Lecture 7

Greedy Graph Algorithms

• Shortest paths
• Minimum Spanning Tree
The (Algorithm) Design Process

1. Work out the answer for some examples
2. Look for a general principle
 – Does it work on *all* your examples?
3. Write pseudocode
4. Test your algorithm by hand or computer
 – Does it work on *all* your examples?
 – Python is a great language for testing algorithms
5. Prove your algorithm is always correct
6. Check running time

Be prepared to go back to step 1!
Writing algorithms

• Clear and unambiguous
 – Test: You should be able to hand it to any student in the class, and have them convert it into working code.

• Homework pitfalls:
 – remember to specify data structures (list, stack, hash table,…)
 – For each function invocation, specify clearly what variables are passed to the function and what the function is returning.
 – writing recursive algorithms: don’t confuse the recursive subroutine with the first call
 – label global variables clearly
Writing proofs

• State upfront the claim you are proving.

• Purpose
 – **Determine for yourself** that algorithm is correct
 – Convince reader

• Who is your audience?
 – **Yourself**
 – Your classmates
 – Not the TA/grader

• **Main goal:** Find your own mistakes
Homework

• Goals:
 – Reinforce and clarify material from lecture
 – Develop your skills
 • Problem-solving
 • Communication

• Make sure you understand the solution
• Use the feedback
• If you don’t understand something, ask!
 – Me or the TA or on Piazza
• Do not copy from other sources
Shortest Paths
Shortest Path Problem

- **Input:**
 - Directed graph $G = (V, E)$.
 - Source node s, destination node t.
 - for each edge e, length $\ell(e) = \text{length of } e$.
 - length of a path = sum of lengths of edges on the path

- **Find:** shortest directed path from s to t.
Dijkstra’s Algorithm: Overview

- Maintain a set of **explored nodes** S whose shortest path distance $d(u)$ from s to u is known.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes
 $$\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$$
- add v to S, and set $d(v) = \pi(v)$.

![Diagram of Dijkstra's algorithm](image)

9/14/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Dijkstra’s Algorithm: Overview

- Maintain a set of explored nodes S whose shortest path distance $d(u)$ from s to u is known.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes
 \[\pi(v) = \min_{e=(u,v):u \in S} (d(u) + \ell(e)) \]
 - add v to S, and set $d(v) = \pi(v)$.

Intuition: like BFS, but with weighted edges

Invariant: $d(u)$ is known for all vertices in S

Shortest path to some u in explored part, followed by a single edge (u, v)
Correctness Proof of Dijkstra’s (Greedy Stays Ahead)

Invariant. For each node $u \in S$, $d(u)$ is the length of the shortest path from s to u.

Proof: (by induction on $|S|$)

- **Base case:** $|S| = 1$; $d(s) = 0$.

- **Inductive hypothesis:** Assume for $|S| = k \geq 1$.
 - Let v be next node added to S, and let (u, v) be the chosen edge.
 - The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
 - Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.
 - $P' + (x, y)$ has length $\geq d(x) + \ell(x, y) \geq \pi(y) \geq \pi(v)$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Implementation

• For unexplored nodes, maintain

\[\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e)) \]

– Next node to explore = node with minimum \(\pi(v) \).

– When exploring \(v \), for each edge \(e = (v,w) \), update

\[\pi(w) = \min\{\pi(w), \pi(v) + \ell(e)\} \]

• Efficient implementation: Maintain a priority queue \(Q \) of unexplored nodes, prioritized by \(\pi(v) \).
Implementation: priority queues

- Maintain a set of items with priorities (\(= \text{“keys”}\))
 - Example: jobs to be performed
- Operations:
 - \text{INSERT}
 - \text{DECREASE-KEY}
 - \text{EXTRACT-MIN}: find and remove item with least key
- Common data structure: heap
 - Time: \(O(\log n)\) per operation
Demo of Dijkstra’s Algorithm

Graph with nonnegative edge lengths:
Demo of Dijkstra’s Algorithm

Initialize:

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
\end{array} \]

\[\pi(v): \begin{array}{cccccc}
0 & \infty & \infty & \infty & \infty & \infty \\
\end{array} \]

\[S: \{ \} \]
Demo of Dijkstra’s Algorithm

EXTRACT-MIN(Q) is A:

- Q: \(A\ B\ C\ D\ E\)
- \(\pi(v)\): 0 \(\infty\) \(\infty\) \(\infty\) \(\infty\)

- S: \{ A \}

Diagram: A connected graph with weights on edges.
Demo of Dijkstra’s Algorithm

Explore edges leaving A:

Q: $\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array}$

$\pi(v)$: $\begin{array}{cccccc}
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array}$

S: $\{A\}$
Demo of Dijkstra’s Algorithm

EXTRACT-MIN(Q) is C:

Q:
\[\begin{array}{cccccc} & A & B & C & D & E \\ \pi(v): & 0 & \infty & \infty & \infty & \infty \\ & 10 & 3 & \infty & \infty & \infty \end{array} \]

\[S: \{ A, C \} \]
Demo of Dijkstra’s Algorithm

Explore edges leaving C:

Q: $\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & & \\
\end{array}$

$\pi(v)$: $\begin{array}{c}
0 \\
10 \\
7 \\
\end{array}$

S: $\{ A, C \}$
Demo of Dijkstra’s Algorithm

EXTRACT-MIN(Q) is E:

- **Q:**
 - A: 0
 - B: ∞
 - C: ∞
 - D: ∞
 - E: ∞

- **π(v):**
 - A: 0
 - B: ∞
 - C: ∞
 - D: ∞
 - E: ∞

- **S:** \{ A, C, E \}

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Demo of Dijkstra’s Algorithm

Explore edges leaving E:

Q:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi(v)$:</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: \{ A, C, E \}
Demo of Dijkstra’s Algorithm

EXTRACT-MIN(Q) is B:

\[Q: \begin{array}{cccccc}
 \text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
 0 & \infty & \infty & \infty & \infty \\
 10 & 3 & \infty & \infty & \\
 7 & 11 & 5 & \\
 7 & 11 & \\
\end{array} \]

\[\pi(v): \text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
 0 & \infty & \infty & \infty & \infty \\
 10 & 3 & \infty & \infty \\
 7 & 11 & 5 \\
 7 & 11 \\
\]

\[S: \{ A, C, E, B \} \]
Demo of Dijkstra’s Algorithm

Explore edges leaving B:

$Q:$

$\pi(v):$

$S: \{ A, C, E, B \}$

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Demo of Dijkstra’s Algorithm

Extract-Min(Q) is D:

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \\
7 & 7 & 11 & 5 & \\
\end{array} \]

\[\pi(v): \begin{array}{cccccc}
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \\
7 & 7 & 11 & 5 & \\
\end{array} \]

\[S: \{ A, C, E, B, D \} \]
Pseudocode for Dijkstra(G, ℓ)

\[
d[s] \leftarrow 0
\]

for each $v \in V - \{s\}$
\[
do \ d[v] \leftarrow \infty; \ \pi[v] \leftarrow \infty
\]

$S \leftarrow \emptyset$

$Q \leftarrow V$ \quad \triangleright Q \text{ is a priority queue maintaining } V - S, \text{ keyed on } \pi[v]

while $Q \neq \emptyset$

\[
do \ u \leftarrow \text{EXTRACT-MIN}(Q)\]

\[
S \leftarrow S \cup \{u\}; \ d[u] \leftarrow \pi[u]
\]

for each $v \in \text{Adjacency-list}[u]$

\[
do \ \text{if } \pi[v] > \pi[u] + \ell(u, v) \]
then $\pi[v] \leftarrow d[u] + \ell(u, v)$

Implicit DECREASE-KEY

\[
9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
L7.24
\]
Analysis of Dijkstra

While $Q \neq \emptyset$

1. **do** $u \leftarrow \text{Extract-Min}(Q)$
2. **S** $\leftarrow S \cup \{u\}$
3. For each $v \in \text{Adj}[u]$
 - **do if** $d[v] > d[u] + \ell(u, v)$
 - **then** $d[v] \leftarrow d[u] + \ell(u, v)$

\[m \] implicit Decrease-Key’s.

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtractMin</td>
<td>n</td>
<td>n</td>
<td>log n</td>
<td>HW</td>
<td>log n</td>
</tr>
<tr>
<td>DecreaseKey</td>
<td>m</td>
<td>1</td>
<td>log n</td>
<td>HW</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>n^2</td>
<td>$m \log n$</td>
<td>$m \log m/n$</td>
<td>$m + n \log n$</td>
<td></td>
</tr>
</tbody>
</table>

† Individual ops are amortized bounds

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Physical intuition

- System of pipes filling with water
 - Vertices are intersections
 - Edge length = pipe length
 - $d(v)$ = time at which water reaches v

- Balls and strings
 - Vertices \mapsto balls
 - Edge e \mapsto string of length $\ell(e)$
 - Hold ball s up in the air
 - $d(v) = (\text{height of } s) - (\text{height of } v)$

- Nature uses greedy algorithms
Review

• Is Dijkstra’s algorithm correct with **negative** edge weights?
 Give either
 – a proof of correctness, or
 – an example of a graph where Dijkstra fails
Further reading

- Erickson’s lecture notes:
 http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/21-sssp.pdf
Minimum Spanning Tree
Minimum spanning tree (MST)

Input: A connected undirected graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$.
- For now, assume all edge weights are distinct.

Definition: A spanning tree is a tree that connects all vertices.

Output: A spanning tree T of minimum weight:

$$w(T) = \sum_{(u, v) \in T} w(u, v).$$
Example of MST

![MST Diagram]
Example of MST
Greedy Algorithms for MST

- **Kruskal's:** Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.

- **Reverse-Delete:** Start with $T = E$. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.

- **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.

- **Borůvka’s:** Start with $T = \emptyset$. At each round, add the cheapest edge leaving each connected component of T.

Cycles and Cuts

• **Cycle:** Set of edges of the form \((a,b),(b,c),\ldots,(y,z),(z,a)\).

 ![Graph Diagram]

 - **Cycle:** \(C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)\)

• **Cut:** a subset of nodes \(S\). The corresponding **cutset** \(D\) is the subset of edges with exactly one endpoint in \(S\).

 ![Graph Diagram]

 - **Cut:** \(S = \{4, 5, 8\}\)
 - **Cutset:** \(D = (5,6), (5,7), (3,4), (3,5), (7,8)\)
Claim. A cycle and a cutset intersect in an even number of edges.

Proof: A cycle has to leave and enter the cut the same number of times.
Cut and Cycle Properties

- **Cut property.** Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.

- **Cycle property.** Let C be a cycle, and let f be the max weight edge in C. Then the MST does not contain f.

![Diagram illustrating the cut and cycle properties](image-url)
Proof of Cut Property

Cut property: Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST T^* contains e.

Proof: (exchange argument)

- Suppose e does not belong to T^*.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say f, that is in both C and D.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$. Contradiction."
Proof of Cycle Property

Cycle property: Let C be a cycle in G. Let f be the max weight edge in C. Then the MST T^* does not contain f.

- **Proof:** (exchange argument)
 - Suppose f belongs to T^*.
 - Deleting f from T^* creates a cut S in T^*.
 - Edge f is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say e, that is in both C and D.
 - $T' = T^* \cup \{ e \} - \{ f \}$ is also a spanning tree.
 - Since $c_e < c_f$, cost(T') < cost(T^*). Contradiction. □
Greedy Algorithms for MST

• **Kruskal's**: Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.

• **Reverse-Delete**: Start with $T = E$. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.

• **Prim's**: Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.

• **Borůvka's**: Start with $T = \emptyset$. At each round, add the cheapest edge leaving each connected component of T.
Prim's Algorithm: Correctness

• Prim's algorithm. [Jarník 1930, Prim 1959]
 – Apply cut property to S.
 – When edge weights are distinct, every edge that is added must be in the MST
 – Thus, Prim’s algorithm outputs the MST
Correctness of Kruskal

- [Kruskal, 1956]: Consider edges in ascending order of weight.
 - **Case 1**: If adding e to T creates a cycle, discard e according to cycle property.

 - **Case 2**: Otherwise, insert $e = (u, v)$ into T according to cut property where $S =$ set of nodes in u's connected component.