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Abstract

We present an O(
√

n log n)-approximation algorithm for the problem of finding
the sparsest spanner of a given directed graph G on n vertices. A spanner of a
graph is a sparse subgraph that approximately preserves distances in the original
graph. More precisely, given a graph G = (V, E) with nonnegative edge lengths
d : E → R≥0 and a stretch k ≥ 1, a subgraph H = (V, EH) is a k-spanner of G if
for every edge (s, t) ∈ E, the graph H contains a path from s to t of length at most
k · d(s, t). The previous best approximation ratio was Õ(n2/3), due to Dinitz and
Krauthgamer (STOC ’11).

We also improve the approximation ratio for the important special case of di-
rected 3-spanners with unit edge lengths from Õ(

√
n) to O(n1/3 log n). The best

previously known algorithms for this problem are due to Berman, Raskhodnikova
and Ruan (FSTTCS ’10) and Dinitz and Krauthgamer. The approximation ratio
of our algorithm almost matches Dinitz and Krauthgamer’s lower bound for the
integrality gap of a natural linear programming relaxation. Our algorithm directly
implies an O(n1/3 log n)-approximation for the 3-spanner problem on undirected
graphs with unit lengths. An easy O(

√
n)-approximation algorithm for this prob-

lem has been the best known for decades.
Finally, we consider the Directed Steiner Forest problem: given a directed

graph with edge costs and a collection of ordered vertex pairs, find a minimum-
cost subgraph that contains a path between every prescribed pair. We obtain an
approximation ratio of O(n2/3+ε) for any constant ε > 0, which improves the O(nε ·
min(n4/5,m2/3)) ratio due to Feldman, Kortsarz and Nutov (SODA ’09).
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1. Introduction

A spanner of a graph is a sparse subgraph that approximately preserves dis-
tances in the original graph. This notion was first used by Awerbuch [Awe85] and
explicitly introduced by Peleg and Schäffer [PS89].

Definition 1.1 (k-spanner, [Awe85, PS89]). Given a graph G = (V, E) with non-
negative edge lengths d : E → R≥0 and a real number k ≥ 1, a subgraph
H = (V, EH) is a k-spanner of G if for all edges (s, t) ∈ E, the graph H contains a
path from s to t of length at most k · d(s, t). The parameter k is called the stretch.

Spanners have numerous applications, such as efficient routing [Cow01, CW04,
PU89b, RTZ08, TZ01], simulating synchronized protocols in unsynchronized net-
works [PU89a], parallel, distributed and streaming algorithms for approximat-
ing shortest paths [Coh98, Coh00, Elk01, FKM+08], algorithms for distance ora-
cles [BS06, TZ05], property testing, property reconstruction and key management
in access control hierarchies (see [BGJ+09, BGJ+12, JR11], the survey in [Ras10]
and references therein).

We study the computational problem of finding the sparsest k-spanner of a
given directed graph G, that is, a k-spanner of G with the smallest number of
edges. We refer to this problem as Directed k-Spanner and distinguish between
the case of unit edge lengths (i.e., d(e) = 1 for all e ∈ E) and arbitrary edge
lengths. The Undirected k-Spanner problem refers to the task of finding the spars-
est k-spanner of a given undirected graph. The natural reduction from Undirected
k-Spanner to Directed k-Spanner preserves the approximation ratio.

Our main results are an algorithm with approximation ratio O(
√

n log n) for
Directed k-Spanner with arbitrary edge lengths and an algorithm with approxi-
mation ratio O(n1/3 log n) for Directed 3-Spanner with unit edge lengths, where
n is the number of nodes in the input graph G. Our approximation guarantee for
Directed 3-Spanner almost matches the integrality gap of Ω(n1/3−ε) by Dinitz and
Krauthgamer [DK11] for a natural linear programming relaxation of the problem.
Our result also directly implies the same approximation ratio for the Undirected
3-Spanner problem with unit edge lengths.

Our techniques also apply to the Directed Steiner Forest problem. Our result
for this problem is discussed in Section 1.3.

1.1. Relation to Previous Work
Directed k-Spanner with unit edge lengths has been extensively studied. Note

that in this case, we can assume that k is a positive integer. For k = 2, the prob-
lem has been completely resolved: Kortsarz and Peleg [KP94] and Elkin and Pe-
leg [EP01] gave an O(log n)-approximation, and Kortsarz [Kor01] proved that this
approximation ratio cannot be improved unless P=NP. Elkin and Peleg [EP05]
gave an Õ(|E|1/3)-approximation for Directed 3-Spanner, which is an Õ(n2/3)-
approximation for dense graphs with Θ(n2) edges. For general k ≥ 3, Bhat-
tacharyya et al. [BGJ+09] presented an Õ(n1−1/k)-approximation; then Berman,
Raskhodnikova and Ruan [BRR10] improved it to Õ(n1−1/dk/2e), and recently Dinitz
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and Krauthgamer [DK11] gave Õ(n2/3)-approximation, presenting the first al-
gorithm with approximation ratio independent of k. For the special cases of
k = 3 and k = 4, Berman, Raskhodnikova and Ruan’s algorithm gives an Õ(

√
n)-

approximation. Dinitz and Krauthgamer also gave an Õ(
√

n)-approximation for
the case k = 3, using different techniques than in [BRR10]. Thus, our algorithms
improve on [BRR10] for all k ≥ 3, where k , 4, and on [DK11] for all k ≥ 3.

Dinitz and Krauthgamer’s algorithms also work for Directed k-Spanner with
arbitrary edge lengths. For this case, one can no longer assume that k is an integer.
Dinitz and Krauthgamer achieved an Õ(n2/3)-approximation for all k > 1 and
Õ(
√

n) for k = 3 for arbitrary edge lengths. We improve this approximation ratio
to Õ(

√
n) for all k > 1.

In contrast to the directed case, a simple approximation algorithm for Undi-
rected k-Spanner was known for decades. For all integer k ≥ 3 and for all
undirected graphs G with arbitrary edge lengths, a k-spanner can be constructed
in polynomial time by a greedy algorithm proposed by Althofer, Das, Dobkin,
Joseph and Soares [ADD+93]. It follows from the Moore bound for irregular
graphs by Alon, Hoory and Linial [AHL02] that the graph constructed by this
greedy algorithm has O(n1+ 1

dk/2e ) edges. Since a k-spanner of a connected graph
must have at least n− 1 edges, an approximation ratio O(n

1
dk/2e ) follows. Our result

improves the ratio for Undirected 3-Spanner from O(
√

n) to Õ(n1/3) in the case of
unit-length edges.

Elkin and Peleg [EP00, EP07], improving on [Kor01], showed that it is quasi-
NP-hard to approximate Directed k-Spanner, even when restricted to unit edge
lengths, with ratio better than 2log1−ε n for k ∈ (3, n1−δ) and all δ, ε ∈ (0, 1). For
Undirected k-Spanner with unit-length edges, such a strong hardness result does
not hold since the problem is O(1)-approximable when k = Ω(log n).

1.2. Our Techniques
Our algorithms operate by combining two graphs: the first obtained from ran-

domized rounding of a fractional solution to a linear programming relaxation of
the problem and the second obtained by growing shortest-path trees from ran-
domly selected vertices. The idea of combining a linear programming approach
with sampling of shortest-path trees to solve Directed k-Spanner first appeared in
[BGJ+09]. Dinitz and Krauthgamer [DK11] used the same approach in their main
algorithm (for arbitrary stretch k), but with a novel, flow-based linear program
(LP). In this paper, we propose alternative randomized LP rounding schemes that
lead to better approximation ratios. Sampling and randomized rounding has been
previously used by Kortsarz and Peleg [KP98] to construct undirected low-degree
2-spanners. In that work, the sampling step selects uniformly random edges, and
the LP is different from ours.

We also give new LP relaxations of Directed k-Spanner, slightly simpler than
that in [DK11], although they describe the same polytope. Our LP relaxation
for the general case is stated in terms of antispanners, a graph object “dual” to
spanners. An antispanner for an edge (s, t) is a set of edges whose removal from
the graph destroys all paths of stretch at most k from s to t. Like in [DK11], our LP
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has a polynomial number of variables and an exponential number of constraints.
We use the ellipsoid algorithm with a randomized separation oracle to solve it. In
the case of unit edge lengths, we present a different LP that has an extra advantage:
it has a polynomial number of constraints and thus can be solved quickly without
using the ellipsoid algorithm. We apply two different rounding schemes to the
fractional solution of this LP: one for general stretch, another for stretch k = 3.

We note, however, that our method would yield the same approximation ratios
with the LP of Dinitz and Krauthgamer [DK11] and, in the case of 3-spanners
for graphs with unit edge lengths, with their rounding method as well. Dinitz
and Krauthgamer gave a separate algorithm for Directed 3-Spanner that uses ran-
domized rounding, but does not combine it with sampling. By combining with
sampling, we obtain an algorithm with better approximation ratio for the case of
unit lengths. Our rounding method allows for simpler analysis.

1.3. Directed Steiner Forest
Finally, we apply our techniques to the Directed Steiner Forest (DSF) prob-

lem, a fundamental network design problem on directed graphs. In this problem,
the input is a directed graph G = (V, E) with edge costs and a collection D ⊆ V×V
of vertex pairs. The goal is to find a minimum-cost subgraph of G that contains
a path from s to t for every pair (s, t) ∈ D. DSF is an NP-hard problem and is
known [DK99] to be quasi-NP-hard to approximate with ratio better than 2log1−ε n

for all ε ∈ (0, 1). DSF is also known [FKN09] to be as hard as MAX-REP, a basic
problem used for hardness reductions, for which the current best approximation
ratio is O(n1/3) [CHK11].

Previous to this work, the best known approximation ratio for DSF, indepen-
dent of the size of D, was O(nε · min(n4/5,m2/3)) due to Feldman, Kortsarz and
Nutov [FKN09]. Their algorithm has the same structure as the algorithms for
Directed k-Spanner in [BGJ+09, DK11]: it combines two graphs obtained, re-
spectively, by sampling and solving an LP. In addition, the LP relaxation they for-
mulate is closely related to that developed by Dinitz and Krauthgamer, with edge
costs replaced by edge lengths. Our technique for the spanner problem also ap-
plies to the DSF problem, yielding an improved approximation ratio of O(n2/3+ε)
for any fixed ε > 0.

1.4. Organization
In Section 2, we explain the general outline of our algorithms, introduce an-

tispanners and show how to find an Õ(n1/2)-approximate solution to Directed
k-Spanner in polynomial time. In Section 3, we present a more efficient algo-
rithm for the special case when all the edges of the graph are of unit length.
In Section 4, we show the Õ(n1/3)-approximation for Directed 3-Spanner with
unit-length edges. Finally, Section 5 describes the O(n2/3+ε)-approximation for
Directed Steiner Forest. In Section 6 we give a conclusion and directions for
future work.
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2. An Õ(
√

n)-Approximation for Directed k-Spanner

Our first result is stated in the following theorem.

Theorem 2.1. There is a polynomial time randomized algorithm for Directed
k-Spanner with expected approximation ratio O(

√
n log n).

All algorithms in this paper have the same structure. They break the problem
into two parts and obtain separate solutions to each part: one by random sampling
and the other by randomized rounding of a solution to a linear program. We start
by explaining how we break Directed k-Spanner into two parts. In Section 2.1,
we describe how to obtain a solution to the first part using random sampling.
Section 2.2 describes our randomized rounding scheme for Directed k-Spanner.
In Section 2.3, we introduce antispanners, a graph object used to formulate and
analyze our linear programming relaxations. In Section 2.4, we formulate our
linear programming relaxation and separation oracle, and finish the description
and analysis of the algorithm, completing the proof of Theorem 2.1.

Let G = (V, E) be a directed graph with edge lengths d : E → R≥0, given
as an input to our algorithm, and OPT be the size of its sparsest k-spanner. We
assume that G is weakly connected. Otherwise, our algorithm should be executed
for each weakly connected component separately.

Definition 2.1 (Local graph Gs,t). For an edge (s, t) ∈ E, let Gs,t = (V s,t, E s,t) be
the subgraph of G induced by the vertices that belong to paths from s to t of length
at most k · d(s, t).

We classify edges according to the sizes of their local graphs.

Definition 2.2 (Thick and thin edges). Let β be a parameter in [1, n]. If |V s,t| ≥

n/β, the corresponding edge (s, t) is thick, and otherwise, it is thin. The set of all
thin edges is denoted by E. In Sections 2.1–3, we set β =

√
n and in Section 4,

β = n1/3.

Definition 2.3. A set E′ ⊆ E settles an edge (s, t) ∈ E if (V, E′) satisfies the k-
spanner property for this edge, i.e., it contains a path of length at most k · d(s, t)
from s to t.

Our algorithm must find a small subset of edges that settles all edges in E. To
accomplish this, it finds two subsets of edges, E′ and E′′, such that E′ settles all
thick edges and E′′ settles all thin edges. The output of the algorithm is (V, E′ ∪
E′′).

2.1. Sampling
The following procedure uses random sampling to construct an edge set E′

that settles all thick edges. Recall that an in-arborescence is a directed rooted
tree where all edges are oriented towards the root; an out-arborescence is defined
similarly.
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Algorithm 1 Sample(β)
1: E′ ← ∅, S ← ∅;
2: for i = 1 to β ln n do
3: v← a uniformly random element of V;
4: T in

v ← a shortest path in-arborescence rooted at v;
5: T out

v ← a shortest path out-arborescence rooted at v;
6: E′ ← E′ ∪ T in

v ∪ T out
v , S ← S ∪ {v}; //Set S is used only in the analysis.

7: end for
8: Add all unsettled thick edges to E′;
9: return E′.

Lemma 2.2. Algorithm 1, in polynomial time, computes a set E′ that settles all
thick edges and has expected size at most 3β ln n · OPT.

Proof. After the execution of the for-loop in Algorithm 1, |E′| ≤ 2(n − 1)β ln n ≤
2β ln n·OPT . The last inequality holds because OPT ≥ n−1 for weakly connected
graphs G.

If some vertex v from a set V s,t appears in the set S of vertices selected by
Sample, then T in

v and T out
v contain shortest paths from s to v and from v to t,

respectively. Thus, both paths are contained in E′. Since v ∈ V s,t, the sum of
lengths of these two paths is at most k · d(s, t). Therefore, if S ∩V s,t , ∅, then the
edge (s, t) is settled. For a thick edge (s, t), the set S∩V s,t is empty with probability
at most (1− 1/β)β ln n ≤ e− ln n = 1/n. Thus, the expected number of unsettled thick
edges added to E′ in Step 8 of Sample is at most |E|/n ≤ n − 1 ≤ OPT .

Step 8 ensures that the set E′, returned by the algorithm, settles all thick edges.
Computing shortest path in- and out-arborescences and determining whether an
edge is thick can be done in polynomial time.

2.2. Randomized Rounding
To obtain a set E′′ that settles all thin edges, each of our algorithms solves a

linear program and rounds the resulting fractional solution. The LP is a relaxation
of Directed k-Spannerfor the set of all thin edges. It has a variable xe and a con-
straint xe ≥ 0 for each edge e ∈ E. The variable xe in the corresponding optimal
{0,1}-solution indicates whether the edge e is present in the smallest spanner for
all thin edges. The following randomized rounding procedure is used in our algo-
rithms for Directed k-Spanner, both for arbitrary and for unit lengths. As an input
it gets a fractional vector {x̂e} with nonnegative entries.

Algorithm 2 RandomizedSelection(x̂e)
1: E′′ ← ∅;
2: for each edge e ∈ E do
3: Add e to E′′ with probability min(

√
n ln n · x̂e, 1);

4: end for
5: return E′′.
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The following proposition shows that if the sum of values assigned by {x̂e} to
edges in some A ⊆ E is at least 1 then E′′ intersects A with high probability.

Claim 2.3. Let A ⊆ E. If Algorithm 2 receives a fractional vector {x̂e} with
nonnegative entries satisfying

∑
e∈A x̂e ≥ 1, the probability that it outputs a set E′′

disjoint from A is at most exp(−
√

n ln n).

Proof. If A contains an edge e, such that x̂e ≥ (
√

n ln n)−1, then e ∈ E′′ with
probability 1. That is, E′′ is never disjoint from A.

Otherwise, for all edges e ∈ A, the probability that e ∈ E′′ is exactly
√

n ln n·x̂e.
The probability that no edges of A are in E′′ is, therefore,∏

e∈A

(1 −
√

n ln n · x̂e) ≤ exp

−∑
e∈A

√
n ln n · x̂e

 ≤ exp(−
√

n ln n).

The first inequality above follows from the fact that 1 − x ≤ exp(−x) for x ≥ 0.
The second one holds because

∑
e∈A x̂e ≥ 1.

2.3. Antispanners
In this section, we introduce antispanners, a graph object used in the descrip-

tion of our LP for Directed k-Spanner and crucial in the analysis of the parts of
our algorithms that settle thin edges. After giving the definition, we show how to
construct minimal antispanners (in Claim 2.4) and give an upper bound on their
number (in Claim 2.5.)

For a given edge (s, t), we define an antispanner to be a subset of edges of G,
such that if we remove this subset of edges from G, the length of the shortest path
from s to t becomes larger than k · d(s, t).

Definition 2.4 (Antispanner). A set A ⊆ E is an antispanner for an edge (s, t) ∈ E
if (V, E \ A) contains no path from s to t of length at most k · d(s, t). If no proper
subset of an antispanner A for (s, t) is an antispanner for (s, t) then A is minimal.
The set of all minimal antispanners for all thin edges is denoted byA.

The edge set of a k-spanner of G must intersect all antispanners for all edges of G.
In other words, it has to be a hitting set for all minimal antispanners. Specifically,
a set E′′ that settles all thin edges must be a hitting set for all minimal antispanners
in A. We now prove that if a set E′′ does not settle some thin edge, then we can
efficiently find a minimal antispanner A ∈ A disjoint from E′′.

Claim 2.4. There exists a polynomial time algorithm that, given a set of edges
E′′ ⊂ E that does not settle some thin edge, outputs a minimal antispanner A ∈ A
for some thin edge, such that A ⊆ E \ E′′.

Proof. The algorithm first finds a thin edge (s, t) with no directed path from s to
t of length at most k · d(s, t) in E′′. Recall that all paths from s to t of length at
most k · d(s, t) in G lie in the local graph Gs,t = (V s,t, E s,t). (See Definition 2.1.)
Therefore, E s,t \ E′′ is an antispanner for (s, t). The algorithm sets A = E s,t \ E′′

and then greedily deletes edges e from A while A \ {e} is an antispanner, that is,
while (V s,t, E s,t \A) contains no paths of length at most k ·d(s, t) from s to t. When
no more such edges can be deleted, the algorithm returns A.
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Minimize
∑
e∈E

xe subject to: (1)∑
e∈A

xe ≥ 1 ∀A ∈ A (2)

xe ≥ 0 ∀e ∈ E (3)

Figure 1: Linear program for the arbitrary-length case, LP-A. Fig-
ure 1: A is the set of all minimal antispanners for thin edges.

Next, we give an upper bound on the number of minimal antispanners for thin
edges.

Claim 2.5. |A| ≤ |E| · (n/β)n/β. In particular, if β =
√

n, then |A| ≤
√

n
√

n+4.

Proof. Fix a thin edge (s, t) and a minimal antispanner A for (s, t). Let TA be an
out-arborescence (shortest-path tree) rooted at s in the graph (V s,t, E s,t\A). Denote
by dTA(u) the distance from s to u in the tree TA. If TA contains no directed path
from s to u, let dTA(u) = ∞. We show that A = {(u, v) ∈ E s,t : dTA(u) + d(u, v) <
dTA(v)}, and thus TA uniquely determines A for a given thin edge (s, t).

Consider an edge (u, v) ∈ A, and let A− denote A\{(u, v)}. Since the antispanner
A is minimal, the graph (V, E \ A−) contains a path from s to t of length at most
k · d(s, t). This path must lie in (V s,t, E s,t \ A−) and must contain the edge (u, v).
Thus, the distance from s to t in the graph (V s,t, E s,t \ A−) is at most k · d(s, t)
and is strictly less than dTA(t). Hence, TA is not a shortest-path tree in the graph
(V s,t, E s,t \ A−). Therefore, dTA(u) + d(u, v) < dTA(v).

If (u, v) ∈ E s,t satisfies the condition dTA(u) + d(u, v) < dTA(v), then (u, v) <
E s,t \ A; otherwise, TA would not be a shortest-path tree. Hence, (u, v) ∈ A.

We now count the number of out-arborescences rooted at s in (V s,t, E s,t \ A).
For every vertex u ∈ V s,t, we may choose the parent vertex in at most |V s,t| possible
ways (if a vertex is a not reachable from s, we choose it as its own parent). Thus,
the total number of trees is at most |V s,t||V

s,t | ≤ (n/β)n/β.
Since there are at most |E| thin edges, the claim follows.

2.4. LP, Separation Oracle and Overall Algorithm
In this section, we describe a randomized algorithm for constructing a small

subset of edges E′′ ⊆ E that settles all thin edges. First, we formulate an LP
relaxation of this problem. Then we describe how to solve it using the ellipsoid
method with a separation oracle (Section 2.4.1). Finally, in Section 2.4.2, we
summarize the resulting algorithm for Directed k-Spanner and complete the proof
of Theorem 2.1.

A set E′′ that settles must intersect all minimal antispanners for all thin edges.
This condition can be expressed using linear program LP-A (see Fig. 1). LP-A has
a variable xe for each edge e ∈ E and a constraint (2) for each minimal antispanner
A for every thin edge. Recall thatA is the set of all minimal antispanners for thin
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edges. In the integral solution {xint
e } corresponding to a k-spanner with an edge set

E′′ ⊆ E, we set xint
e = 1 if e ∈ E′′ and xint

e = 0 otherwise. All constraints in (2) are
satisfied for {xint

e } since E′′ intersects every antispanner. The value of the objective
function

∑
e xint

e is equal to the size of E′′. Hence, LP-A is a relaxation of Directed
k-Spanner.

For ease of presentation, we assume that we have guessed OPT , the size of
the sparsest spanner. (We can try all values in {n − 1, . . . , n2} for OPT and output
the sparsest spanner found in all iterations). We replace the objective function (1)
with ∑

e∈E

xe ≤ OPT, (4)

and call the resulting linear program LP-A′.

2.4.1. Separation Oracle
LP-A′ has a polynomial number of variables and, by Claim 2.5, an exponential

in Õ(
√

n) number of constraints. We solve it using the ellipsoid algorithm with a
separation oracle. Our separation oracle receives a fractional vector {x̂e}, satisfy-
ing (3) and (4). If {x̂e} is a feasible solution to LP-A′, then the separation oracle
outputs a set E′′ of size at most 2OPT ·

√
n ln n, which settles thin edges. Oth-

erwise, it outputs either a set E′′ with the same guarantee or a violated constraint
from (2) for some antispanner A. The separation oracle can also fail with small
probability. If it happens during an execution of the ellipsoid algorithm, we output
the input graph with all its edges as a k-spanner.

Algorithm 3 SeparationOracle(x̂e)
1: //Sample a random set of edges E′′, picking each e ∈ E
//with probability min(x̂e

√
n ln n, 1) (see Algorithm 2).

E′′ ← RandomizedSelection(x̂e)
2: if E′′ settles all thin edges then
3: if |E′′| ≤ 2OPT ·

√
n ln n then return E′′;

4: else fail;
5: else
6: Find an antispanner A ⊆ E\E′′ fromA using the algorithm from Claim 2.4.

7: if
∑

e∈A xe < 1 then return violated constraint
∑

e∈A xe ≥ 1;
8: else fail.
9: end if

The separation oracle is described in Algorithm 3. Next we analyze the prob-
ability that the separation oracle fails.

Lemma 2.6. The probability that the separation oracle fails during an execution
of the ellipsoid algorithm is exponentially small in n.

Proof. The separation oracle can fail for two reasons:
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1. The size of the sampled set E′′ is too large.
2. The minimal antispanner A found by the oracle does not correspond to a

violated constraint.

To analyze the probability of the first event, note that the expected size of E′′

is at most
√

n ln n
∑

e∈E xe ≤ OPT ·
√

n ln n. By the Chernoff bound,

Pr[|E′′| > 2OPT ·
√

n ln n] ≤ exp(−c · OPT ·
√

n ln n) = exp(−Ω(n
√

n ln n)).

Thus, the probability that the separation oracle fails because |E′′| > 2OPT ·
√

n ln n
is exponentially small in n.

To analyze the probability of the second event, consider one call to the separa-
tion oracle. Fix a minimal antispanner A satisfying

∑
e∈A x̂e ≥ 1. Claim 2.3 shows

that the probability that E′′ is disjoint from A is at most exp(−
√

n ln n). Claim 2.5
demonstrates that |A| ≤

√
n
√

n+4. Therefore, by a union bound, the probability
that there is a minimal antispanner A ∈ A satisfying

∑
e∈A x̂e ≥ 1 and also disjoint

from E′′ is at most
√

n
√

n+4 · exp(−
√

n ln n) = exp(−1
2

√
n ln n + 2 ln n). Thus, the

probability that the separation oracle fails during one call because
∑

e∈A x̂e ≥ 1 is
exponentially small in n. Since the number of iterations of the ellipsoid algorithm
is polynomial in n, a union bound over all iterations gives that the overall proba-
bility that the separation oracle fails during an execution of the ellipsoid algorithm
is exponentially small in n.

Lemma 2.6 implies, in particular, that when the separation oracle is given
a feasible solution to LP-A′, it fails to output a set E′′ with exponentially small
probability. Since E′′ is obtained by running Algorithm 2, we obtain the following
corollary that will be used in Section 3.

Corollary 2.7. Given a feasible solution to LP-A′, Algorithm 2 with all but expo-
nentially small probability produces a set E′′ that settles thin edges and has size
at most 2OPT ·

√
n ln n.

2.4.2. Overall Algorithm for Directed k-Spanner
Proof of Theorem 2.1. We settle thick edges by running Sample(

√
n), according

to Lemma 2.2. We settle thin edges by running the ellipsoid algorithm as described
in the beginning of Section 2.4 and in Section 2.4.1. If the separation oracle fails,
which, by Lemma 2.6, happens with exponentially small probability, we output a
spanner containing all edges E. Thus, the expected size of the set E′′ is at most
2OPT ·

√
n ln n + o(1), and the resulting approximation ratio of the algorithm is

O(
√

n ln n). The ellipsoid algorithm terminates in polynomial time, so the overall
running time is polynomial.

3. LP and Rounding for Graphs with Unit-Length Edges

In this section, we describe how to settle all thin edges, and thus prove The-
orem 2.1, for the case of unit-length edges. Our motivation for presenting this
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special case is two-fold. First, we show that for the unit-length case, one can
directly formulate a polynomial-sized LP relaxation, and this makes the approxi-
mation algorithm more efficient. Second, we also use the LP from this section to
present a better algorithm for 3-spanners in Section 4.

Our LP for the case of unit lengths, LP-U, is stated in terms of local layered
graphs which we introduce next.

Definition 3.1 (Layered expansion). Given a directed graph G = (V, E), its lay-
ered expansion is a directed graph Ḡ = (V̄ , Ē), satisfying the following:

1. Let V̄ = {vi : v ∈ V and i ∈ Z≥0}, where vi denotes the i-th copy of v. The
set of all the i-th copies of nodes in V is the i-th layer of V̄.

2. Let L = {(u, u) : u ∈ V} be the set of loops. Define the i-th copy of an edge
e = (u, v) to be ei = (ui, vi+1), and the i-th copy of a loop e = (u, u) to be
ei = (ui, ui+1). Let Ē = {ei : e ∈ E ∪ L and i ∈ Z≥0}.

Layered expansion Ḡ contains a path from s0 to tk if and only if G contains a
path from s to t of length at most k. A local layered graph for a thin edge (s, t) is
defined next. It consists of all paths in the layered expansion Ḡ that correspond to
paths from s to t of length at most k in the original graph G or, in other words, to
paths in the local graph Gs,t, defined in Definition 2.1.

Definition 3.2 (Local layered graph). For a thin edge (s, t) and k ≥ 1, the local
layered graph is a subgraph Ḡs,t = (V̄ s,t, Ē s,t) of Ḡ with a source s̄ = s0 and a sink
t̄ = tk, such that Ḡs,t contains all nodes and edges on paths from s̄ to t̄.

Our algorithm solves the linear program LP-U defined in Figure 2. Recall that
E denotes the set of thin edges. LP-U has variables of two types: xe, where e ∈ E,
and f s,t

ei , where (s, t) ∈ E and ei ∈ Ē s,t. A variable xe represents whether the edge e
is included in the k-spanner. We think of a path from s to t of length at most k in
G as a unit flow from s̄ to t̄ in Ḡs,t. A variable f s,t

ei represents flow along the edge
ei in Ḡs,t. We denote the sets of incoming and outgoing edges for a vertex vi ∈ Ḡs,t

by In(vi) and Out(vi), respectively.
Given x̂e, a fractional solution of LP-U, we construct the set E′′ by first running

Algorithm 2 and then adding all unsettled thin edges.

Lemma 3.1. The algorithm described above, in polynomial time, computes a set
E′′ that settles all thin edges and has expected size at most 2

√
n ln n ·OPT + o(1).

Proof. We prove, in Claim 3.2, that in a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei }

to LP-U, the vector {x̂e} is a fractional solution to LP-A′. Then we apply Corol-
lary 2.7 to get the desired bound on the expected size of E′′. At the end, we argue
that the algorithm runs in polynomial time.

Claim 3.2. In a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei } to LP-U, the vector {x̂e} is

a fractional solution to LP-A′.

11



Minimize
∑
e∈E

xe subject to:

Flow requirement
∑

e0∈Out(s0)

f s,t
e0
≥ 1 ∀(s, t) ∈ E

Flow conservation
∑

ei−1∈In(vi)

f s,t
ei−1
−
∑

ei∈Out(vi)

f s,t
ei

= 0 ∀(s, t) ∈ E,∀vi ∈ V̄ s,t \ {s̄, t̄}

Capacity constraints xe −

k−1∑
i=0

f s,t
ei
≥ 0 ∀(s, t) ∈ E,∀e ∈ E

xe ≥ 0 ∀e ∈ E
f s,t
ei
≥ 0 ∀(s, t) ∈ E,∀ei ∈ Ē s,t

Figure 2: Linear program for the unit-length case, LP-U.

Proof. First, we argue that LP-U is a relaxation of Directed k-Spanner for the
unit-length case or, in other words, that an optimal solution to this program has
value at most OPT . Let H be a sparsest k-spanner of G. Assign xe = 1 if e is in
H and xe = 0 otherwise. For each thin edge (s, t), consider a simple path from s
to t in H of length `, where ` ≤ k. Set f s,t

ei to 1 if either e is the i-th edge on that
path or i ∈ {`+ 1, . . . , k} and ei = (ti−1, ti); otherwise, set it to 0. Since the resulting
assignment is a feasible solution to LP-U, the optimal solution to this program has
value

∑
e∈E x̂e ≤ OPT .

Next, we argue that if {x̂e} ∪ { f̂ s,t
ei } is a feasible solution to LP-U then {x̂e}

satisfies the antispanner constraints for LP-A′, given in (2). Consider a thin edge
(s, t) and a minimal antispanner A ∈ A for (s, t). Let Ā = {ei : e ∈ A and ei ∈ Ē s,t}

be the set of copies of the edges in A in the local layered graph. Let S̄ ⊆ V̄ s,t be
the set of nodes that can be reached from s̄ in (V̄ s,t, Ē s,t \ Ā) and T̄ = V̄ s,t \ S̄ be
the set of the remaining nodes. Since A is an antispanner for (s, t), node t̄ is in T̄ ,
and thus (S̄ , T̄ ) is an (s̄, t̄) cut in Ḡs,t. Note that only edges from Ā can cross the
cut because for an edge (ui, vi+1) < Ā if ui is reachable from s̄ then so is vi+1.

For a fractional solution {x̂e} ∪ { f̂ s,t
ei } to LP-U,

∑
e∈A

x̂e ≥
∑
e∈A

k−1∑
i=0

f̂ s,t
ei

=
∑
ei∈Ā

f̂ s,t
ei
≥

∑
ei∈ cut (S̄ ,T̄ )

f̂ s,t
ei

=
∑

e0∈Out(s0)

f̂ s,t
e0
≥ 1. (5)

The first inequality above follows from the capacity constraints in LP-U, the fol-
lowing equality holds by definition of Ā, the second inequality holds because Ā
contains the edges in the cut (S̄ , T̄ ), the last equality follows from the flow con-
servation, and the last inequality is the flow requirement.

We proved that in a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei } to LP-U, the vector

{x̂e} satisfies constraints (2) and (4) of LP-A′. Since constraints (3) are also in
LP-U, vector {x̂e} is a fractional solution to LP-A′.
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By, Claim 3.2, vector {x̂e} is a fractional solution to LP-A′. Corollary 2.7
says that, given such a solution, Algorithm 2 with all but exponentially small
probability produces a set E′′ that settles thin edges and has size at most 2OPT ·
√

n ln n. After we add all unsettled thin edges, the expected size of the resulting
set E′′ is at most 2OPT ·

√
n ln n + o(1).

It remains to argue that the described algorithm takes polynomial time. To
write down LP-U, we only need to know V, E, k and the set of thin edges, E.
The first three are inputs to the algorithm, and E can be computed in polynomial
time. LP-U can be written down and solved in polynomial time because it has
O(|E|2 · k) = O(n5) variables and constraints.

Proof of Theorem 2.1 for the case of unit-lengths. We run Algorithm 1 to get E′.
We construct E′′ by running Algorithm 2 and adding all unsettled thin edges. Let
the edge set of our k-spanner be E′ ∪ E′′. By Lemmas 2.2 and 3.1, E′ settles all
thick edges, E′′ settles all thin edges, the expected size of E′ ∪ E′′ is O(

√
n ln n ·

OPT ), and the resulting algorithm runs in polynomial time, as required.

4. An Õ(n1/3)-Approximation for Directed 3-Spannerwith Unit-Length Edges

In this section, we show an improved approximation for the special case of Di-
rected 3-Spanner with unit-length edges. The algorithm follows the general strat-
egy explained in Section 2. The LP rounding scheme here is different from that
presented in Section 2.2 and used in the two algorithms for Directed k-Spanner in
Sections 2 and 3. We note that Algorithm 2 from [DK11] with ρ = Θ̃(n1/3) could
also be used to prove our result. The rounding scheme we present is simpler and
allows for simpler analysis.

As in [DK11], we use random variables for vertices instead of edges to guide
edge selection process. Intuitively, this allows us to introduce positive correlations
in selection of edges adjacent to the same vertex. Because the correlations are
local, the improvement in approximation deteriorates for larger values of k. To
simplify analysis, instead of threshold rounding (as in the previous sections) we
use Poisson random variables.

Theorem 4.1. There is a polynomial time randomized algorithm for Directed
3-Spanner for graphs with unit edge lengths with expected approximation ratio
O(n1/3 log n).

Proof. We define thick and thin edges as in Definition 2.2, with β = n1/3, and run
Sample(n1/3). By Lemma 2.2, the resulting edge set E′ settles all thick edges and
has expected size at most 3n1/3 ln n · OPT . Then we obtain an optimal solution
{x̊e} ∪ { f̊ s,t

ei } of the linear program LP-U from Fig. 2. Our rounding scheme is
stated in Algorithm 4. It consists of two stages: first, we round {x̊e} to obtain
a new solution {x̂e}, where every assignment x̂e is an integer multiple of n−2/3;
second, we round {x̂e} to obtain an edge set E′′ that settles all thin edges with high
probability.
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In the first step we sample a random variable from Poisson distribution for
every edge. Recall, that a Poisson random variable X with mean λ is supported
over nonnegative integers and has a probability density function:

Pr[X = k] =
λke−λ

k!
, ∀k ∈ Z≥0.

The only properties of the Poisson distribution that we use in the analysis are
concentration bound stated in the Appendix, integrality of the support and the fact
that the sum of Poisson random variables is again a Poisson random variable.

Algorithm 4 Randomized3SpannerSelection(x̊e)
1: E′′ ← ∅;
//Obtain a new solution {x̂e}, where each coordinate x̂e is a multiple of n−2/3 :

2: for each edge e ∈ E do
3: Pe ← sample from the Poisson distribution with mean λe = 6n2/3 x̊e;
4: x̂e ← Pen−2/3;
5: end for
//Round {x̂e} to get E′′:

6: for each vertex u ∈ V do
7: ru ← uniform sample from (0, 1);
8: end for
9: for each edge e = (u, v) ∈ E do

10: if min(ru, rv) ≤ x̂eα n1/3 ln n then add e to E′′;
11: //α > 1 is an absolute constant
12: end for
13: return E′′.

Lemma 4.2 below analyzes the first stage. Then Lemmas 4.3 and 4.4 analyze
the set E′′ produced by the second stage. Lemma 4.3 bounds the expected size
of E′′ by O(OPTn1/3 ln n). Lemma 4.4 shows that E′′ settles a given thin edge
with probability at least 1 − 1/n. Consequently, the expected number of unset-
tled thin edges is at most |E|/n ≤ n − 1 ≤ OPT , and they can be added to the
solution without affecting the approximation ratio. This completes the proof of
Theorem 4.1.

It remains to prove the lemmas that were used in the proof of Theorem 4.1.
Recall that s̄ and t̄ are used to denote the source and the sink the local layered

graph of an edge (s, t) as in Definition 3.2.

Lemma 4.2. Given a feasible solution {x̊e}∪{ f̊ s,t
ei } of LP-U of cost LP, Algorithm 4

on lines 2–5 computes a vector {x̂e} of cost at most 20LP (i.e., satisfying
∑

e x̂e ≤

20LP) such that all x̂e are integer multiples of n−2/3. Moreover, for every thin edge
(s, t) and cut (S̄ , T̄ ) in the local layered graph Ḡs,t with s̄, s1 ∈ S̄ and t2, t̄ ∈ T̄ ,
vector {x̂e} satisfies ∑

(u,v)∈Es,t:(ui,vi+1)∈S̄×T̄

x̂(u,v) ≥ 1. (6)
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This stage of the algorithm succeeds with probability 1 − exp(−cn2/3) for some
constant c > 0.

Proof. For every edge e, we independently sample a Poisson random variable Pe

with mean λe = 6n2/3 x̊e, and set x̂e = Pen−2/3. Since the support of the Poisson
distribution is on nonnegative integers, all x̂e are integer multiples of n−2/3. We
need to verify that x̂e satisfies (6) and that its cost is bounded by 20LP.

Fix a thin edge (s, t) and a cut (S̄ , T̄ ) in Ḡs,t with s̄, s1 ∈ S and t2, t̄ ∈ T . Let
A = {(u, v) ∈ E s,t : (ui, vi+1) ∈ S̄ × T̄ }. We will show that it is an antispanner
for (s, t). For every path p = s → u → v → t of length 3 in Gs,t, one of the
edges on the path s̄ → u1 → v2 → t̄ crosses the cut (S̄ , T̄ ) and, consequently,
one of the edges of p belongs to A. Similarly, for every path p = s → u → t of
length 2 (respectively, path p = s → t of length 1) one of the edges on the path
s̄ → u1 → t2 → t̄ (respectively, path s̄ → s1 → t2 → t̄) crosses the cut (S̄ , T̄ ),
and one of the edges of p belongs to A. Therefore, A is an antispanner for (s, t).
By Claim 3.2, if {x̊e} ∪ { f̊ s,t

ei } is a feasible solution to LP-U then {x̊e} satisfies the
antispanner constraints for LP-A′, given in (2). That is,

∑
e∈A x̊e ≥ 1.

Next, we bound
∑

e∈A x̂e = n−2/3 ∑
e∈A Pe. The sum

∑
e∈A Pe is distributed as a

Poisson random variable with mean λA =
∑

e∈A λe ≥ 6n2/3. By Lemma A.1 in the
Appendix,

Pr[
∑
e∈A

x̂e < 1] = Pr[
∑
e∈A

Pe < n2/3] ≤ Pr[
∑
e∈A

Pe ≤ 6/e · n2/3] ≤ exp(−6n2/3/4).

Since (s, t) is a thin edge, |V̄ s,t \ {s̄, t̄}| ≤ 2n2/3, and the number of cuts (S̄ , T̄ ) in
V̄ s,t separating s̄ and t̄ is at most 22n2/3

= exp(ln 4 · n2/3). Hence, by a union bound,
(6) holds for all such cuts simultaneously with probability at least 1−e−cn2/3

, where
c = 6/4 − ln 4 > 0. By a union bound, the previous sentence is true for all thin
edges (s, t) simultaneously with a constant if c is set to c/2 = 1

2 (6/4 − ln 4).
Finally, observe that the cost of {x̂e} is n−2/3 ×

∑
e∈E Pe. The sum

∑
e∈E Pe is a

Poisson random variable with mean 6n2/3 ∑
x̊e = 6n2/3LP. By Lemma A.1,

Pr[
∑
e∈E

Pe ≥ 20n2/3LP] ≤ Pr[
∑
e∈E

Pe ≥ 6·e·n2/3LP] ≤ exp(−6n2/3LP) ≤ exp(−6n2/3).

Thus, the probability that the cost of {x̂e} exceeds 20LP is exponentially small.

Lemma 4.3 (Analog of Lemma 4.1 in [DK11]). E[|E′′|] = O(OPTn1/3 ln n).

Proof. By a union bound, the probability that an edge e belongs to E′′ is at most
2x̂eαn1/3 ln n. Therefore, since α is a constant,

E[|E′′|] ≤
∑
e∈E

2x̂eα n1/3 ln n = O(OPTn1/3 ln n).

Lemma 4.4 (Analog of Lemma 4.2 in [DK11]). If (s, t) is a thin edge for which
condition (6) holds, then E′′ settles (s, t) with probability at least 1 − 1/n.
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Proof. Fix a thin edge (s, t). Let

Ē′′ = {ei : e ∈ E′′ and ei ∈ Ē s,t} ∪ {(s̄, s1), (t2, t̄)}

be the set of copies of the edges in E′′ in the local layered graph Ḡs,t. We show
that, with probability at least 1 − 1/n, there is a path from s̄ to t̄ in (V̄ s,t, Ē′′) and,
consequently, the edge (s, t) is settled.

Let { f̂ s,t
ei } be the maximum flow from s̄ to t̄ in the graph Ḡs,t with capacities

x̂ei set to x̂(u,v) on edges ei = (ui, vi+1) for u , v, infinite capacities (x̂ei = ∞) on
edges ei ∈ {(s̄, s1), (t2, t̄)} and zero capacities (x̂ei = 0) on edges ei = (ui, ui+1)
for ei < {(s̄, s1), (t2, t̄)}. Note that this flow may be different from the flow { f̊ s,t

ei }

obtained by LP-U. By (6), the capacity of the minimum cut between s̄ and t̄ is at
least 1. Thus, the value of the flow { f̂ s,t

ei } is at least 1.
In the simplest case, the flow is routed along n2/3 disjoint paths of capacity

n−2/3 each. The probability that a given path s̄ → u1 → v2 → t̄ belongs to
(V̄ s,t, Ē′′) is at least Pr[ru ≤ α n−1/3 ln n and rv ≤ α n−1/3 ln n] ≥ (α n−1/3 ln n)2. The
probability that at least one path belongs to Ē′′ is 1−(1−α2 n−2/3 ln2 n)n2/3

> 1−1/n.
In the general case, however, we need a more involved analysis.

To analyze the general case, we partition the set V s,t into two disjoint sets S
and T such that at least 1/4 units of flow { f̂ s,t

ei } are routed along the paths s̄ →
u1 → v2 → t̄, where u ∈ S and v ∈ T . To see that such a partition exists,
randomly add every vertex in V s,t \ {s, t} to S or T with probability 1/2. Add
s to S and t to T . Then for every path s̄ → u1 → v2 → t̄ (where u , v),
Pr[u ∈ S and v ∈ T ] ≥ 1/4, so the expected contribution of every path to the new
flow is at least 1/4 of the original flow over the path. Because the total new flow
from s̄ to t̄ can be represented as a sum of flows over such paths, the expected flow
routed from s̄ to t̄ through S and T (as described above) is at least 1/4. That is,
for at least one partition (S ,T ) the flow is at least 1/4. Fix this partition.

Let { fei} be the maximum flow in Ḡs,t (with the same capacities as above)
routed from s̄ to t̄ through S and T , such that all fei are multiples of n−2/3. Such a
flow exists because all capacities are multiples of n−2/3. Observe that (u, v) ∈ Ē′′ if
min(ru, rv) ≤ x̂(u,v)α n1/3 ln n and, consequently, also if min(ru, rv) ≤ f(u,v)α n1/3 ln n,
since f(u,v) ≤ x̂(u,v).

Consider the following two cases:

1. f(s̄,u1) ≥ n−1/3 for some vertex u ∈ S .
2. f(s̄,u1) < n−1/3 for all vertices u ∈ S .

Case 1. Fix a vertex u ∈ S for which f(s̄,u1) ≥ n−1/3. We will show that with
probability at least 1−1/n there is a path from s̄ to t̄ via u1 in Ḡs,t. The edge (s̄, u1)
always belongs to Ē′′ because αx̂(s̄,u1)n1/3 ln n ≥ α f(s̄,u1)n1/3 ln n > 1 ≥ ru. Consider
an arbitrary path u1 → v2 → t̄. Note that f(v2,t̄) ≥ f(u1,v2), since all flow from u1 to
v2 must be routed to t̄ along the edge (v2, t̄). Thus, if rv ≤ α f(u1,v2) n1/3 ln n, then
(u1, v2) ∈ Ē′′ and (v2, t̄) ∈ Ē′′. Therefore, if there is no path from u1 to t̄ in Ē′′,
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then rv > α f(u1,v2) n1/3 ln n for all v ∈ T . This happens with probability at most∏
v∈T

min(1 − α f(u1,v2) n1/3 ln n, 0) ≤
∏
v∈T

exp
(
−α f(u1,v2) n1/3 ln n

)
= exp

− ∑
v∈T

f(u1,v2)

 αn1/3 ln n


≤ exp

(
− f(s̄,u1) αn1/3 ln n

)
≤ exp(− ln n) =

1
n
.

Therefore, with probability at least 1 − 1/n, there is a path from s̄ to t̄ in Ḡs,t

and, consequently, the edge (s, t) is settled.
Case 2. For every u ∈ S , define a random variable Fu1:

Fu1 =
∑

v∈T :ru≤α f(u1 ,v2)n1/3 ln n

f(u1,v2).

This random variable gives a lower bound on the amount of flow that can be routed
along the edges Ē′′ from the source s̄ to the set of copies of nodes in T through
the vertex u1. (Recall that Ē′′ is a random set.)

Claim 4.5. Pr
ru : u∈S

∑
u∈S

Fu1 ≥
αn−1/3 ln n

8

 ≥ 1 −
1

2n
.

Proof. The value of Fu1 depends only on ru, and hence all random variables Fu1

are independent. If f(u1,v2) > 0 then f(u1,v2) ≥ n−2/3 because f(u1,v2) is a multiple of
n−2/3. Therefore, for all nodes u ∈ S and v ∈ T with positive flow f(u1,v2),

Pr
ru

[
ru ≤ α f(u1,v2)n1/3 ln n

]
= min(α f(u1,v2)n1/3 ln n, 1) ≥ αn−2/3n1/3 ln n ≥ αn−1/3 ln n.

This implies that for all nodes u ∈ S and v ∈ T ,

f(u1,v2) · Pr
ru

[
ru ≤ α f(u1,v2)n1/3 ln n

]
≥ f(u1,v2) · αn−1/3 ln n.

Therefore,

E[
∑
u∈S

Fu1] =
∑
u∈S

∑
v∈T

f(u1,v2) Pr
ru

[
ru ≤ α f(u1,v2)n1/3 ln n

]
≥

∑
u∈S

(∑
v∈T

f(u1,v2)

)
αn−1/3 ln n =

(∑
u∈S

f(s̄,u1)

)
αn−1/3 ln n ≥

α

4
n−1/3 ln n.

Now we use the assumption that f(s̄,u1) ≤ n−1/3 for all u ∈ S . By flow conser-
vation, it implies that all Fu1 are bounded from above by n−1/3. By the Hoeffding
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inequality 3 applied with ε = 1/2 and c = n−1/3,

Pr
ru

∑
u∈S

Fu1 ≥
αn−1/3 ln n

8

 = 1 − Pr
ru

∑
u∈S

Fu1 <
1
2
E[

∑
u∈S

Fu1]


≥ 1 − exp

(
−
α ln n

32

)
≥ 1 −

1
2n
.

Next, we condition on the event that
∑

u∈S Fu1 ≥ αn−1/3 ln n/8, and bound the
conditional probability that there exists a path from s̄ to t̄.

Claim 4.6. For any fixed {ru}u∈S , such that
∑

u∈S Fu1 ≥ αn−1/3 ln n/8, we have

Pr
rv : v∈T

[
there is no path s̄→ u1 → v2 → t̄ in E′′

]
≤

1
2n
.

Proof. For every v ∈ T , let

Fv2 =
∑

u1:ru≤α f(u1 ,v2)n1/3 ln n

f(u1,v2).

If for some ṽ ∈ T we have Fṽ2 > 0, then for some ũ ∈ S , rũ ≤ α f(ũ1,ṽ2)n1/3 ln n,
rũ ≤ α f(s̄,ũ1)n1/3 ln n and, hence, the path s̄→ ũ1 → ṽ2 belongs to E′′. Also,

f(ṽ2,t̄) =
∑
u∈S

f(u1,ṽ2) ≥ Fv2 .

Now for a fixed {ru}u∈S and a vertex ṽ ∈ T , we bound the probability that
(ṽ2, t̄) ∈ E′′ from below by

Pr
rṽ

[
rṽ ≤ α f(ṽ2,t̄)n

1/3 ln n
]
≥ min(α f(ṽ2,t̄)n

1/3 ln n, 1) ≥ min(αFṽ2n
1/3 ln n, 1).

Note that we have a lower bound on the sum of Fv2’s:∑
v∈T

Fv2 =
∑
u∈S

Fu1 ≥
αn−1/3 ln n

8
.

Thus, we can use the same argument as in Claim 2.3 to get a lower bound on the
overall probability:

Pr
rv

[
(v2, t̄) < E′′, for all v ∈ T with Fv2 > 0

]
≤ exp

(
−

∑
v∈T

αFv2n
1/3 ln n

)
≤ exp(−α2 ln2 n/8) <

1
2n
.

3Here we use the following variant of the Hoeffding’s inequality. Let X1, . . . , Xn be independent
random variables taking values in [0, c]. Let S n =

∑
Xi, let µ = E[S n]. Then, for every positive ε,

Pr[S n ≤ (1 − ε)µ] ≤ e−
1
2 ε

2µ/c.

For reference see, e.g., [HMRR98] Theorem 2.3(c) on page 200.
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By Claims 4.5 and 4.6, the probability that there exists a path s̄→ u1 → v2 → t̄
is at least (1 − 1/(2n))2 > 1 − 1/n.

5. An O(n2/3+ε)-Approximation for Directed Steiner Forest

Let us first recall the Directed Steiner Forest (DSF) problem. Given a di-
rected graph G = (V, E), a cost function c : E → R+ and a set D ⊆ V × V of
ordered pairs, the goal is to find a min-cost subgraph H of G that contains a path
from s to t for every (s, t) ∈ D. In contrast to spanners, there is no restriction
on the paths used to connect pairs, but the objective to be optimized depends on
arbitrary edge costs.

Theorem 5.1. For any fixed ε > 0, there is a polynomial time randomized algo-
rithm for Directed Steiner Forest with expected approximation ratio O(n2/3+ε).

Our algorithm for DSF builds on the algorithm of Feldman, Kortsarz and Nu-
tov [FKN09] for the problem. We describe their algorithm and most of their anal-
ysis, using notation compatible with previous sections of this paper, and show
where we make our improvement. As mentioned in [FKN09], one can assume
without loss of generality that D ⊆ S × T for two disjoint subsets S and T of V
and that the costs are metric.

Let τ denote our guess for the optimal value of OPT . We start from τ = 1 and
repeatedly double our guess each time we find it is too small. Thus, it suffices to
give the approximation guarantee for the iteration when OPT ≤ τ ≤ 2 ·OPT . The
algorithm has two parameters: β and `. We set β = n1/3 and ` = τ/n2/3 below.

Let us adapt some terminology from the previous sections to this new setting.

Definition 5.1 (Thick and thin pairs). For a pair (s, t) ∈ D, let Gs,t = (V s,t, E s,t) be
the subgraph of G induced by the vertices on paths from s to t of cost at most `. A
pair (s, t) ∈ D is thick if |V s,t| ≥ n/β and it is thin otherwise.

Definition 5.2. A set E′ ⊆ E settles a pair (s, t) ∈ D if the subgraph (V, E′)
contains a path from s to t.

The high-level structure of the algorithm is the same as for the spanner prob-
lem. We will describe how to find in polynomial time two sets E′, E′′ ⊆ E ,such
that E′ settles all the thick pairs and E′′ settles all the thin pairs.

The thick pairs can be settled by random sampling, just as in Section 2.1. For
p = O((log n)/(n/β)), if each vertex is selected with probability p to lie in a set
R, then for every (s, t) ∈ D, R ∩ V s,t , ∅ with high probability. Let the set E′

be constructed by adding, for each u ∈ R, s ∈ S , t ∈ T , the edges of a path from
s to u of cost at most ` if one exists and the edges of a path from u to t of cost
at most ` if one exists. The expected number of thick pairs still not settled is at
most |D|/n2 ≤ 1. Thus, we can add the edges of a minimum-cost path from s to
t for any unsettled thick pair (s, t) and still have that the expected cost of E′ be
O(n · pn · ` + τ) = Õ(n`β + τ) = Õ(n2/3τ), where we use τ as an upper bound on
the cost of a minimum-cost (s, t)-path.
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Minimize
∑
e∈E

c(e) · xe subject to: (7)∑
(s,t)∈D

ys,t ≥ |D|/2∑
Π(s,t)3P3e

fP ≤ xe ∀(s, t) ∈ D, e ∈ E∑
P∈Π(s,t)

fP = ys,t ∀(s, t) ∈ D

0 ≤ ys,t, fP, xe ≤ 1 ∀(s, t) ∈ D, P ∈ Π, e ∈ E

Figure 3: Linear program LP-DSF for the case |D −C| > |D|/2

We remove the settled thick pairs from D, so that it only consists of the un-
settled thin pairs. Next, we construct an edge set E′′ that settles all the thin pairs.
Define the density of a subset of E to be the ratio between the total cost of the
subset and the number of pairs in D settled by it. We show how to efficiently
construct a subset K with expected density O(n2/3+ε) · τ/|D|. This allows us to
compute the set E′′: starting from |D| unsettled thin pairs and E′′ = ∅, find K of
expected density O(n2/3+ε) · τ/|D|, add the edges in K to E′′, remove the settled
pairs from D, and repeat. As shown in Theorem 2.1 of [FKN09], this greedy pro-
cedure produces a subset E′′ of expected cost O(n2/3+ε) · τ that settles all the thin
pairs, completing the proof of Theorem 5.1.

The edge set K is produced by constructing two sets K1 and K2 and letting K
be the set of smaller density. We guarantee that one of K1 and K2 has expected
density O(n2/3+ε) · τ/|D|. Whether the guarantee is provided for K1 or K2 depends
upon which one of the two cases below holds. Suppose H is an optimal solution
with cost τ (we ignore the factor of 2 for simplicity). Let C be the set of pairs
(s, t) ∈ D for which the minimum cost of an (s, t)-path in H is at least `; that is,
these are the costly pairs to settle. The two cases are: |C| ≥ |D|/2 and |C| < |D|/2.

Case 1: |C| ≥ |D|/2. This case relies on a result of Chekuri, Even, Gupta and
Segev [CEGS11]. Define a junction tree to be the union of an ingoing tree and an
outgoing tree (not necessarily disjoint) rooted at the same vertex. Chekuri et al.
[CEGS11] show an O(nε)-approximation for the minimum density junction tree
of a graph. Fortunately, there exists a junction tree of density at most τ2/(|C|`).
To see why, take the paths in H connecting the pairs in C. The sum of the costs
of all such paths is at least |C|`. If we denote the maximum number of these paths
that any edge belongs to as µ, then the sum of the costs of the paths is at most µ · τ
and thus there exists an edge, which belongs to µ ≥ |C|`/τ paths. Therefore, there
must be a junction tree K1 which contains this edge and connects at least |C|`/τ
pairs in D. K1 has density at most τ/(|C|`/τ) = τ2/(|C|`). Thus, when |C| ≥ |D|/2,
the algorithm of [CEGS11] (deterministically) returns a junction tree of density
O(nε · τ/` · τ/|D|) = O(n2/3+ε) · τ/|D|.
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Case 2: |D − C| > |D|/2. In this case, we attempt to find a subgraph that con-
nects many pairs of D using low-cost edges. Consider the problem of connecting
at least |D|/2 pairs from D using paths of cost at most ` while minimizing the total
cost of the edges. For (s, t) ∈ D, let Π(s, t) be the set of (s, t)-paths of cost at most
`, and let Π =

⋃
(s,t)∈D Π(s, t). We can formulate an LP relaxation for this problem,

LP-DSF, shown in Figure 3, which closely resembles the LP used by [DK11] for
Directed k-Spanner. Each edge e has a capacity xe, each path P ∈ Π carries fP

units of flow, and ys,t is the total flow through all paths from s to t. Also, the total
flow through all paths in Π should be at least |D|/2. It is clear that LP-DSF is a
relaxation of the problem of connecting at least |D|/2 pairs in D while minimizing
the cost of the edges. Feldman, Kortsarz and Nutov [FKN09] show that in poly-
nomial time, we can find a solution {x̂e} ∪ {ŷs,t} such that

∑
e∈E c(e) · x̂e is within

(1 + ε) factor of OPT , the optimal solution to LP-DSF, for any fixed ε > 0.
Our improvement comes in the analysis of the rounding algorithm for LP-

DSF. Suppose {x̂e} ∪ {ŷs,t} is a feasible solution to LP-DSF. Let K2 be the edge set
obtained by selecting each edge in E with probability min((8n ln n)/β · xe, 1).

Lemma 5.2. With probability ≥ 1 − 1/n2, set K2 settles every thin pair (s, t) with
ŷs,t ≥ 1/4.

Proof. We reinterpret Definition 2.4 in terms of edge costs instead of lengths.
More precisely, define a set A ⊆ E to be an antispanner for a pair (s, t) ∈ D if
(V, E \ A) contains no path from s to t of cost at most `. By exactly the same
argument as in Claim 2.5, the set of all minimal antispanners for thin pairs is of
size at most n2(n/β)n/β.

For every thin pair (s, t) ∈ D with ŷs,t ≥ 1/4, if A is an antispanner for (s, t),
then

∑
e∈A x̂e ≥

∑
P∈Π(s,t) f̂P ≥ 1/4, where f̂P is the value of the variable fP in LP-

DSF that corresponds to the solution {x̂e} ∪ {ŷs,t}. So, the probability that K2 is
disjoint from A is at most exp(−(n ln n)/β), by the same argument as in Claim 2.3.
Thus, by the bound on the total number of antispanners of thin pairs from above,
the union bound, and Claim 2.4, it follows that with high probability, K2 settles
every thin pair (s, t) with ŷs,t ≥ 1/4.

We add to K2 a minimum-cost path between any pair (s, t) with ŷs,t ≥ 1/4
that is still not settled. In expectation, the number of such pairs is |D|/n2 ≤ 1, so
that the total expected cost4 of K2 is at most (16n ln n)/β · τ. A simple argument
shows that the number of pairs (s, t) in D for which ŷs,t < 1/4 is at most 2|D|/3;
assuming the opposite makes the total amount of flow between all pairs strictly
less than |D|/2. So, the expected density of K2 is at most:(

16n ln n
β

· τ

)
/ (|D| − 2|D|/3) =

48n ln n
β

·
τ

|D|
= Õ(n2/3) · τ/|D|.

4This is where we save over [FKN09]. The cost of their comparable K2 is O(n2/β2 · τ).
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As we said earlier, the set K is taken to be either K1 or K2, depending upon
which has the smaller density. By the above, expected density of K is at most
O(n2/3+ε) · τ/|D|. This concludes the proof of Theorem 5.1.

6. Conclusion

For general Directed k-Spanner, we obtained an approximation ratio of Õ(
√

n)
and for Directed 3-Spanner with unit edge lengths we obtained an approximation
ratio of Õ(n1/3). The second bound almost matches the LP integrality gap of Dinitz
and Krauthgamer [DK11]. It remains an interesting open question whether one
can get an approximation ratio of Õ(n1/3) for the general case.

All our algorithms are randomized and have an expected approximation factor.
Our algorithms consist of multiple stages and the analysis of concentration of the
cost of the solution can be done using standard concentration bounds for each
stage separately in the same way as in the previous work (e.g. [BGJ+09, DK11,
FKN09]), so we omit it to simplify presentation. It remains open whether these
algorithms can be derandomized.
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José Soares. On sparse spanners of weighted graphs. Discrete &
Computational Geometry, 9(1):81–100, 1993.

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for
irregular graphs. Graphs and Combinatorics, 18:53–57, 2002.

[Awe85] Baruch Awerbuch. Communication-time trade-offs in network syn-
chronization. In PODC, pages 272–276, 1985.

[BBM+11] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya
Raskhodnikova, and Grigory Yaroslavtsev. Improved approximation
for the directed spanner problem. In Luca Aceto, Monika Henzinger,
and Jiri Sgall, editors, ICALP (1), volume 6755 of Lecture Notes in
Computer Science, pages 1–12. Springer, 2011.

[BGJ+09] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya
Raskhodnikova, and David Woodruff. Transitive-closure spanners.
In SODA, pages 932–941, 2009.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung,
Sofya Raskhodnikova, and David Woodruff. Lower bounds for local
monotonicity reconstruction from transitive-closure spanners. SIAM
J. Discrete Math., 26(2):618–646, 2012.

22



[BRR10] Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser
directed spanners. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 8 of LIPIcs, pages 424–435. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

[BS06] Surender Baswana and Sandeep Sen. Approximate distance oracles
for unweighted graphs in expected O(n2) time. ACM Trans. Algo-
rithms, 2(4):557–577, 2006.

[CEGS11] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set
connectivity problems in undirected graphs and the directed steiner
network problem. ACM Trans. Algorithms, 7(2):18, 2011.

[CHK11] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J.
Karloff. Improved approximation algorithms for label cover prob-
lems. Algorithmica, 61(1):190–206, 2011.

[Coh98] Edith Cohen. Fast algorithms for constructing t-spanners and paths
with stretch t. SIAM J. Comput., 28(1):210–236, 1998.

[Coh00] Edith Cohen. Polylog-time and near-linear work approximation
scheme for undirected shortest paths. JACM, 47(1):132–166, 2000.

[Cow01] Lenore Cowen. Compact routing with minimum stretch. J. Algo-
rithms, 38(1):170–183, 2001.

[CW04] Lenore Cowen and Christopher G. Wagner. Compact roundtrip rout-
ing in directed networks. J. Algorithms, 50(1):79–95, 2004.

[DK99] Yevgeniy Dodis and Sanjeev Khanna. Designing networks with
bounded pairwise distance. In STOC, pages 750–759, 1999.

[DK11] Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-
based linear programs. In Lance Fortnow and Salil P. Vadhan, editors,
STOC, pages 323–332. ACM, 2011.

[Elk01] M. Elkin. Computing almost shortest paths. In PODC, pages 53–62,
2001.

[EP00] Michael Elkin and David Peleg. Strong inapproximability of the ba-
sic k-spanner problem. In ICALP, pages 636–647, 2000.

[EP01] Michael Elkin and David Peleg. The client-server 2-spanner problem
with applications to network design. In SIROCCO, pages 117–132,
2001.

[EP05] Michael Elkin and David Peleg. Approximating k-spanner problems
for k > 2. Theor. Comput. Sci., 337(1-3):249–277, 2005.

23



[EP07] Michael Elkin and David Peleg. The hardness of approximating
spanner problems. Theory Comput. Syst., 41(4):691–729, 2007.

[FKM+08] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth
Suri, and Jian Zhang. Graph distances in the data-stream model.
SIAM J. Comput., 38(5):1709–1727, 2008.

[FKN09] Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approx-
imating algorithms for Directed Steiner Forest. In Claire Mathieu,
editor, SODA, pages 922–931. SIAM, 2009.

[HMRR98] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed. Prob-
abilistic methods for algorithmic discrete mathematics, volume 16.
Springer Verlag, 1998.

[JR11] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of
lipschitz functions with applications to data privacy. In FOCS, pages
433–442. IEEE, 2011.

[Kor01] Guy Kortsarz. On the hardness of approximating spanners. Algorith-
mica, 30(3):432–450, 2001.

[KP94] G. Kortsarz and D. Peleg. Generating sparse 2-spanners. J. Algo-
rithms, 17(2):222–236, 1994.

[KP98] Guy Kortsarz and David Peleg. Generating low-degree 2-spanners.
SIAM J. Comput., 27(5):1438–1456, 1998.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph
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Appendix A. Concentration of Poisson Random Variables

We use the following standard concentration result on Poisson random vari-
ables, giving the proof for completeness.

Lemma Appendix A.1. Let P be a Poisson random variable with parameter
λ ≥ 1. Then

Pr[P < bλ/ec] ≤ e−λ/4;

Pr[P > eλ] ≤ e−λ.

Proof. Let T = bλ/ec. Then

Pr[P < λ/e] =

T−1∑
t=0

λte−λ

t!
.

The terms in the sum increase exponentially: λt+1

(t+1)!

/
λt

(t)! = λ
t+1 ≥ e. Hence,

Pr[P < λ/e] ≤
λT e−λ

T !

∞∑
t=0

e−t ≤
λT e−λ

√
2π(T/e)T

× 2 ≤ e−(λ−T )
( λ
T

)T

≤ e−(λ−T )
( λ

λ/e

)λ/e
≤ e−λ(1−2/e) ≤ e−λ/4.

To estimate T ! we use Stirling’s approximation.
Similarly, let T ′ = deλe. Then

Pr[P > eλ] =

∞∑
t=T ′

λte−λ

t!
.

The terms in the sum decrease exponentially: λt+1

(t+1)!

/
λt

(t)! = λ
t+1 ≤ 1/e. Hence,

Pr[P > eλ] ≤
2λT ′e−λ

T ′!
≤

2λT ′e−λ
√

2π(T ′/e)T ′
≤ e−λ

(eλ
T ′

)T ′

≤ e−λ.
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