Lecture 5
Graphs
• Applications of DFS
• Topological sort
• Strongly connected components

Sofya Raskhodnikova
Review

• If we run **DFS** on an **undirected** graph, can there be an edge \((u, v)\)
 – where \(v\) is an ancestor of \(u\)? (‘back edge’)
 – where \(v\) is a sibling of \(u\)? (‘cross edge’)

• Same questions with a **directed** graph?

• Same questions with a **BFS** tree
 – directed?
 – undirected?
Application 1 of DFS: Topological Sort
Directed Acyclic Graphs

Def. A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![A DAG and a topological ordering](image-url)
Precedence Constraints

Def. An DAG is a directed graph that contains no directed cycles.

Typical “meaning”: Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
- Getting dressed
Recall from book

- Every DAG has a topological order

- If G graph has a topological order, then G is a DAG.
Review

• Suppose your run DFS on a DAG $G=(V,E)$
• True or false?
 – Sorting by discovery time gives a topological order
 – Sorting by finish time gives a topological order

Proof of correctness:

Lemma: If G is a DAG and (u,v) is an edge, then $u.f > v.f$.

Proof on board.
Generalizations

• Which of the following is always true in an arbitrary graph?
 – If $u \leadsto v$ and $v \leadsto u$ then $u.f > v.f$
 – If $u \leadsto v$ and not($v \leadsto u$) then $u.f > v.f$
 – If $u.f > v.f$ then $u \leadsto v$

• **Key Lemma:** In any graph G, if $u \leadsto v$ but u is not reachable from v, then $u.f > v.f$.

• **Proof:** Same as for DAGs.
Application 2 of DFS: Strongly Connected Components
Strongly Connected Components

- **Undirected graphs:**
 - u, v are **connected** if there is a path between them.
- **Directed graphs:**
 - u, v are **strongly connected** if there are paths $u \Rightarrow v$ and $v \Rightarrow u$
- **SCC(u):** set of vertices strongly connected to u
- **Observation:** Two SCC’s either **disjoint** or **equal**.
How do we find all SCC’s?

• First idea:
 – Pick a vertex \(u \)
 – Run DFS (or BFS) from \(u \) to find all vertices reachable from \(u \)
 – How do we find vertices that can reach \(u \)?

• Look at reverse graph \(G^{rev} \)
 • Same vertices: \(V \)
 • All edges are reversed: \((u, v)\) becomes \((v, u)\)

• Run DFS or BFS in \(G^{rev} \) to find all vertices that can reach \(u \)
Overall algorithm

• Maintain function $\text{Comp}: V \rightarrow \{0, \ldots, n\}$
 – An array, or a field for each vertex
 – Initialize to 0 for all v

• $i = 1$

• For each vertex v
 – if $v.\text{scc}=0$
 • $\text{BFS}(G,v)$
 • $\text{BFS}(G^{\text{rev}},v)$
 • For all vertices reachable from v in both G and G^{rev}
 – $v.\text{scc}=i$
 • $i = i + 1$

Time $O(n(m + n))$ in the worst case
Fast SCC

Algorithm \(SCC_{fast}(G) \)

– Call DFS(\(G \)) to get finishing times \(u.f \) for all \(u \)

– Compute \(G^{rev} \)

– Call DFS(\(G^{rev} \)), with one modification:
 • in main loop, consider vertices in decreasing order of \(u.f \)

– Output vertices of each tree in DFS forest as separate SCC

• Running time?
• Correctness?

Could we use BFS…
• For the first pass (on \(G \))?
• For the second pass (on \(G^{rev} \))?
Example

- Numbers: discover/finish times of first DFS
- Red arrows: Forest of DFS(G^{rev})
- Red ovals: roots of second DFS forest
Proof of Correctness

- Fix graph G on n vertices
- For each SCC C in G, define
 - $f(C) =$ latest finish time (from first DFS) in C
- Order the SCC’s C_1, C_2, … in decreasing order of $f(C)$

Theorem: The algorithm outputs each of the C_i correctly.

- Proof by induction on i
 - $i = 1$: Second DFS will start at a vertex x in C_1
 - There are no edges in G^{rev} leaving C_1 (by key lemma)
 - So DFS-Visit(x) will visit exactly the vertices of C_1
 - For $i > 1$:
 - Suppose C_1, C_2, … C_{i-1} are correctly output. Then
 - ith DFS call starts from within C_i.
 - All vertices of C_i will be reached.
 - Edges in G^{rev} only leave C_i towards C_j with $j < i$.
 - So C_i is output correctly. QED.
Exercise

• Consider the SCC graph G_{SCC} of G:
 – vertices are SCC’s of G
 – edge $(C,C’)$ means G has an edge (u,v) with u in C and v in $C’$

• Prove that G_{SCC} is a DAG.
Exercise

Consider the following modification to the algorithm for SCC:

- Use G instead of G^{rev} in 2^{nd} DFS, but scan vertices in order of increasing finish times from the 1^{st} DFS.

Is this algorithm correct?