Algorithm Design and Analysis

Lecture 14
Divide and Conquer
• Fast Fourier Transform

Sofya Raskhodnikova

S. Raskhodnikova; based on slides by K. Wayne.
5.6 Convolution and FFT
Fast Fourier Transform: Applications

Applications.

- Optics, acoustics, quantum physics, telecommunications, control systems, signal processing, speech recognition, data compression, image processing.
- DVD, JPEG, MP3, MRI, CAT scan.
- Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational developments of this [20th] century. It has changed the face of science and engineering so much that it is not an exaggeration to say that life as we know it would be very different without the FFT. -Charles van Loan
Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

Importance not fully realized until advent of digital computers.
Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

\[A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1} \]

Add: \(O(n) \) arithmetic operations.

\[A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \cdots + (a_{n-1} + b_{n-1})x^{n-1} \]

Evaluate: \(O(n) \) using Horner's method.

\[A(x) = a_0 + (x(a_1 + x(a_2 + \cdots + x(a_{n-2} + x(a_{n-1}))) \cdots)) \]

Multiply (convolve): \(O(n^2) \) using brute force.

\[A(x) \times B(x) = \sum_{i=0}^{2n-2} c_i x^i, \text{ where } c_i = \sum_{j=0}^{i} a_j b_{i-j} \]

Corollary. A degree $n-1$ polynomial $A(x)$ is uniquely specified by its evaluation at n distinct values of x.

$$y_j = A(x_j)$$
Polynomials: Point-Value Representation

Polynomial. [point-value representation]

\[A(x) : (x_0, y_0), \ldots, (x_{n-1}, y_{n-1}) \]
\[B(x) : (x_0, z_0), \ldots, (x_{n-1}, z_{n-1}) \]

Add: \(O(n) \) arithmetic operations.

\[A(x) + B(x) : (x_0, y_0 + z_0), \ldots, (x_{n-1}, y_{n-1} + z_{n-1}) \]

Multiply: \(O(n) \), but need 2n-1 points.

\[A(x) \times B(x) : (x_0, y_0 \times z_0), \ldots, (x_{2n-1}, y_{2n-1} \times z_{2n-1}) \]

Evaluate: \(O(n^2) \) using Lagrange's formula.

\[A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)} \]
Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

<table>
<thead>
<tr>
<th>Representation</th>
<th>Multiply</th>
<th>Evaluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Point-value</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Goal. Make all ops fast by efficiently converting between two representations.

$\left\{ a_0, a_1, \ldots, a_{n-1} \right\}$ coefficient representation

$\left(x_0, y_0 \right), \ldots, \left(x_{n-1}, y_{n-1} \right)$ point-value representation
Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial $a_0 + a_1 x + ... + a_{n-1} x^{n-1}$, evaluate it at n distinct points $x_0, ... , x_{n-1}$.

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Vandermonde matrix is invertible iff x_i distinct

O(n^2) for matrix-vector multiply

O(n^3) for Gaussian elimination

Point-value to coefficient. Given n distinct points $x_0, ..., x_{n-1}$ and values $y_0, ..., y_{n-1}$, find unique polynomial $a_0 + a_1 x + ... + a_{n-1} x^{n-1}$ that has given values at given points.
Coefficient to point-value. Given a polynomial $a_0 + a_1 x + ... + a_{n-1} x^{n-1}$, evaluate it at n distinct points $x_0, ... , x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

- $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.
- $A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$.
- $A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$.
- $A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$.
- $A(-x) = A_{\text{even}}(x^2) - x A_{\text{odd}}(x^2)$.

Intuition. Choose two points to be ± 1.

- $A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$.
- $A(-1) = A_{\text{even}}(1) - 1 A_{\text{odd}}(1)$.

Can evaluate polynomial of degree $\leq n$ at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2} n$ at 1 point.
Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial \(a_0 + a_1 x + ... + a_{n-1} x^{n-1}\), evaluate it at \(n\) distinct points \(x_0, \ldots, x_{n-1}\).

Divide. Break polynomial up into even and odd powers.

- \(A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7\).
- \(A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3\).
- \(A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3\).
- \(A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)\).
- \(A(-x) = A_{\text{even}}(x^2) - x A_{\text{odd}}(x^2)\).

Intuition. Choose four points to be \(\pm 1, \pm i\).

- \(A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)\).
- \(A(-1) = A_{\text{even}}(1) - 1 A_{\text{odd}}(1)\).
- \(A(i) = A_{\text{even}}(-1) + i A_{\text{odd}}(-1)\).
- \(A(-i) = A_{\text{even}}(-1) - i A_{\text{odd}}(-1)\).

Can evaluate polynomial of degree \(\leq n\) at 4 points by evaluating two polynomials of degree \(\leq \frac{1}{2} n\) at 2 points.
Discrete Fourier Transform

Coefficient to point-value. Given a polynomial $a_0 + a_1 x + ... + a_{n-1} x^{n-1}$, evaluate it at n distinct points $x_0, ... , x_{n-1}$.

Key idea: choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.
Roots of Unity

Def. An \(n^{\text{th}} \) root of unity is a complex number \(x \) such that \(x^n = 1 \).

Fact. The \(n^{\text{th}} \) roots of unity are: \(\omega^0, \omega^1, ..., \omega^{n-1} \) where \(\omega = e^{2\pi i / n} \).

Pf. \((\omega^k)^n = (e^{2\pi i k / n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1 \).

Fact. The \(\frac{1}{2}n^{\text{th}} \) roots of unity are: \(\nu^0, \nu^1, ..., \nu^{n/2-1} \) where \(\nu = e^{4\pi i / n} \).

Fact. \(\omega^2 = \nu \) and \((\omega^2)^k = \nu^k \).
Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial \(A(x) = a_0 + \ldots + a_{n-1} x^{n-1} \) at its \(n^{th} \) roots of unity: \(\omega^0, \omega^1, \ldots, \omega^{n-1} \).

Divide. Break polynomial up into even and odd powers.

- \(A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \ldots + a_{n/2-2} x^{(n-1)/2} \).
- \(A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \ldots + a_{n/2-1} x^{(n-1)/2} \).
- \(A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2) \).

Conquer. Evaluate degree \(A_{\text{even}}(x) \) and \(A_{\text{odd}}(x) \) at the \(\frac{1}{2} n^{th} \) roots of unity: \(\nu^0, \nu^1, \ldots, \nu^{n/2-1} \).

Combine.

- \(A(\omega^k) = A_{\text{even}}(\nu^k) + \omega^k A_{\text{odd}}(\nu^k), \ 0 \leq k < n/2 \)
- \(A(\omega^{k+n}) = A_{\text{even}}(\nu^k) - \omega^k A_{\text{odd}}(\nu^k), \ 0 \leq k < n/2 \)

\[\nu^k = (\omega^k)^2 = (\omega^{k+n})^2 \]

\[\omega^{k+n} = -\omega^k \]
FFT Algorithm

Assumes n is a power of 2

```plaintext
fft(n, a_0, a_1, ..., a_{n-1}) {
    if (n == 1) return a_0

    (e_0, e_1, ..., e_{n/2-1}) ← FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
    (d_0, d_1, ..., d_{n/2-1}) ← FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})

    for k = 0 to n/2 - 1 {
        ω^k ← e^{2πi k/n}
        y_k ← e_k + ω^k d_k
        y_{k+n/2} ← e_k - ω^k d_k
    }

    return (y_0, y_1, ..., y_{n-1})
}
```
Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the n\(^{th}\) roots of unity in $O(n \log n)$ steps. \(\uparrow\) assumes n is a power of 2

Running time. $T(2n) = 2T(n) + O(n) \Rightarrow T(n) = O(n \log n)$.
Recursion Tree

```
Recursion Tree

\[ a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7 \]

```

```
perfect shuffle

\[ a_0, a_2, a_4, a_6 \]   \[ a_1, a_3, a_5, a_7 \]

```

```
\[ a_0, a_4 \]   \[ a_2, a_6 \]   \[ a_1, a_5 \]   \[ a_3, a_7 \]

```

```
000   100   010   110   001   101   011   111
```

"bit-reversed" order
Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values \(y_0, \ldots, y_{n-1} \) of a degree \(n-1 \) polynomial at the \(n \) points \(\omega^0, \omega^1, \ldots, \omega^{n-1} \), find unique polynomial \(a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \) that has given values at given points.

\[
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
 1 & 1 & 1 & 1 & \ldots & 1 \\
 1 & \omega^1 & \omega^2 & \omega^3 & \ldots & \omega^{n-1} \\
 1 & \omega^2 & \omega^4 & \omega^6 & \ldots & \omega^{2(n-1)} \\
 1 & \omega^3 & \omega^6 & \omega^9 & \ldots & \omega^{3(n-1)} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \ldots & \omega^{(n-1)(n-1)}
\end{bmatrix}^{-1}
\begin{bmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 y_{n-1}
\end{bmatrix}
\]
Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

$$G_n = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots & \omega^{-(2(n-1))} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \cdots & \omega^{-(3(n-1))} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-(2(n-1))} & \omega^{-(3(n-1))} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Consequence. To compute inverse FFT, apply same algorithm but use $$\omega^{-1} = e^{-2\pi i / n}$$ as principal $$n^{th}$$ root of unity (and divide by $$n$$).
Inverse FFT: Proof of Correctness

Claim. F_n and G_n are inverses.

Pf.

$$(F_n G_n)_{k k'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{k j} \omega^{-j k'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \begin{cases} 1 & \text{if } k = k' \\ 0 & \text{otherwise} \end{cases}$$

Summation lemma. Let ω be a principal n^{th} root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{k j} = \begin{cases} n & \text{if } k \equiv 0 \mod n \\ 0 & \text{otherwise} \end{cases}$$

Pf.

- If k is a multiple of n then $\omega^k = 1$ \Rightarrow sums to n.
- Each n^{th} root of unity ω^k is a root of $x^n - 1 = (x - 1) (1 + x + x^2 + \ldots + x^{n-1})$.
- If $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0$ \Rightarrow sums to 0. •
Inverse FFT: Algorithm

```
ifft(n, a_0, a_1, ..., a_{n-1}) {
    if (n == 1) return a_0

    (e_0, e_1, ..., e_{n/2-1}) ← FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
    (d_0, d_1, ..., d_{n/2-1}) ← FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})

    for k = 0 to n/2 - 1 {
        \omega^k ← e^{-2\pi ik/n}
        y_k ← (e_k + \omega^k d_k) / n
        y_{k+n/2} ← (e_k - \omega^k d_k) / n
    }

    return (y_0, y_1, ..., y_{n-1})
}
```
Theorem. Inverse FFT algorithm interpolates a degree \(n-1 \) polynomial given values at each of the \(n^{th} \) roots of unity in \(O(n \log n) \) steps.

\[\text{assumes } n \text{ is a power of 2} \]
Theorem. Can multiply two degree n-1 polynomials in $O(n \log n)$ steps.
FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]

- Optimized C library.
- Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software.
- Portable, competitive with vendor-tuned code.

Implementation details.

- Instead of executing predetermined algorithm, it evaluates your hardware and uses a special-purpose compiler to generate an optimized algorithm catered to "shape" of the problem.
- Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT.
- $O(n \log n)$, even for prime sizes.

Reference: http://www.fftw.org
Integer Multiplication

Integer multiplication. Given two n bit integers \(a = a_{n-1} \ldots a_1a_0 \) and \(b = b_{n-1} \ldots b_1b_0 \), compute their product \(c = a \times b \).

Convolution algorithm.
- Form two polynomials.
- Note: \(a = A(2), b = B(2) \).
- Compute \(C(x) = A(x) \times B(x) \).
- Evaluate \(C(2) = a \times b \).
- Running time: \(O(n \log n) \) complex arithmetic steps.

Theory. [Schönhage-Strassen 1971] \(O(n \log n \log \log n) \) bit operations.
[Martin Fürer (Penn State) 2007] \(O(n \log n 2^{\log^* n}) \) bit operations.

Practice. [GNU Multiple Precision Arithmetic Library] GMP proclaims to be "the fastest bignum library on the planet." It uses brute force, Karatsuba, and FFT, depending on the size of \(n \).