

Proof of Theorem 3. Let w be a decomposition of size t satisfying the strict
P4-rule. By Lemma 3, the above defined labeling ` achieves w and so r(G) ≤
maxe(we) = t. On the other hand, let b be an overlap labeling of length r(G).
Define w(e) = 2ovb(e) − 1, for all e ∈ E(G). We claim that w satisfies the
strict P4-rule, which will imply that t ≤ maxe w(e) = 2r(G) − 1. To see this,
let e1, e2, e3 be the edges of an arbitrary induced P4. Observe that w(e2) =
max{w(e1), w(e2), w(e3)} if and only if ovb(e2) = max{ovb(e1), ovb(e2), ovb(e3)}.
Furthermore, it can be algebraicly verified that if ovb(e2) ≥ ovb(e1) + ovb(e3)
then w(e2) > w(e1) + w(e3). By Lemma 1, the b-decomposition satisfies the
P4-rule and, therefore, w satisfies the strict P4-rule.

3.2 General graphs

In the previous subsection, we derived graph theoretic characterizations of read-
ability that are exact for trees and approximate for C4-free bipartite graphs.
Unfortunately, for a general graph, it is not clear how to construct an overlap
labeling from a decomposition satisfying the P4-rule (as we did in Lemma 3).
In this subsection, we will consider an alternate rule (HUB-rule), which we then
use to construct an overlap labeling.

Given G = (Vs, Vp, E) and a decomposition w of size k, we define Gwi , for
i ∈ [k], as a graph with the same vertices as G and edges given by E(Gwi) =
{e ∈ E | w(e) = i}. When w is obvious from the context, we will write Gi
instead of Gwi . Observe that the edge sets of Gw1 , . . . , G

w
k form a partition of E.

We say that w satisfies the hierarchical-union-of-bicliques rule, abbreviated as
the HUB-rule, if the following conditions hold: i) for all i ∈ [k], Gwi is a disjoint
union of bicliques, and ii) if two distinct vertices u and v are non-isolated twins
in Gwi for some i ∈ {2, . . . , k} then, for all j ∈ [i − 1], u and v are (possibly
isolated) twins in Gwj . An example of a decomposition satisfying the HUB-rule
is any w : E → [k] such that Gw1 is an (arbitrary) disjoint union of bicliques and
Gw2 , . . . , G

w
k are matchings. We can show that the decomposition implied by any

overlap labeling must satisfy the HUB-rule (proof in the full version).

Lemma 4. Let ` be an overlap labeling of a bipartite graph G. Then the `-
decomposition satisfies the HUB-rule.

We define the HUB number of G as the minimum size of a decomposition
of G that satisfies the HUB-rule, and denote it by hub(G). Observe that a de-
composition of a graph into matchings (i.e. each Gwi is a matching) satisfies the
HUB-rule. By König’s Line Coloring Theorem, any bipartite graph G can be
decomposed into ∆(G) matchings, where ∆(G) is the maximum degree of G.
Thus, hub(G) ∈ [∆(G)]. Clearly, a graph G has hub(G) = 1 if and only if G is a
disjoint union of bicliques. The HUB number captures readability in the sense
that the readability of a graph family is bounded (by a uniform constant inde-
pendent of the number of vertices) if and only if its HUB number is bounded.
This is captured by the following theorem:

Theorem 4. Let G be a bipartite graph. Then hub(G) ≤ r(G) ≤ 2hub(G) − 1.

In the remainder of this section, we will prove this theorem. The first in-
equality directly follows from Lemma 4 because, by definition of readability,
there exists an overlap labeling ` of length r(G). Then the `-decomposition of
G is of size r(G) and satisfies the HUB-rule, implying hub(G) ≤ r(G). To prove
the second inequality, we will need to show:

Lemma 5. Let w be a decomposition of size k satisfying the HUB-rule of a
bipartite graph G. Then there is an overlap labeling of G of length 2k − 1.

The second inequality of Theorem 4 follows directly by choosing a minimum
decomposition satisfying the HUB-rule, in which case k = hub(G). Thus, it only
remains to prove Lemma 5.

We now define the labeling t that is used to prove Lemma 5. Our construc-
tion of the labeling applies the following operation due to Braga and Meida-
nis [BM02]. Given two vertices u ∈ Vs and v ∈ Vp, a labeling t, and a filler
character a not used by t, the BM operation transforms t by relabeling both u
and v with t(v) · a · t(u).

We start by labeling G1 as follows: each biclique B in G1 gets assigned a
unique character aB , and each node v in a biclique B gets label t(v) = aB . Next,
for i ∈ [k − 1], we iteratively construct a labeling of G1 ∪ · · · ∪ Gi+1 from a
labeling t of G1 ∪ · · · ∪Gi. We show by induction that the constructed labeling
has an additional property that all twins in G1∪ · · ·∪Gi+1 have the same labels
and that the length of the labeling is 2i+1 − 1. Observe that the labeling of G1

satisfies this property.
We choose a unique (not previously used) character aB for each biclique B

of Gi+1. If B consists of a single vertex v, then we assign to v the label aB · t(v)
if v ∈ Vs, and t(v) · aB if v ∈ Vp. Otherwise, since w satisfied the HUB-rule, all
vertices in B ∩ Vs are twins in G1 ∪ · · · ∪ Gi and, by the induction hypothesis,
are assigned the same labels in t. Analogously, t will assign the same labels to
all nodes in B ∩ Vp. Consider an arbitrary edge (u, v) in B. We apply the BM
operation with character aB to (u, v) and assign the resulting label t(v) ·aB · t(u)
to all nodes in B. This completes the construction of labeling of G1 ∪ · · · ∪Gi+1.
Observe that it assigns the same labels to all twins in G1 ∪ · · · ∪Gi+1, and that
the length is 2i+1 − 1. To complete the proof of Theorem 4, we show in the full
version that the final labeling is an overlap labeling of G.

Note that if w is a decomposition into matchings, then our labeling algorithm
behaves identically to the Braga-Meidanis (BM) algorithm [BM02]. However, in
the case that w is of size o(∆(G)), our labeling algorithm gives a better bound
than BM. For example, for the n× n biclique, our algorithm gives a labeling of
length 1, while BM gives a labeling of length 2n − 1.

4 Lower and upper bounds on readability

In this section, we prove several lower and upper bounds on readability, making
use of the characterizations of the previous section.

4.1 Almost all graphs have readability Ω(n/ logn)

In this subsection, we show that, in both the bipartite and directed graph models,
there exist graphs with readability at least Ω(n/ log n), and that in fact almost
all graphs have at least this readability.

Theorem 5. Almost all graphs in Bn×n (and, respectively, Dn) have readability
Ω(n/ log n). When restricted to a constant sized alphabet, almost all graphs in
Bn×n (and, respectively, Dn) have readability Ω(n).

Proof (constant sized alphabet case). We prove the lemma by a counting argu-
ment. Since there are n2 pairs of nodes in [n]2 that can form edges in a graph in

Bn×n, the size of Bn×n is 2n
2

. Let a be the size of the alphabet. The number of
labelings of 2n nodes with strings of length s is at most a2ns. In particular, label-
ings of length s = n/(3 log a) can generate no more than a2n

2/(3 log a) = 22n
2/3

bipartite graphs, which is in o(2n
2

). Consequently, almost all graphs in Bn×n
have readability Ω(s) = Ω(n/ log a) = Ω(n). The proof for Dn is analogous and
is omitted. The proof for variable sized alphabets is given in the full version.

4.2 Distinctness and a graph family with readability Ω(n)

In this subsection, we will give a technique for proving lower bounds and use it
to show a family of graphs with readability Ω(n). For any two vertices u and v,
the distinctness of u and v is defined as DT (u, v) = max{|N(u) \N(v)|, |N(v) \
N(u)|}. The distinctness of a bipartite graph G, denoted by DT (G), is defined as
the minimum distinctness of any pair of vertices that belong to the same part of
the bipartition. The following lemma relates the distinctness and the readability
of graphs that are not matchings (for a matching, the readability is 1, provided
that it has at least one edge, and 0 otherwise).

Lemma 6. For each bipartite graph G that is not a matching, r(G) ≥ DT (G) + 1.

Proof. By Theorem 4, it suffices to show that DT (G) ≤ hub(G) − 1. Let h =
hub(G), let w : E(G) → [h] be a minimum decomposition of G satisfying the
HUB-rule, and consider the graphs Gi = Gwi , for i ∈ [h]. We need to show that
DT (G) ≤ h − 1. Suppose first that each Gi is a matching. Then, since w is a
decomposition of G, we have ∆(G) ≤ h. Moreover, since G is not a matching,
it has a pair of distinct vertices, say u and v, with a common neighbor, which
implies DT (G) ≤ DT (u, v) ≤ ∆(G)− 1 ≤ h− 1.

Suppose now that there exists an index j ∈ [h] such that Gj is not a matching,
and let j be the maximum such index. Then, there exist two distinct vertices in
G, say u and v, that have a common neighbor in Gj , and therefore belong to
the same biclique of Gj . It follows that u and v are non-isolated twins in Gj .
Since w is satisfies the HUB-rule, this implies that u and v are twins in each Gi
with i ∈ [j− 1]. Consequently, for each vertex x in G adjacent to u but not to v,
the unique Gi with (u, x) ∈ E(Gi) satisfies i > j. By the choice of j, each such
Gi is a matching, and hence there can be at most h − j such vertices x. Thus
|N(u) \ N(v)| ≤ h − j and similarly |N(v) \ N(u)| ≤ h − j, which implies the
desired inequality DT (G) ≤ DT (u, v) ≤ h− j ≤ h− 1.

While the distinctness is a much simpler graph parameter than the HUB
number, simplicity comes with a price. Namely, the distinctness does not share
the nice feature of the HUB number, that of being bounded on exactly the same
sets of graphs as the readability. In Section 4.3, we show the existence of graphs
(specifically, trees) of distinctness 1 and of arbitrary large readability.

We now introduce a family of graphs, inspired by the Hadamard error cor-
recting code, and apply Lemma 6 to show that their readability is at least linear

4

3
1

21

3

(a)

001 001

010 010

011 011

100 100

101 101

110 110

111 111

(b)

Fig. 1: (a) Illustration that Theorem 3 cannot be extended to graphs with a C4.
Example of a graph and decomposition that satisfies the strict P4-rule, yet no
overlap labeling ` exists that achieves it. (b) The graph H3. The strings on the
vertices correspond to the k-bit codeword vectors.

in the number of nodes. We define Hk as the bipartite graph with vertex sets
Vs = {vs | v ∈ {0, 1}k \ {0k}} and Vp = {vp | v ∈ {0, 1}k \ {0k}} and edge set

E(Hk) =
{

(vs, vp) ∈ Vs × Vp |
k∑
i=1

vs[i]vp[i] ≡ 1 (mod 2)
}
.

In other words, each vertex has a non-zero k-bit codeword vector associated
with it and two vertices are adjacent if the inner product of their codewords is
odd. Let n = 2k. Graph Hk has 2(n − 1) vertices, all of degree n/2, and thus
(n− 1)n/2 edges. Figure 1b illustrates H3.

In the full version, we show that every pair of vertices in the same part of
the bipartition of Hk has exactly n/4 common neighbors. This implies that the
distinctness of Hk is n/4. Combining this with Lemma 6, we obtain the following
theorem.

Theorem 6. r(Hk) ≥ n/4+1.

This lower bound also translates to directed graphs: applying Theorem 1,
there exists digraphs of readability Ω(n). A major open question is: Do there
exist graphs that have exponential readability? We conjecture that they do, and
that the graph family Hk has exponential readability. However, since distinctness
is O(n), we note that Lemma 6 is insufficient for proving stronger than Ω(n)
lower bounds on the readability.

4.3 Trees

The purely graph theoretic characterization of readability given by Theorem 2
allows us to derive a sharp upper bound on the readability of trees. Recall that

the eccentricity of a vertex u in a connected graph G is defined as eccG(u) =
maxv∈V (G) distG(u, v), where distG(u, v) is the number of edges in a shortest
path from u to v. The radius of a graph G is defined as the minimum eccentricity
of a vertex in G, that is radius(G) = minu∈V (G) maxv∈V (G) distG(u, v).

Theorem 7. For every tree T , r(T) ≤ radius(T), and this bound is sharp. More
precisely, for every k ≥ 0, there exists a tree T such that r(T) = radius(T) = k.

Proof. Let T be a tree. If T = K1 (the one-vertex tree), then radius(T) =
r(T) = 0 (note that assigning the empty string to the unique vertex of v results
in an overlap labeling of T). Now, let T be of radius r ≥ 1 and let v ∈ V (T)
be a vertex of T of minimum eccentricity (that is, eccT (v) = r). Consider the
distance levels of T from v, that is, Vi = {w ∈ V (T) | distT (v, w) = i} for
i ∈ {0, 1, . . . , r}. Also, for all i ∈ [r], let Ei be the set of edges in T connecting
a vertex in Vi−1 with a vertex in Vi. Then {E1, . . . , Er} is a partition of E(T)
and the decomposition w : E(T) → [r] given by w(e) = i if and only if e ∈ Ei
is well defined. We claim that w satisfies the P4-rule. Let P = (v1, v2, v3, v4) be
an induced P4 in T , and let i = w(v1, v2), j = w(v2, v3), k = w(v3, v4). Suppose
that j = max{i, j, k}. We may assume without loss of generality that v2 ∈ Vj−1
and v3 ∈ Vj . Since T is a tree, v2 is the only neighbor of v3 in Vj−1, which
implies that v4 ∈ Vj+1 and consequently k = j + 1, contrary to the assumption
j = max{i, j, k}. Thus, the P4-rule is trivially satisfied for w. By Theorem 2, we
have r(T) ≤ maxe∈E(T) w(e) = r = radius(T).

To show that for every k ≥ 0 there exists a tree T with r(T) = radius(T) = k,
we proceed by induction. We will construct a sequence {(Ti, vi)}i≥0 where Ti is
a tree, vi is a vertex in Ti with eccTi

(vi) ≤ i, the degree of vi in Ti is i, and
r(Ti) = radius(Ti) = i. For i = 0, take (T0, v0) = (K1, v0) where v0 is the
unique vertex of K1. This clearly has the desired properties. For i ≥ 1, take i
disjoint copies of (Ti−1, vi−1), say (T ji−1, v

j
i−1) for j ∈ [i], add a new vertex vi,

and join vi by an edge to each vji−1 for j ∈ [i]. Let Ti be the so constructed
tree. Clearly, the degree of vi in Ti is i, and eccTi

(vi) ≤ 1 + eccTi
(vi−1) ≤

1 + (i − 1) = i, which implies that radius(Ti) ≤ i. On the other hand, we will
show that r(Ti) ≥ i, which together with inequality r(Ti) ≤ radius(Ti) will
imply the desired conclusion radius(Ti) = r(Ti) = i. Suppose for a contradiction
that r(Ti) < i. Then, by Lemma 1, there exists a decomposition w of Ti of
size i − 1 satisfying the P4-rule. In particular, this implies i ≥ 2. Since the
degree of vi in Ti is i, there exist two edges incident with vi, say (vi, v

j
i−1) and

(vi, v
k
i−1) for some j 6= k such that w(vi, v

j
i−1) = w(vi, v

k
i−1). Let w1 denote

this common value. Let x be a neighbor of vji−1 in T ji−1. (Note that x exists

since vji−1 is of degree i − 1 ≥ 1 in T ji−1.) Then, (x, vji−1, vi, v
k
i−1) is an induced

P4 in Ti. We claim that w(x, vji−1) > w1. Indeed, if w(x, vji−1) ≤ w1 then we

have max{w(x, vji−1), w(vji−1, vi), w(vi, v
k
i−1)} = max{w(x, vji−1), w1, w1} = w1,

while w1 � w1 + w(x, vji−1), contrary to the P4-rule. Since x was an arbitrary

neighbor of vji−1 in T ji−1, we infer that every edge e in T ji−1 incident with vji−1
satisfies w(e) > w1. In particular, this leaves a set of at most i − 2 different

values that can appear on these i−1 edges (the value w1 is excluded), and hence
again there must be two edges of the same weight, say w2. Clearly, w2 > w1

and i > 2. Proceeding inductively, we construct a sequence of edges e1, e2, . . . , ei
forming a path in Ti from vi to a leaf and satisfying w1 < w2 < . . . < wi, where
wi = w(ei). This implies that all the weights w1, . . . , wi are distinct, contrary
to the fact that the range of w is contained in the set [i− 1]. This contradiction
shows that r(Ti) ≥ i and completes the proof.

Note that for every k ≥ 2, the tree Tk of radius k constructed in the proof
of Theorem 2 has a pair of leaves in the same part of the bipartition and is
therefore of distinctness 1. This shows that the readability of a graph cannot be
upper-bounded by any function of its distinctness (cf. Lemma 6).

5 Conclusion

In this paper, we define a graph parameter called readability, and initiate a
study of its asymptotic behavior. We give purely graph theoretic parameters
(i.e., without reference to strings) that are exactly (respectively, asymptotically)
equivalent to readability of trees (respectively, C4-free graphs. However, for gen-
eral graphs, the HUB number is equivalent to readability only in the sense that it
is bounded on the same set of graphs. While an `-decomposition always satisfies
the HUB-rule, the converse is not true. For example, a decomposition of P4 with
weights 4, 5, 3 satisfies the HUB-rule but cannot be achieved by an overlap label-
ing (by Lemma 1). For this reason, the upper bound given by Lemma 5 leaves a
gap with the lower bound of Lemma 4. We are able to describe other properties
that an `-decomposition must satisfy (not included in the paper), however, we
are not able to exploit them to close the gap. It is a very interesting direction to
find other necessary rules that would lead to a graph theoretic parameter that
would more tightly match readability on general graphs than the HUB number.

Consider r(n) = max{r(D) | D is a digraph on n vertices}. We have shown
r(n) = Ω(n) and know from [BM02] that r(n) = O(2n). Can this gap be closed?
Do there exist graphs with readability Θ(2n) (as we conjecture), or, for example,
is readability always bounded by a polynomial in n? Questions regarding com-
plexity are also unexplored, e.g., given a digraph, is it NP-hard to compute its
readability? For applications to bioinformatics, the length of reads can be said
to be poly-logarithmic in the number of vertices. It would thus be interesting to
further study the structure of graphs that have poly-logarithmic readability.

Acknowledgements. P.M. and M.M. would like to thank Marcin Kamiński for
preliminary discussions. P.M. was supported in part by NSF awards DBI-1356529
and CAREER award IIS-1453527. M.M. was supported in part by the Slovenian
Research Agency (I0-0035, research program P1-0285 and research projects N1-
0032, J1-5433, J1-6720, and J1-6743). S.R. was supported in part by NSF CA-
REER award CCF-0845701, NSF award AF-1422975 and the Hariri Institute for
Computing and Computational Science and Engineering at Boston University.

References

[BBT13] Guy Bresler, Ma’ayan Bresler, and David Tse. Optimal assembly for high
throughput shotgun sequencing. BMC Bioinformatics, 14(Suppl 5):S18,
2013.

[BFK+02] Jacek B lażewicz, Piotr Formanowicz, Marta Kasprzak, Petra Schuurman,
and Gerhard J. Woeginger. DNA sequencing, Eulerian graphs, and the ex-
act perfect matching problem. In Graph-Theoretic Concepts in Computer
Science, pages 13–24. Springer, 2002.

[BFKK02] Jacek B lażewicz, Piotr Formanowicz, Marta Kasprzak, and Daniel Kobler.
On the recognition of de Bruijn graphs and their induced subgraphs. Dis-
crete Mathematics, 245(1):81–92, 2002.

[BHKdW99] Jacek Blazewicz, Alain Hertz, Daniel Kobler, and Dominique de Werra.
On some properties of DNA graphs. Discrete Applied Mathematics,
98(1):1–19, 1999.

[BM02] Maŕılia D. V. Braga and Joao Meidanis. An algorithm that builds a set
of strings given its overlap graph. In LATIN 2002: Theoretical Informat-
ics, 5th Latin American Symposium, Cancun, Mexico, April 3-6, 2002,
Proceedings, pages 52–63, 2002.

[BM08] John A. Bondy and Uppaluri S. R. Murty. Graph Theory, volume 244 of
Graduate Texts in Mathematics. Springer, New York, 2008.

[GP14] Theodoros P. Gevezes and Leonidas S. Pitsoulis. Recognition of overlap
graphs. Journal of Combinatorial Optimization, 28(1):25–37, 2014.

[IW95] Ramana M. Idury and Michael S. Waterman. A new algorithm for DNA
sequence assembly. Journal of Computational Biology, 2(2):291–306, 1995.

[LZ07] Xianyue Li and Heping Zhang. Characterizations for some types of DNA
graphs. Journal of Mathematical Chemistry, 42(1):65–79, 2007.

[LZ10] Xianyue Li and Heping Zhang. Embedding on alphabet overlap digraphs.
Journal of Mathematical Chemistry, 47(1):62–71, 2010.

[MGMB07] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael
Brudno. Computability of models for sequence assembly. In Algorithms
in Bioinformatics, pages 289–301. Springer, 2007.

[MKS10] Jason R Miller, Sergey Koren, and Granger Sutton. Assembly algorithms
for next-generation sequencing data. Genomics, 95(6):315–327, 2010.

[Mye05] Eugene W. Myers. The fragment assembly string graph. In ECCB/JBI,
page 85, 2005.

[NP09] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence
assembly: theory and applications to next generation sequencing. Journal
of computational biology, 16(7):897–908, 2009.

[NP13] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Na-
ture Reviews Genetics, 14(3):157–167, 2013.

[PSW03] Rudi Pendavingh, Petra Schuurman, and Gerhard J. Woeginger. Recog-
nizing DNA graphs is difficult. Discrete Applied Mathematics, 127(1):85–
94, 2003.

[Swe00] Z Sweedyk. A 2 1
2
-approximation algorithm for Shortest Superstring.

SIAM Journal on Computing, 29(3):954–986, 2000.
[TU88] Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for

constructing shortest common superstrings. Theoretical Computer Sci-
ence, 57(1):131–145, 1988.

