Lecture 9

Divide and Conquer

- Merge sort
- Counting Inversions
- Binary Search
- Exponentiation

Solving Recurrences

- Recursion Tree Method
- Master Theorem

Sofya Raskhodnikova
Recursion

- Next couple of weeks: recursion as an algorithms design technique
- Three important classes of algorithms
 - Divide and conquer
 - Back tracking
 - Dynamic programming

Recursion in design and analysis
- Recursion in design and proof of correctness, but time/space analysis is more “global”
Divide and Conquer

– Break up problem into several parts.
– Solve each part recursively.
– Combine solutions to sub-problems into overall solution.

• Most common usage.
 – Break up problem of size n into two equal parts of size $n/2$.
 – Solve two parts recursively.
 – Combine two solutions into overall solution in \textbf{linear time}.

• Consequence.
 – Brute force: $\Theta(n^2)$.
 – Divide & conquer: $\Theta(n \log n)$.
Divide and Conquer

— Break up problem into several parts.
— Solve each part recursively.
— Combine solutions to sub-problems into overall solution.

• Examples
 — Mergesort, quicksort, binary search
 — Geometric problems: convex hull, nearest neighbors, line intersection, algorithms for planar graphs
 — Algorithms for processing trees
 — Many data structures (binary search trees, heaps, k-d trees,...)

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
Analyzing Recursive Algorithms

• **Correctness** almost always uses strong induction
 1. Prove correctness of base cases
 (typically: $n \leq \text{constant}$)
 2. For arbitrary n:
 • Assume that algorithm performs correctly on all input sizes $k < n$
 • Prove that algorithm is correct on input size n

• Time/space analysis: often use recurrence
 – Structure of recurrence reflects algorithm
Mergesort

– Divide array into two halves.
– Recursively sort each half.
– Merge two halves to make sorted whole.

Jon von Neumann (1945)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
<th>G</th>
<th>O</th>
<th>R</th>
<th>I</th>
<th>T</th>
<th>H</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>G</td>
<td>O</td>
<td>R</td>
<td>I</td>
<td>T</td>
<td>H</td>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>R</td>
<td>H</td>
<td>I</td>
<td>M</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

divide \(O(1) \)

sort \(2T(n/2) \)

merge \(O(n) \)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Merging

• Combine two pre-sorted lists into a sorted whole.

• How to merge efficiently?
 – Linear number of comparisons.
 – Use temporary array.

• Challenge for the bored: in-place merge [Kronrud, 1969]
 using only a constant amount of extra storage
Recurrence for Mergesort

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases} \]

- \(T(n)\) = worst case running time of Mergesort on an input of size \(n\).
- Should be \(T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)\), but it turns out not to matter asymptotically.
- Usually omit the base case because our algorithms always run in time \(\Theta(1)\) when \(n\) is a small constant.
- Several methods to find an upper bound on \(T(n)\).
Recursion Tree Method

• Technique for guessing solutions to recurrences
 – Write out tree of recursive calls
 – Each node gets assigned the work done during that call to the procedure (dividing and combining)
 – Total work is sum of work at all nodes
• After guessing the answer, can prove by induction that it works.
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$T(n)$

$T(n/2)$

$T(n/4)$

$T(n/4)$

$T(n/4)$

$T(n/4)$

$T(n / 2^k)$

$T(1)$

#leaves = n
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$T(1)$

$\#leaves = n$
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$

#leaves = n

Total = $\Theta(n \lg n)$
Counting inversions
• Music site tries to match your song preferences with others.
 – You rank n songs.
 – Music site consults database to find people with similar tastes.

• Similarity metric: number of inversions between two rankings.
 – My rank: 1, 2, ..., n.
 – Your rank: \(a_1, a_2, ..., a_n \).
 – Songs i and j inverted if \(i < j \), but \(a_i > a_j \).

• Brute force: check all \(\Theta(n^2) \) pairs i and j.

Counting Inversions

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions: 3-2, 4-2
Counting Inversions: Algorithm

• Divide-and-conquer

1 5 4 8 10 2 6 9 12 11 3 7
Counting Inversions: Algorithm

• Divide-and-conquer
 – Divide: separate list into two pieces.

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: $\Theta(1)$.
Counting Inversions: Algorithm

• Divide-and-conquer
 – Divide: separate list into two pieces.
 – Conquer: recursively count inversions in each half.

\[
\begin{align*}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{align*}
\]

5 blue-blue inversions
5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions
6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: $\Theta(1)$.
Conquer: $2T(n / 2)$
Counting Inversions: Algorithm

- **Divide-and-conquer**
 - **Divide**: separate list into two pieces.
 - **Conquer**: recursively count inversions in each half.
 - **Combine**: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(\Theta(1) \).

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

\begin{itemize}
 \item 5 blue-blue inversions
 \item 9 blue-green inversions
\end{itemize}

Conquer: \(2T(n/2) \)

Combine: ???

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

\begin{itemize}
 \item 8 green-green inversions
 \item 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7
\end{itemize}

\[
\text{Total} = 5 + 8 + 9 = 22.
\]
Counting Inversions: Combine

Combine: count blue-green inversions

– Assume each half is **sorted**.
– Count inversions where \(a_i \) and \(a_j \) are in different halves.
– **Merge** two sorted halves into sorted whole.

\[
T(n) = 2T(n/2) + \Theta(n). \text{ Solution: } T(n) = \Theta(n \log n).
\]

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0 \)

Count: \(\Theta(n) \)

Merge: \(\Theta(n) \)
Implementation

• Pre-condition. [Merge-and-Count] A and B are sorted.
• Post-condition. [Sort-and-Count] L is sorted.

```c
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L

    Divide the list into two halves A and B
    (r_A, A) ← Sort-and-Count(A)
    (r_B, B) ← Sort-and-Count(B)
    (r, L) ← Merge-and-Count(A, B)

    return r = r_A + r_B + r and the sorted list L
}
```
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary search

Find an element in a sorted array:

1. **Divide:** Check middle element.
2. **Conquer:** Recursively search 1 subarray.
3. **Combine:** Trivial.

Example: Find 9
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search the subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary search

Find an element in a sorted array:

1. **Divide:** Check middle element.
2. **Conquer:** Recursively search 1 subarray.
3. **Combine:** Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Recurrence for binary search

\[T(n) = 1 \cdot T(n/2) + \Theta(1) \]

- # subproblems
- subproblem size
- work dividing and combining

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Recurrence for binary search

\[T(n) = T(n/2) + \Theta(1) \]

- \# subproblems
- subproblem size
- work dividing and combining

\[\Rightarrow T(n) = T(n/2) + c = T(n/4) + 2c \]
\[\ldots \]
\[= c \lfloor \log n \rfloor + O(1) = \Theta(\log n) \]
Review Question: Exponentiation

Problem: Compute a^b, where \(b \in \mathbb{N} \) is \(n \) bits long.

Question: How many multiplications?

Naive algorithm: \(\Theta(b) = \Theta(2^n) \) (exponential in the input length!)

Divide-and-conquer algorithm:

\[
a^b = \begin{cases}
 a^{b/2} \times a^{b/2} & \text{if } b \text{ is even; } \\
 a^{(b-1)/2} \times a^{(b-1)/2} \times a & \text{if } b \text{ is odd. }
\end{cases}
\]

\[
T(b) = T(b/2) + \Theta(1) \implies T(b) = \Theta(\log b) = \Theta(n).
\]
So far: 2 recurrences

- Mergesort; Counting Inversions
 \[T(n) = 2 \ T(n/2) + \Theta(n) \quad = \Theta(n \log n) \]

- Binary Search; Exponentiation
 \[T(n) = 1 \ T(n/2) + \Theta(1) \quad = \Theta(\log n) \]

Master Theorem: method for solving recurrences.
Master Theorem
The master method applies to recurrences of the form

\[T(n) = a T(n/b) + f(n) , \]

where \(a \geq 1, \ b > 1 \), and \(f \) is asymptotically positive, that is \(f(n) > 0 \) for all \(n > n_0 \).

First step: compare \(f(n) \) to \(n^{\log_b a} \).
Idea of master theorem

Recursion tree:

\[
\begin{align*}
&f(n) \\
&a \\
&f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \\
&a \\
&f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \\
&\vdots \\
&T(1)
\end{align*}
\]
Idea of master theorem

Recursion tree:

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[\vdots \]

\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \]

\[a \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]

\[a \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \]

\[a^2 \]

\[a^2 \]

\[a^2 \]

\[\vdots \]

\[\vdots \]

\[T(1) \]

\[h = \log_b n \]
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[
\begin{array}{c}

\text{#leaves} = a^h \\
= a^{\log_b n} \\
= n^{\log_b a} \\

T(1) \\
\end{array}
\]

\[n^{\log_b a} T(1) \]
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \quad f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[T(1) \]

\[\Theta(n^{\log_b a}) \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.
Idea of master theorem

Recursion tree:

\[f(n) = \underbrace{a \cdot f(n/b)}_{h = \log_b n} \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[\vdots \]

\[T(1) \]

CASE 2: \((k = 0)\) The weight is approximately the same on each of the \(\log_b n\) levels.

\[\Theta(n^{\log_b a} T(1)) \]

9/21/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Idea of master theorem

\[h = \log_b n \]

Recursion tree:

\[f(n) \]

\[a \]

\[f(n/b) \]

\[f(n/b) \]

\[f(n/b) \]

\[a \]

\[a \]

\[f(n/b^2) \]

\[f(n/b^2) \]

\[f(n/b^2) \]

\[a^2 f(n/b^2) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.
Master Theorem: 3 common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

 • $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Master Theorem: 3 common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a} - \varepsilon)$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).
 Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \geq 0$.
 - $f(n)$ and $n^{\log_b a}$ grow at similar rates.
 Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
Master Theorem: 3 common cases

Compare $f(n)$ with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially faster than $n^{\log_b a}$ (by an n^ε factor),
 - and $f(n)$ satisfies the **regularity condition** that $af(n/b) \leq cf(n)$ for some constant $c < 1$.

Solution: $T(n) = \Theta(f(n))$.
Ex. \(T(n) = 4T(n/2) + n \)
\[
a = 4, \quad b = 2 \quad \Rightarrow \quad n^{\log_b a} = n^2; \quad f(n) = n.
\]
CASE 1: \(f(n) = O(n^{2-\varepsilon}) \) for \(\varepsilon = 1 \).
\[
\therefore \quad T(n) = \Theta(n^2).
\]
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n. \]
Case 1: \(f(n) = O(n^{2-\varepsilon}) \) for \(\varepsilon = 1. \)
\[\therefore T(n) = \Theta(n^2). \]

Ex. \(T(n) = 4T(n/2) + n^2 \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2. \]
Case 2: \(f(n) = \Theta(n^2 \lg^0 n), \) that is, \(k = 0. \)
\[\therefore T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\(a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \)

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \).
\(\therefore \ T(n) = \Theta(n^3). \)
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)

\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)

and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)

\[\therefore T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\lg n \)

\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2/\lg n. \]

Master method does not apply. In particular, for every constant \(\varepsilon > 0, \) we have \(n^\varepsilon = \omega(\lg n). \)
Notes on Master Theorem

• Master Thm was generalized by Akra and Bazzi to cover many more recurrences:

\[T(n) = f(n) + \sum_{i=1}^{k} a_i T(b_i n + h_i(n)) \]

where \(h_i(n) = O\left(\frac{n}{\log^2 n}\right) \)

• See the wikipedia article on Akra–Bazzi method and pointers from there.
Integer multiplication
Arithmetic on Large Integers

- **Addition**: Given \(n \)-bit integers \(a, b \) (in binary), compute \(c = a + b \)
 - \(O(n) \) bit operations.

- **Multiplication**: Given \(n \)-bit integers \(a, b \), compute \(c = ab \)

- **Naïve (grade-school) algorithm**:
 - Write \(a, b \) in binary
 - Compute \(n \) intermediate products
 - Do \(n \) additions
 - Total work: \(\Theta(n^2) \)

\[
\begin{array}{cccccc}
a_{n-1} & a_{n-2} & \cdots & a_0 \\
\times & b_{n-1} & b_{n-2} & \cdots & b_0 \\
\hline
\end{array}
\]

\[\text{2n bit output}\]
Multiplying large integers

• **Divide and Conquer** (warmup):
 - Write \[a = A_1 2^{n/2} + A_0\]
 \[b = B_1 2^{n/2} + B_0\]
 - We want \[ab = A_1 B_1 2^n + (A_1 B_0 + B_1 A_0) 2^{n/2} + A_0 B_0\]
 - Multiply \(n/2\)-bit integers recursively
 - \(T(n) = 4T(n/2) + \Theta(n)\)
 - Alas! this is still \(\Theta(n^2)\) (Master Theorem, Case 1)