Lecture 6
Greedy Algorithms
• Interval Scheduling
• Interval Partitioning
• Scheduling to Minimize Lateness

Sofya Raskhodnikova
Optimization problems

• Coming up: 3 design paradigms
 – Greedy
 – Divide and Conquer
 – Dynamic Programming

• Illustrated on optimization problems
 – Set of feasible solutions
 – Goal: find the “best” solution according to some objective function
Design technique #1: Greedy Algorithms
Greedy Algorithms

- Build up a solution to an optimization problem at each step shortsightedly choosing the option that currently seems the best.
 - Sometimes good
 - Often does not work
- Key to designing greedy algorithms: find structure that ensures you don’t leave behind other options

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Interval Scheduling Problem

• Job \(j \) starts at \(s_j \) and finishes at \(f_j \).
• Two jobs are **compatible** if they do not overlap.
• **Find**: maximum subset of mutually compatible jobs.

![Interval Scheduling Problem Diagram](image-url)
Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it is compatible with the ones already taken.

- **Earliest start time:** ascending order of s_j.
- **Earliest finish time:** ascending order of f_j.
- **Shortest interval:** ascending order of $(f_j - s_j)$.
- **Fewest conflicts:** For each job j, count the number of conflicting jobs c_j. Schedule in ascending order of c_j.
Greedy: Counterexamples

for earliest start time
for shortest interval
for fewest conflicts
Formulating an Algorithm

• Input: arrays of start and finishing times
 – s_1, s_2, …, s_n
 – f_1, f_2, …, f_n

• Input length?
 – $2n = \Theta(n)$
Greedy Algorithm

• **Earliest finish time:** ascending order of f_i.

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

A $\leftarrow \emptyset$ // Set of jobs selected so far
for $j = 1$ to n
 if (job j compatible with A)
 A \leftarrow A $\cup \{j\}$
return A

• Implementation:

 – How do we quickly test if j is compatible with A?
 – Store job j^* that was added last to A.
 – Job j is compatible with A if $s_j \geq f_{j^*}$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Time and space analysis

Sort jobs by finish times so that
\[f_1 \leq f_2 \leq \ldots \leq f_n. \]

\[A \leftarrow (\text{empty}) \quad \// \text{Queue of selected jobs} \]
\[j^{*} \leftarrow 0 \]
for \(j = 1 \) to \(n \)
 if \((f_{j^{*}} \leq s_j) \)
 enqueue(\(j \) onto \(A \))
 \(j^{*} \leftarrow j \)

return \(A \)

\(O(n \log n) \) time; \(O(n) \) space.
Theorem. Greedy algorithm’s solution is optimal.

Proof strategy (by contradiction):

• Suppose greedy is not optimal.
• Consider an optimal solution…
 – which one?
 – optimal solution that agrees with the greedy solution for as many initial jobs as possible
• Look at the first place in the list where optimal solution differs from the greedy solution
 – Show a new optimal solution that agrees more w/ greedy
 – Contradiction!
Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- Let $i_1, i_2, \ldots i_k$ denote set of jobs selected by greedy.
- Let $j_1, j_2, \ldots j_m$ be the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.
- If $r < k$, then …?
Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

– Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.

– Let j_1, j_2, \ldots, j_m be the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$
 for the largest possible value of r.

– If $r < k$, then …?

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- Let \(i_1, i_2, \ldots, i_k \) denote set of jobs selected by greedy.
- Let \(j_1, j_2, \ldots, j_m \) be the optimal solution with
 \[i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r \]
 for the largest possible value of \(r \).
- If \(r < k \), then we get contradiction.

\[\text{Greedy:} \quad \begin{array}{cccc}
 i_1 & i_2 & i_r & i_{r+1}
\end{array} \]

\[\text{OPT:} \quad \begin{array}{cccc}
 j_1 & j_2 & j_r & i_{r+1}
\end{array} \]

Could it be that \(r = k \) but \(k < m \)?

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
- Let j_1, j_2, \ldots, j_m be the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.
- If $r < k$, we get a contradiction by replacing j_{r+1} with i_{r+1} because we get an optimal solution with larger r.
- If $r = k$ but $m > k$, we get a contradiction because greedy algorithm stopped before all jobs were considered.

9/12/2016
Alternate Way to See the Proof

- Induction statement
 \[P(k) : \text{There is an optimal solution that agrees with the greedy solution in the first } k \text{ jobs.} \]

- \(P(n) \) is what we want to prove.

- Base case: \(P(0) \)

- We essentially proved the induction step…
Interval Partitioning
Interval Partitioning

- Lecture j starts at s_j and finishes at f_j.
- Input: s_1, \ldots, s_n and f_1, \ldots, f_n.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- E.g.: 10 lectures are scheduled in 4 classrooms.

9/12/2016
Interval Partitioning

- Lecture j starts at s_j and finishes at f_j.
- **Input**: s_1, \ldots, s_n and f_1, \ldots, f_n.
- **Goal**: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- **E.g.**: Same lectures scheduled in 3 classrooms.

![Diagram of lecture scheduling with time slots and classrooms labeled a, b, c, d, e, f, g, h, i, j.]}
Lower Bound

- **Definition.** The depth of a set of open intervals is the maximum number that contain any given time.
- **Key lemma.** Number of classrooms needed \geq depth.
- **E.g.:** Depth of this schedule $= 3 \Rightarrow$ this schedule is optimal.

- **Q:** Is it always sufficient to have number of classrooms $= \text{depth}$?
Greedy Algorithm

Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 ≤ s_2 ≤ ... ≤ s_n.
d ← 0     // Number of allocated classrooms
for j = 1 to n
  if (lecture j is compatible with some classroom k)
    schedule lecture j in classroom k
  else
    allocate a new classroom d + 1
    schedule lecture j in classroom d + 1
    d ← d + 1
```

• Implementation. \(O(n \log n) \) time; \(O(n) \) space.
 – For each classroom, maintain the finish time of the last job added.
 – Keep the classrooms in a priority queue
• Using a heap, main loop takes \(O(n \log d) \) time
Analysis: Structural Argument

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

- **Theorem.** Greedy algorithm is optimal.
- **Proof:** Let $d =$ number of classrooms allocated by greedy.
 - Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with all $d - 1$ last lectures in other classrooms.
 - These d lectures each end after s_j.
 - Since we sorted by start time, they start no later than s_j.
 - Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
 - Key lemma \Rightarrow all schedules use $\geq d$ classrooms. □
Duality

• Our first example of “duality”!

• High-level overview of proof of correctness:
 – Identify obstacles to scheduling in few classrooms
 • Sets of overlapping lectures
 – Show that our algorithm’s solution matches some obstacle
 • If our solution uses d classrooms, then there is a set of d overlapping lectures
 – Conclude that our solution cannot be improved

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Scheduling to minimize lateness
Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{ 0, f_j - d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$.
Greedy strategies?
Greedy template: consider jobs in some order.

- **[Shortest processing time first]** Consider jobs in ascending order of processing time t_j.

- **[Earliest deadline first]** Consider jobs in ascending order of deadline d_j.

- **[Smallest slack]** Consider jobs in ascending order of slack $d_j - t_j$.
Minimizing Lateness: Greedy Strategies

Greedy template: consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
Minimizing Lateness: Greedy Algorithm

• [Earliest deadline first]

Sort \(n \) jobs by deadline so that \(d_1 \leq d_2 \leq \ldots \leq d_n \)

\[
\begin{align*}
t & \leftarrow 0 \\
\text{for } j = 1 \text{ to } n & \\
& \quad \text{Assign job } j \text{ to interval } [t, t + t_j] \\
& \quad s_j \leftarrow t, f_j \leftarrow t + t_j \\
& \quad t \leftarrow t + t_j \\
\text{output intervals } [s_j, f_j]
\end{align*}
\]

max lateness = 1

<table>
<thead>
<tr>
<th>(d_1 = 6)</th>
<th>(d_2 = 8)</th>
<th>(d_3 = 9)</th>
<th>(d_4 = 9)</th>
<th>(d_5 = 14)</th>
<th>(d_6 = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Minimizing Lateness: No Idle Time

• **Observation.** There exists an optimal schedule with no idle time.

• **Observation.** The greedy schedule has no idle time.
Minimizing Lateness: Inversions

- An **inversion** in schedule S is a pair of jobs i and j such that $d_i < d_j$ but j scheduled before i.

- **Observation.** Greedy schedule has no inversions.

- **Observation.** If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
Minimizing Lateness: Inversions

• An **inversion** in schedule S is a pair of jobs i and j such that $d_i < d_j$ but j scheduled before i.

<table>
<thead>
<tr>
<th>before swap</th>
<th>j</th>
<th>i</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>after swap</td>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Claim.** Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

• **Proof:** Let ℓ be the lateness before the swap, and let ℓ' be the lateness afterwards.

 $\ell'_k = \ell_k$ for all $k \neq i, j$

 $\ell'_i \leq \ell_i$

 If job j is late:

 $\ell'_j = f'_j - d_j$ (definition)

 $= f_i - d_j$ (j finishes at time f_i)

 $\leq f_i - d_i$ ($d_i < d_j$)

 $\leq \ell_i$ (definition)
Minimizing Lateness: Analysis

Theorem. Greedy schedule S is optimal.

Proof: Define S^* to be an optimal schedule that has the fewest number of inversions.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let i-j be an adjacent inversion.
 - Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions.
 - This contradicts the definition of S^*. □
Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.