Algorithm Design and Analysis

| ECTURE 6

%‘}‘ Greedy Algorithms
* Interval Scheduling

@ﬁb - Interval Partitioning
 Scheduling to Minimize

Lateness

Sofya Raskhodnikova

/////////

Optimization problems

« Coming up: 3 design paradigms
— Greedy
— Divide and Conquer
— Dynamic Programming
* lllustrated on optimization problems
— Set of feasible solutions

— Goal: find the “best” solution
according to some objective function

9/12/2016

Design technique #1.
Greedy Algorithms

/////////

Greedy Algorithms

 Build up a solution to an optimization problem at
each step shortsightedly choosing the option that
currently seems the best.
— Sometimes good
— Often does not work

 Key to designing greedy algorithms:

find structure that ensures you don’t
leave behind other options

9/12/2016
L6.4

Interval Scheduling Problem

-Job j starts at s; and finishes at f;.
*Two jobs are compatible if they do not overlap.

*Find: maximum subset of mutually compatible jobs.

a

!b!

- 5 » Time
0 1 2 3 4 5 6 7 8 9 10 11

9/12/2016

L6.5

Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it Is
compatible with the ones already taken.

- Earliest start time: ascending order of s;.
- Earliest finish time: ascending order of f;.
- Shortest interval: ascending order of (f; —s;).

* Fewest conflicts: For each job j, count the number of
conflicting jobs c;. Schedule in ascending order of c;.

9/12/2016
L6.6

Greedy: Counterexamples

for earliest start time

for shortest interval

for fewest conflicts

9/12/2016
L6.7

Formulating an Algorithm

* Input: arrays of start and finishing times
— 54, Sy, ...,5,
— fl’ fz,..., fn

* Input length?
— 2n =0O(n)

/////////
L6.8

Greedy Algorithm

Earliest finish time: ascending order of f..
Sort jobs by finish times so that

£ < f,< ... < £,

A« ¢ // Set of jobs selected so far

for j =1 ton
if (job j compatible with A)
A« AU {]}
return A

 Implementation:

— How do we quickly test if j is compatible with A?
— Store job J* that was added last to A.
—Job J Is compatible with A If s; > ..

9/12/2016

>

L6.9

file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/04demo-interval-scheduling.ppt#1. Interval Scheduling
file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/04demo-interval-scheduling.ppt#1. Interval Scheduling

O(n log n) time; O(n) space.

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.10

Analysis: Greedy Stays Ahead

Theorem. Greedy algorithm’s solution IS optimal.
Proof strategy (by contradiction):

» Suppose greedy Is not optimal.

* Consider an optimal solution...

— which one?

— optimal solution that agrees with the greedy solution for
as many initial jobs as possible

 Look at the first place in the list where optimal
solution differs from the greedy solution

— Show a new optimal solution that agrees more w/ greedy
— Contradiction!

9/12/2016

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.
—Leti, i, .. ik denote set of jobs selected by greedy.
—Letj,,j,, - j,, D€ the optimal solutlon with

L1 = Julz = Jo e by = Jr
for the largest possible value of r.

_ 04
Ifr < k? then ..." job i, finishes before j,.,
Gr‘eedY: il i2 ip i |.r'+1 iI"+2

oer: NG [B0 pel —

I why not replace job j,.4
9/12/2016 with job I.,4?

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution Is optimal.

Proof (by contradiction): Suppose greedy not optimal.
—Leti, i, .. ik denote set of jobs selected by greedy.

—Letj,j, ... j, bethe optlmal solutlon with solution still

feasible and

L =Jul2 = J2 0 lr = Jr optimal, but

for the largest possible value of r contradicts
—Ifr < k, then ...? L _maximality of r.

job i.,; finishes before j,.,4

|
|

Greedy: iy i (A It
|

OPT: Ji ie P ke R

9/12/2016

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution Is optimal.

Proof (by contradiction): Suppose greedy not optimal.
—Leti,, i, ... i, denote set of jobs selected by greedy.

—Letj,,j, - j,, b€ the optimal solution with
il :jl' iz :jz, "'liT :jT COUId it be
for the largest possible value of r. that r =k
—If r < k, then we get contradiction. but k < m?

Gr‘eedy: il |.2 ir‘ i |.r'+1 i l

OPT: Ji ie P ke R

9/12/2016

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution Is optimal.

Proof (by contradiction):

Suppose greedy not optimal.

—Leti, i, .. ik denote set of jobs selected by greedy.
—Letj,,j,, .. j,,, D€ the optlmal solutlon with

l1 = J1u 12
for the largest possible va

—If r < k, we get a contrac
pecause we get an optima

= J2, s by = Jy
ue of r

Iction by replacing j,,; with i, 4

solution with larger r.

—Ifr = k but m > k, we get a contradiction

pecause greedy algorithm

9/12/2016

pefore all jobs were considered.

stopped

Greedy:

OPT: J1 J2

Alternate Way to See the Proof

e |Induction statement

P(k): There is an optimal solution
that agrees with the greedy solution
In the first k jobs.

e P(n) Is what we want to prove.
» Base case: P(0)
* We essentially proved the induction step...

Interval Partitioning

Interval Partitioning

* Lecture j starts at s; and finishes at f ..

¢ IﬂpUt S1, S and fl' ""le'

e Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time In the same room.

E.0.: 10 lectures are scheduled in 4 classrooms.

s f i

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30 .
9/12/2016 Time

Interval Partitioning

* Lecture j starts at s; and finishes at f ..

¢ IﬂpUt S1, S and fl' ""le'

e Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time In the same room.

E.0.: Same lectures scheduled in 3 classrooms.

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30)
9/12/2016 Time

| ower Bound

« Definition. The depth of a set of open intervals is the maximum
number that contain any given time.

« Key lemma. Number of classrooms needed > depth.

* E.g.: Depth of this schedule =3 = this schedule is optimal.
\

a, b, c all contain 9:30

3 c d f J
2 b g i
1 a e h

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

« Q: Is it always sufficient to have number of classrooms = depth?

9/12/2016

Greedy Algorithm

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Sort intervals by starting time so that s; < s, < ...
d« 0 /[Number of allocated classrooms
for j =1 ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¢« d+1

IA
0]

- Implementation. O(n log n) time; O(n) space.
— For each classroom, maintain the finish time of the last job added.

— Keep the classrooms in a priority queue
 Using a heap, main loop takes O(n log d) time

9/12/2016
L6.21

Analysis: Structural Argument

Observation. Greedy algorithm never schedules two
Incompatible lectures in the same classroom.

* Theorem. Greedy algorithm is optimal.

» Proof: Let d = number of classrooms allocated by
greedy.

— Classroom d is opened because we needed to schedule a
lecture, say j, that is incompatible with all d — 1 last lectures
In other classrooms.

— These d lectures each end after s;.

— Since we sorted by start time, they start no later than s;.
— Thus, we have d lectures overlapping at time s; + «.

— Key lemma = all schedules use > d classrooms. =

9/12/2016 L6.22

Duality

99'

* Qur first example of “duality

 High-level overview of proof of correctness:
— ldentify obstacles to scheduling in few classrooms
» Sets of overlapping lectures

— Show that our algorithm’s solution matches some
obstacle

* If our solution uses d classrooms,
then there iIs a set of d overlapping lectures

— Conclude that our solution cannot be improved

9/12/2016

Scheduling to minimize lateness

/12]
9/12/2016 16.24

Scheduling to Minimizing Lateness

Minimizing lateness problem.

» Single resource processes one job at a time.

Job j requires t; units of processing time and is due at time d..

I j starts at time s;, it finishes at time f, = s; + ¢,

Lateness: /,=max {0, f-d }.

Goal: schedule all jobs to minimize maximum lateness L = max /..
1]2[3]4l5 6

T 3 2 1 4 3 2

n68991415

lateness = 2 lateness =0 max lateness = 6

d;=9 d,=8 ds = 15 d, =6 dg = 14 d, =9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9/12/2016 L6.25

Greedy strategies?

///////// 16.26

Minimizing Lateness: Greedy Strategies

Greedy template: consider jobs in some order.

« [Shortest processing time first] Consider jobs in ascending
order of processing time t;.

» [Earliest deadline first] Consider jobs in ascending order of
deadline d;.

- [Smallest slack] Consider jobs in ascending order of slack d; - t;.

9/12/2016 L6.27

Minimizing Lateness: Greedy Strategies

Greedy template: consider jobs in some order.
 [Shortest processing time first] Consider jobs in ascending order

of processing time t;.

1 10 counterexample
. O

- [Smallest slack] Consider jobs in ascending order of slack d; - t;.

counterexample
EN: «

9/12/2016 16.28

Minimizing Lateness: Greedy Algorithm

o [Earliest deadline first]

Sort n jobs by deadline so that d;, < d, < .. £ d,

t« 0

for =1 ton
Assign job j to interval [t, t + t,]
s; <« t, £, <« t + t
t < t + ¢t

output intervals [s;, £,]

max lateness =1

|
d, =6 d,=8 dy=9 d, =9 dg = 14 ds = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9/12/2016 L6.29

Minimizing Lateness: No Idle Time

» Observation. There exists an optimal schedule with no
Idle time.

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11
d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11

« Observation. The greedy schedule has no idle time.

/12]
9/12/2016 L6.30

Minimizing Lateness: Inversions

» Aninversion in schedule S is a pair of jobs I and j such that d; < d|

but j scheduled before I. l inversion

v

« Observation. Greedy schedule has no inversions.

» Observation. If a schedule (with no idle time) has an inversion,
It has one with a pair of inverted jobs scheduled consecutively.

9/12/2016 L6.31

Minimizing Lateness: Inversions

» An inversion in schedule S is a pair of jobs I and j such that d; < d|

but j scheduled before i. l inversion l f

f
« Claim. Swapping two adjacent, inverted jobs reduces the number
of inversions by one and does not increase the max lateness.

* Proof: Let/ be the lateness before the swap, and let 7' be the

lateness afterwards. ¢ = t'-d, (definition)

— U =/{ forallk =1, = f,—d, (j finishes at time f,)
- i< < f—d (d; <d))

— If jobjis late: < 7 (definition)

9/12/2016 L6.32

Minimizing Lateness: Analysis

Theorem. Greedy schedule S Is optimal.

Proof: Define S* to be an optimal schedule that
has the fewest number of inversions.

« Can assume S* has no idle time.

« If S* has no inversions, then S = S*.

 |f S* has an inversion, let i-) be an adjacent inversion.

— Swapping I and j does not increase the maximum lateness and
strictly decreases the number of inversions.

— This contradicts the definition of S*. =

/12]
9/12/2016 16.33

Summary: Greedy Analysis Strategies

» Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any other
algorithm'’s.

« Structural. Discover a simple "structural” bound asserting that
every possible solution must have a certain value. Then show that
your algorithm always achieves this bound.

« Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its quality.

9/12/2016
L6.34

