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Problem Definition

Many datasets can be represented by graphs, where nodes correspond to individuals
and edges capture relationships between them. On one hand, such datasets contain
potentially sensitive information about individuals; on the other hand, there are sig-
nificant public benefits from allowing access to aggregate information about the data.
Thus, analysts working with such graphs are faced with two conflicting goals: pro-
tecting privacy of individuals and publishing accurate aggregate statistics. This article
describes algorithms for releasing accurate graph statistics, while preserving a rigorous
notion of privacy, called differential privacy.

Differential privacy was introduced by Dwork et al. [6]. It puts a restriction
on the algorithm that processes sensitive data and publishes the output. Intuitively,
differential privacy requires that, for every individual, the output distribution of the
algorithm is roughly the same whether or not this individual’s data is present in the
dataset. Next, we give a formal definition of differential privacy, specialized to datasets
represented by graphs.
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Two graphs are called neighbors if one can be obtained from the other by re-
moving a node and its adjacent edges. Given a parameter ¢ > 0, an algorithm A is
e-node differentially private if for all neighbor graphs G and G’ and for all sets S of
possible outputs produced by A:

Pr[A(G) C S] < ¢ - Pr[A(G) C §].

This variant of differential privacy is called node-differential privacy because
neighbor graphs are defined with respect to node removals. Analogously, we can define
edge differential privacy by letting graphs be neighbors if they differ in exactly one
edge. Intuitively, edge differential privacy protects edges (which represent connections
between people), whereas node-differential privacy protects nodes together with their
adjacent edges (that is, all information pertaining to individuals). Node-differential
privacy is a stronger privacy definition, but it is much harder to attain because it
requires the output distribution of the algorithm to hide much larger differences in the
input graph.

We would like to design differentially private algorithms (preferably, node-
differentially private) that compute accurate graph statistics on a large family of real-
istic graphs. Typically, graphs that contain sensitive information, such as friendships,
sexual relationships, and communication patterns, are sparse. Some examples of graph
statistics we would like to compute on these graphs are the number of edges, small
subgraph counts, and the degree distribution.

Most work on the topic considers an analyst who wants to evaluate a real-
valued function f on the private input graph G (for example, the number of triangles
or the number of connected components in G). The goal is to release as good an
approximation as possible to the true value f(G). Differentially private algorithms
must be randomized, so we try to minimize the expectation of the random variable
errora(G) = |A(G) — f(G)]. We will also discuss work on algorithms that release
higher-dimensional summaries (that is, output a real vector).

Bibliographical notes FEdge privacy was first studied by Nissim et al. [16], and
the distinction between node and edge privacy was laid out by Hay et al. [9]. Edge
differentially private algorithms for a variety of tasks have been widely investigated.
Examples include subgraph counts, degree distributions, and parameters of generative
statistical models. Gehrke et al. [7] investigated a notion whose strength lies between
edge and node privacy: node privacy for bounded-degree graphs. (The focus of their
work is a generalization of differential privacy, called zero-knowledge privacy.)

Until recently, no node-differentially private algorithms (where privacy guaran-
tees hold with respect to all graphs) were known that compute accurate graph statistics
on realistic (namely, sparse) graphs. The first such algorithms were designed indepen-
dently by Blocki et al. [3], Kasiviswanathan et al. [11] and Chen and Zhou [5]. Those
algorithms look at releasing one real-valued statistic at a time. Two more recent works
focus on higher-dimensional node-private releases: Raskhodnikova and Smith [17] and
Borgs et al. [4].

This encyclopedia entry focuses on node-differentially private algorithms, since
these offer the strongest privacy guarantees. Progress, however, continues on edge-
private algorithms; see Lin and Kifer [13], Karwa and Slavkovic [10], Lu and Miklau
[14] and Zhang et al. [18] for recent results.



Key Results

The main difficulty in the design of node-private algorithms is that techniques based on
local sensitivity of a function (which are the basis of the best edge-private algorithms)
yield node-private algorithms whose error on “typical” inputs swamps the statistic
that one wants to release. The local sensitivity of a function f is a discrete analogue of
the derivative of f—it measures how much the value of f can change when the input
graph is replaced with its neighbor. On sparse graphs, the local sensitivity can be larger
than the value of the function. Any method whose error is proportional to the local
sensitivity will have large relative error.

Focus on a “preferred subset” To get around the challenge of high local sensi-
tivity, two works [3; 11] independently designed algorithms that are given a set S of
“nice” graphs that hopefully contains G (for example, graphs with an upper bound
on the maximum degree). These algorithms are private on all graphs and return an
accurate answer on graphs in S. What makes this approach work is that S is selected
so that the sensitivity of f is small when restricted to inputs in S.

Let G denote the set of all labeled, undirected graphs. We will call S C G the
“preferred” subset. Define the Lipschitz constant (also called the restricted sensitivity)

of f on S to be /
AS) = sup MO 1@l
G,G'eS dnode<G7 Gl)
where d,,q4. is the node distance between two graphs—the number of vertex insertions
and deletions needed to go from G to G'. Blocki et al. [3] and Kasiviswanathan et al.
[11] give methods for adding noise proportional to the Lipschitz constant of f on S.

Theorem 1 ([3; 11]). For every S C G, function f:S — R, and € > 0, there exists
an algorithm Ag that is e-differentially private (for all inputs) and such that, for all
G e S,

E|As(G) — f(G)| = O(As(f)/€?).
Moreover, for S = Gy (the set of D-bounded graphs), the running time of A is the
running time for one evaluation of f plus a fixed polynomial in the size of G.

The same works [3; 11] also give generic reductions showing that given any
algorithm that is e-differentially private when restricted to graphs in S, one can design
an algorithm A that has similar behavior on graphs in S but is ¢’-differentially private
for all inputs, for ¢ not too much larger than e.

“Down” Sensitivity Rather than focusing on a single “nice” subset, some works
[5; 17] sought to add noise proportional to a quantity related to, but usually much
smaller than, the local sensitivity.

Define the down sensitivity (called empirical global sensitivity when first defined
by Chen and Zhou [5]) of f at a graph G to be the Lipschitz constant of f when restricted
to the set of induced subgraphs of G. Specifically, we write G < H to denote that G
is an induced subgraph of H (that is, G can be obtained by deleting a set of vertices
from H) and define the down sensitivity to be

DS;(G) IF(G) = F(G)].

= max
H,H'neighbors, HXH' <G

By carefully (and privately) selecting the “preferred” subset based on the input,
one can add noise essentially proportional to the down sensitivity.
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Theorem 2 ([17]). For every monotone function f : G — R and € > 0, there is an
algorithm Ay that is e-differentially private and such that, for all G € G,

_DS;(G)+1

E1A;(G) = F(G)] ; O(log log max DSy (G)).

Moreover, Ay can be made efficient when f is a generalized linear query (a class that
includes counting occurrences of a fixed subgraph).

The down sensitivity is low for many commonly studied statistics in graphs
that satisfy a-decay, a condition on the degree distribution that is satisfied by known
generative models (including those that generate “scale-free”). (See [11] for a definition
of a-decay.)

Lipschitz Extensions and Higher-dimensional Releases The main technical
tool in the down-sensitivity-based results [5; 17] is the construction of efficient (that
is, polynomial-time computable) Lipschitz extensions of the function f from subsets
S of graphs to the space of all graphs. Kasiviswanathan et al. [11] and Chen and
Zhou [5] give efficient Lipschitz extensions of several useful functions (including graph
counts) that return a single real value. Raskhodnikova and Smith [17] give efficient
Lipschitz extensions of higher-dimensional functions, namely, the degree distribution
and adjacency matrix of a graph.

Borgs et al. [4] use the Lipschitz extension technique together with the expo-
nential mechanism to provide the first node-differentially private algorithms for fitting
high-dimensional statistical models to a given graph (specifically, they consider stochas-
tic block models and generalizations thereof).

Applications

The algorithms discussed above address a real problem: datasets containing sensitive
information about relationships among a collection of individuals are often valuable
sources of information, but publishing useful summaries about such data without leak-
ing individual information is difficult. Even when the graphs are “anonymized” by
removing all obviously identifying information, such as names, addresses, birthdays,
and zip codes, they present a privacy risk. For example, [1; 15] give de-anonymization
attacks based only on unlabeled links. Node-differentially private algorithms offer a
principled method for releasing information about a network while providing rigorous
privacy guarantees (though some authors argue that even stronger notions may be
needed [12; 7]).

Open Problems

Gupta et al. [8]; Blocki et al. [2] give edge differentially private algorithms for releasing a
data structure that approximates the sizes of all cuts in the input graph in the following
sense: for any cut, with high probability, the estimated cut size is accurate (the first
reference gives weaker approximation guarantees with a stronger quantifier order: with
high probability, all cut sizes are accurate). It is open whether a node-differentially
private algorithm can obtain similar results.

For datasets that do not contain information about relationships, but only con-
tain personal attributes that come from a relatively small set, differentially private
algorithms can output a large number of statistics at once (see “Query Release via
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Online Learning” and “Geometric Approaches to Answering Queries” cross-referenced
below). It is open how to do achieve similar results for graph statistics, even with edge
differential privacy.

Finally, all algorithms we discussed release numerical graph statistics. The sub-
ject of differentially private synthetic graphs is largely unexplored. See [10; 13] for
initial results.
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