Lecture 26
Computational Intractability
• Polynomial Time Reductions
What algorithms are (im)possible?

Algorithm design patterns. Examples.
- Greedy. O(n log n) interval scheduling.
- Divide-and-conquer. O(n log n) sorting.
- Dynamic programming. O(n^2) edit distance.
- Augmenting paths. Max flow.
- Simplex method Linear programming
- Reductions. Maximum matching
 ... (lots more out there)

New goal: understand what is hard to compute.
- NP-completeness. O(n^k) algorithm unlikely.
- PSPACE-completeness. O(n^k) certification algorithm unlikely.
- Undecidability. No algorithm possible.
Intractability: Central ideas we'll cover

• Poly-time as “feasible”
 • most natural problems either are easy (say n^3) or have no known poly-time algorithms

• $P =$ problems that are easy to answer
 • e.g. minimum cut

• $NP =$ {problems whose answers are easy to verify given hint}
 • e.g. graph 3-coloring

• Reductions: X is no harder than Y

• NP-completeness
 • many natural problems are easy if and only if $P=NP$
Polynomial-Time Reductions
Q. Which problems will we be able to solve in practice?

<table>
<thead>
<tr>
<th>Yes</th>
<th>Probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Matching</td>
<td>3D-matching</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>2-SAT</td>
<td>3-SAT</td>
</tr>
<tr>
<td>Planar 4-color</td>
<td>Planar 3-color</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Vertex cover</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Classify Problems

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.

Provably requires exponential-time.

- Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

This lecture. Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.
Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X poly-time reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{p,Cook} Y$ (or $X \leq_p Y$).

Later in the lecture. $X \leq_{p,Karp} Y$.

Remarks.

- We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.
Polynomial-Time Reduction

Purpose. Classify problems according to *relative* difficulty.

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X *can* also be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y *cannot* be solved in polynomial time.

Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$.

\[\uparrow \]

up to cost of reduction
Search problem. Find some structure.
Example. Find a minimum cut.

Decision problem.
- X is a set of strings.
- Instance: string s.
- If $x \in X$, x is a **YES** instance; if $x \notin X$ is a **NO** instance.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Example. Does there exist a cut of size $\leq k$?

Self-reducibility. Search problem $\leq_{P, \text{Cook}}$ decision version.
- Applies to all (NP-complete) problems in Chapter 8 of KT.
- Justifies our focus on decision problems.
Polynomial Transformation

Def. Problem X **poly-time** reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X **poly-time** transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that

\[
\begin{align*}
x \text{ is a yes instance of } X & \iff y \text{ is a yes instance of } Y. \\
\end{align*}
\]

we require \(|y|\) to be of size polynomial in \(|x|\).

Note. Poly-time transformation is poly-time reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.

Open question. Are these two concepts the same?

\[
\|
\]

Caution: KT abuses notation \(\leq_p\) and blurs distinction
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Independent Set

Given an undirected graph G, an **independent set** in G is a set of nodes, which includes at most one endpoint of every edge.

$\text{INDEPENDENT SET} = \{ \langle G, k \rangle | G \text{ is an undirected graph which has an independent set with } k \text{ nodes} \}$

- Is there an independent set of size ≥ 6?
 - Yes.

- Is there an independent set of size ≥ 7?
 - No.
Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes, which includes at least one endpoint of every edge.

$$\text{VERTEX COVER} = \{ (G, k) \mid G \text{ is an undirected graph which has a vertex cover with } k \text{ nodes} \}$$

- Is there a vertex cover of size ≤ 4?
 - Yes.

- Is there a vertex cover of size ≤ 3?
 - No.
Claim. S is an independent set iff V – S is a vertex cover.

• \(\Rightarrow \)
 – Let S be any independent set.
 – Consider an arbitrary edge \((u, v)\).
 – S is independent \(\Rightarrow u \notin S \) or \(v \notin S \) \(\Rightarrow u \in V – S \) or \(v \in V – S \).
 – Thus, \(V – S \) covers \((u, v)\).

• \(\Leftarrow \)
 – Let \(V – S \) be any vertex cover.
 – Consider two nodes \(u \in S \) and \(v \in S \).
 – Then \((u, v) \notin E\) since \(V – S \) is a vertex cover.
 – Thus, no two nodes in S are joined by an edge \(\Rightarrow S \) independent set.
Theorem. \(\text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \).

Proof. “On input \(\langle G, k \rangle \), where \(G \) is an undirected graph and \(k \) is an integer,

1. Output \(\langle G, n - k \rangle \), where \(n \) is the number of nodes in \(G \).”

Correctness:
- \(G \) has an independent set of size \(k \) iff it has a vertex cover of size \(n - k \).
- Reduction runs in linear time.
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Set Cover

Given a set U, called a *universe*, and a collection of its subsets S_1, S_2, \ldots, S_m, a set cover of U is a subcollection of subsets whose union is U.

- **SET COVER**: \{ $(U, S_1, S_2, \ldots, S_m; k)$ \mid U has a set cover of size k \}

- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all n capabilities using fewest pieces of software.

U = \{ 1, 2, 3, 4, 5, 6, 7 \}

$k = 2$

$S_1 = \{3, 7\}$ $S_4 = \{2, 4\}$

$S_2 = \{3, 4, 5, 6\}$ $S_5 = \{5\}$

$S_3 = \{1\}$ $S_6 = \{1, 2, 6, 7\}$
Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Proof. “On input \(\langle G, k \rangle \), where \(G = (V, E) \) is an undirected graph and \(k \) is an integer,
1. Output \(\langle U, S_1, S_2, \ldots, S_m; k \rangle \), where \(U=E \) and
\[
S_v = \{ e \in E : e \text{ incident to } v \}
\]”

Correctness:

• \(G \) has a vertex cover of size \(k \) iff \(U \) has a set cover of size \(k \).
• Reduction runs in linear time.
Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Satisfiability

- **Boolean variables:** variables that can take on values T/F (or 1/0)
- **Boolean operations:** \lor, \land, and \neg
- **Boolean formula:** expression with Boolean variables and ops

$\text{SAT} = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula} \}$

- **Literal:** A Boolean variable or its negation. $x_i \text{ or } \overline{x_i}$
- **Clause:** OR of literals. $C_j = x_1 \lor x_2 \lor x_3$
- **Conjunctive normal form (CNF):** AND of clauses. $\Phi = C_1 \land C_2 \land C_3 \land C_4$

$\text{3SAT} = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean CNF formula, where each clause contains exactly 3 literals} \}$

Ex: $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$

Yes: $x_1 = \text{true}, x_2 = \text{true} \quad x_3 = \text{false}$.
Theorem. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET.}\)

Proof. “On input \(\langle \Phi \rangle\), where \(\Phi\) is a 3CNF formula,
1. Construct graph \(G\) from \(\Phi\)
 - \(G\) contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.
2. Output \(\langle G, k \rangle\), where \(k\) is the number of clauses in \(\Phi\).”

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3SAT reduces to INDEPENDENT SET

Correctness. Let $k = \# \text{ of clauses and } \ell = \# \text{ of literals in } \Phi$.

Φ is satisfiable iff G contains an independent set of size k.

- \Rightarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

- \Leftarrow Let S be an independent set of size k.
 - S must contain exactly one vertex in each triangle.
 - Set these literals to true, and other literals in a consistent way.
 - Truth assignment is consistent and all clauses are satisfied.

Run time. $O(k + \ell^2)$, i.e. polynomial in the input size.
Summary

• Basic reduction strategies.
 – Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_P \text{VERTEX-COVER} \).
 – Special case to general case: \(\text{VERTEX-COVER} \leq_P \text{SET-COVER} \).
 – Encoding with gadgets: \(\text{3-SAT} \leq_P \text{INDEPENDENT-SET} \).

• Transitivity. If \(X \leq_P Y \) and \(Y \leq_P Z \), then \(X \leq_P Z \).
• Proof idea. Compose the two algorithms.
• Ex: \(\text{3-SAT} \leq_P \text{INDEPENDENT-SET} \leq_P \text{VERTEX-COVER} \leq_P \text{SET-COVER} \).