Lectures 18
Network Flow
• Algorithms:
 • Ford-Fulkerson
 • Capacity Scaling
• Applications

Sofya Raskhodnikova

CSE 565

Algorithm Design and Analysis
Network Flow
Minimum Cut Problem

Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Goal. Find an s-t cut of minimum capacity.

![Graph Diagram](attachment:graph.png)

Capacity = 9 + 15 + 8 + 30 = 62
Maximum Flow Problem

Def. An s-t flow is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Goal. Find s-t flow of maximum value.

![Graph of a network flow problem](image)

Value = 4
What we proved about flows and cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.
Residual Graph

Original edge: $e = (u, v) \in E$.
- Flow $f(e)$, capacity $c(e)$.

Residual edge.
- "Undo" flow sent.
- $e = (u, v)$ and $e^R = (v, u)$.
- Residual capacity:

 $$c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
 \end{cases}$$

Residual graph: $G_f = (V, E_f)$.
- Residual edges with positive residual capacity.
- $E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : c(e) > 0 \}$.
Ford-Fulkerson: Analysis

Ford-Fulkerson summary:

- While you can,
 - Greedily push flow
 - Update residual graph

Feasibility lemma: Ford-Fulkerson outputs a valid flow.

Optimality: If Ford-Fulkerson terminates then
- the output is a max flow;
- set of vertices reachable from s in residual graph forms a minimum cut.

Still to do:
- Running time (in particular, termination!)
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations.

Proof. Each augmentation increases flow value by at least 1. □

Running time of Ford-Fulkerson on a graph with integer capacities?
Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E, f(e) ← 0
 G_f ← residual graph

 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update G_f
 }
 return f
}

Augment(f, c, P) {
 b ← bottleneck-capacity(P)
 foreach e ∈ P {
 if (e ∈ E) f(e) ← f(e) + b
 else f(e^R) ← f(e^R) - b
 }
 return f
}
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations.

Proof. Each augmentation increases flow value by at least 1. □

Running time of Ford-Fulkerson on a graph with integer capacities: $O(mnC)$.

Space: $O(m+n)$.

Important special case. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.
Review Question

• Is this flow a maximum flow?

• **Def:** Integral flow: flows on all edges are integers

• Does this graph have an integral maximum flow?

• Does every graph with integer capacities have an integral maximum flow?
Ford-Fulkerson Summary

• **Assumption:** All capacities are integers between 1 and C.

• **Running time:** The FF algorithm terminates in at most $v(f^*) \leq nC$ iterations.

 Running time = $O(mnC)$. Space: $O(m + n)$.

• **Correctness:**
 – FF outputs a flow with maximum value
 – Set of vertices reachable from s in residual graph forms a minimum cut
 – **Integrality theorem:** FF outputs an integral flow, so every graph with integer capacities has an integral maximum flow.

• **Important special case:** if $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.
Review Question

• Does Ford-Fulkerson always terminate if capacities are rational?
• Does Ford-Fulkerson always terminate if capacities are irrational?

\[r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r \]

• **Exercise:** Find a sequence of augmenting paths so that FF does not terminate and does not converge to max flow.
Faster algorithms when capacities are large
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Intuition: We’re choosing the wrong paths!
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_f ← residual graph

 while (Δ ≥ 1) {
 G_f(Δ) ← Δ-residual graph
 while (there exists augmenting path P in G_f(Δ)) {
 f ← augment(f, c, P) // augment flow by ≥ Δ
 }
 update G_f(Δ)
 }
 Δ ← Δ / 2
}
return f
Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Proof.
- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths.
Lemma 1. The outer while loop repeats \(1 + \lceil \log_2 C \rceil\) times.
Proof. Initially \(C \leq \Delta < 2C\); \(\Delta\) decreases by a factor of 2 each iteration. □

Lemma 2. Let \(f\) be the flow at the end of a \(\Delta\)-scaling phase. Then the value of the maximum flow is at most \(v(f) + m \Delta\). ← proof on next slide

Lemma 3. There are at most \(2m\) augmentations per scaling phase.
- Let \(f\) be the flow at the end of the previous scaling phase.
- Lemma 2 \(\Rightarrow v(f^*) \leq v(f) + m (2\Delta)\).
- Each augmentation in a \(\Delta\)-phase increases \(v(f)\) by at least \(\Delta\). □

Theorem. The scaling max-flow algorithm finds a max flow in \(O(m \log C)\) augmentations. It can be implemented to run in \(O(m^2 \log C)\) time. □
Lemma 2. Let \(f \) be the flow at the end of a \(\Delta \)-scaling phase. Then value of the maximum flow is at most \(v(f) + m \Delta \).

Proof. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a \(\Delta \)-phase, there exists a cut \((A, B)\) such that \(\text{cap}(A, B) \leq v(f) + m \Delta \).
- Choose \(A \) to be the set of nodes reachable from \(s \) in \(G_f(\Delta) \).
- By definition of \(A \), source \(s \in A \).
- By definition of \(f \), sink \(t \not\in A \).

\[
\begin{align*}
v(f) & = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
& \geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta \\
& = \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta \\
& \geq \text{cap}(A, B) - m\Delta
\end{align*}
\]

So, \(v(f^*) \leq \text{cap}(A,B) \leq v(f) + m\Delta \).
General Principle

- Let
 - $G = (V, E)$ be a directed graph with capacities $\{c_e\}_{e \in E}$
 - f be any valid flow in G
 - G_f be the residual graph for f in G
 - f^* be any maximum flow in G

- Then we have
 \[\nu(f^*) = \nu(f) + (\text{value of max } s-t \text{ flow in } G_f) \]

- In particular, for any cut A, B:
 \[\nu(f^*) \leq \nu(f) + (\text{capacity of } A, B \text{ in } G_f) \]

- Applications:
 - Correctness of Ford-Fulkerson
 - Running time analysis for capacity scaling

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Best Known Algorithms For Max Flow

- Reminder: The scaling max-flow algorithm runs in $O(m^2 \log C)$ time.
- There are algorithms that run in time
 - $O(mn)$ (Orlin, 2013)
 - $O(m^{10/7} \log^a m)$ for constant a and $C = 1$ (Madry, 2013)
 - $O \left(\min \left(n^{2/3}, m^{1/2} \right) \cdot m \cdot \log n \cdot \log C \right)$
- Active topic of research:
 - Flow algorithms for specific types of graphs
 - Special cases (bipartite matching, etc)
 - Multi-commodity flow
 - ...
Applications when $C=1$

- Maximum bipartite matching
 - Reducing MBM to max-flow
 - Hall’s theorem

- Edge-disjoint paths
 - another reduction
Matching

- Input: undirected graph $G = (V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most 1 edge in M.
- **Maximum matching**: find a matching with as many edges as possible.
Bipartite Matching

Bipartite matching.

- **Input**: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- **Maximum matching**: find a matching with as many edges as possible.

![Bipartite Matching Diagram]

We cannot add edges to this matching.
- It is **maximal** (local max)
- But **not maximum** (global max)
Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Maximum matching: find a matching with as many edges as possible.

There is no matching in this graph with more than 4 edges
- This matching is both maximal (local max) and maximum (global max)

Do not confuse with stable matching (different inputs and goals)
Reductions

• “Problem A reduces to problem B”
 – Rough meaning: there is a simple algorithm for A that uses an algorithm for B as a subroutine.
 – Denote $A \leq B$

• Usually:
 • Given instance x of problem A we find a instance x' of problem B
 • Solve x'
 • Use the solution to build a solution to x

• Useful skill: quickly identify problems where existing solutions may be applied.
 • Good programmers do this all the time
Reduction to Max flow.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign capacity 1.
- Add source s, and capacity 1 edges from s to each node in L.
- Add sink t, and capacity 1 edges from each node in R to t.

Reducing Bipartite Matching to Maximum Flow
Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.

Proof: We need two statements

 - max. matching in $G \leq$ max flow in G'
 - max. matching in $G \geq$ max flow in G'
Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.

Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has value k. □
Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. \geq

- Let f be a max flow in G' of value k.
- **Integrality theorem** \Rightarrow we can find a max flow f that is integral;
 - all capacities are 1 \Rightarrow f takes values only in $\{0,1\}$
- Consider M = set of edges from L to R with $f(e) = 1$.
 - Each node in L and R participates in at most one edge in M
 - Because all capacities are 1 and flow must be conserved
 - $|M| = k$: consider cut $(\{s\}, S \cup R \cup t)$