Lectures 16
Maximum Flow
• Applications of Max Flow
 • Bipartite matching
 • Edge-disjoint paths

Sofya Raskhodnikova

S. Raskhodnikova; based on slides by A. Smith and K. Wayne.
Last time: Ford-Fulkerson

1. Find max s-t flow & min s-t cut in $O(mnC)$ time
 - All capacities are integers from 1 to C

2. **Duality**: Max flow value = min cut capacity

3. **Integrality**: If capacities are integers, then FF algorithm produces an integral max flow
Today: Applications when C=1

- Maximum bipartite matching
 - Reducing MBM to Max Flow
 - Hall’s theorem

- Edge-disjoint paths
 - another reduction to Max Flow

Still to Finish: faster algorithm for large C (capacity scaling)
7.5 Bipartite Matching

Application of Max Flow With $C=1$
Matching

- Input: undirected graph $G = (V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most 1 edge in M.
- Max matching: find a maximum cardinality matching.
Bipartite Matching

Bipartite matching.
- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a maximum cardinality matching.

Matching:
$1-2', 3-1', 4-5'$
Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a maximum cardinality matching.
Reductions

Roughly: Problem A reduces to problem B if there is a simple algorithm for A that uses an algorithm for problem B as a subroutine.

Usually:
- Given an instance x of problem A
 - we find an instance x' of problem B
- Solve x'
- Use the solution to build a solution to x

Useful skill: quickly identifying problems where existing solutions may be applied.
- Good programmers do this all the time
Reduction: Given a bipartite graph \(G = (L \cup R, E) \),

- Direct all edges in \(E \) from \(L \) to \(R \), and assign capacity 1 to each edge.
- Add source \(s \), and capacity 1 edges from \(s \) to each node in \(L \).
- Add sink \(t \), and capacity 1 edges from each node in \(R \) to \(t \).
- Output the resulting digraph \(G' = (L \cup R \cup \{s, t\}, E') \).
Theorem. Cardinality of max matching in $G = \text{value of max flow in } G'$.

Proof: We need two statements

- max matching in $G \leq \text{max flow in } G'$

 Equivalently: every matching of cardinality k in G can be transformed into flow of value k in G'.

- max matching in $G \geq \text{max flow in } G'$

 Equivalently: every flow of value k in G' can be transformed into a matching of cardinality k in G.
Theorem. Cardinality of max matching in $G = \text{value of max flow in } G'$.

Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has value k. □
Theorem. Cardinality of max matching in G = value of max flow in G'.

Pf. \geq

- Let k be the max flow value in G'.
- **Integrality theorem** \Rightarrow there is an integral flow f of value k in G'
- All capacities are 1 \Rightarrow f is 0-1.
- Consider M = set of edges from L to R with $f(e) = 1$.
 - each node in L and R participates in at most one edge in M
 - $|M| = k$: consider flow across cut $(L \cup s, R \cup t)$

Bipartite Matching: Proof of Correctness

Graphical representation of G' and G.
Exercises

• Give an example where the greedy algorithm for MBM fails.

• How bad can the greedy algorithm be, i.e. how far can the size of the maximum matching (global max) be from the size of the greedy matching (local max)?

• What do augmenting paths look like in this max-flow instance?
Perfect Matching

Def. A matching $M \subseteq E$ is **perfect** if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have $|L| = |R|$.
- What other conditions are necessary?
- What conditions are sufficient?
Notation. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in $N(S)$.

No perfect matching:

$S = \{ 2, 4, 5 \}$

$N(S) = \{ 2', 5' \}$.
Marriage Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. Then, G has a perfect matching iff

$$|N(S)| \geq |S| \text{ for all subsets } S \subseteq L.$$

Pf. ⇒ This was the previous observation.

No perfect matching:
$S = \{ 2, 4, 5 \}$

$N(S) = \{ 2', 5' \}$.

Marriage Theorem
Proof of Marriage Theorem

Pf. Suppose \(G \) does not have a perfect matching.

- Formulate as a max flow problem with \(\infty \) constraints on edges from \(L \) to \(R \) and let \((A, B) \) be min cut in \(G' \).

- **Key property \#1** of \(G' \): min-cut cannot use \(\infty \) edges.
 So \(\text{cap}(A, B) = |L \cap B| + |R \cap A| \)

- **Key property \#2**: integral flow still corresponds to a matching
 - By max-flow min-cut, \(\text{cap}(A, B) < |L| \).

- Choose \(S = L \cap A \).
 - Since min cut can't use \(\infty \) edges: \(N(S) \subseteq R \cap A \).
 - \(|N(S)| \leq |R \cap A| = \text{cap}(A, B) - |L \cap B| < |L| - |L \cap B| = |S|. \)

\[\begin{align*}
 G' \\
 S = \{2, 4, 5\} \\
 L \cap B = \{1, 3\} \\
 R \cap A = \{2', 5'\} \\
 N(S) = \{2', 5'\}
\end{align*} \]
Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path (not covered in class): $O(m n^{1/2})$.

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: $O(n^4)$. [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]
- Recently: better algorithms for dense graphs, e.g. $O(n^{2.38})$ [Harvey, 2006]
A bipartite graph is k-regular if $|L|=|R|$ and every vertex (regardless of which side it is on) has exactly k neighbors.

Prove or disprove: every k-regular bipartite graph has a perfect matching.
7.6 Disjoint Paths

Application of Max Flow With $C=1$
Problem. Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
Disjoint path problem. Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are *edge-disjoint* if they have no edge in common.

Ex: communication networks.
Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. \(\leq \)

- Suppose there are \(k \) edge-disjoint paths \(P_1, \ldots, P_k \).
- Set \(f(e) = 1 \) if \(e \) participates in some path \(P_i \); else set \(f(e) = 0 \).
- Since paths are edge-disjoint, \(f \) is a flow of value \(k \).
Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. \geq

- Suppose max flow value is k.
- **Integrality** theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with $f(s, u) = 1$.
 - by conservation, there exists an edge (u, v) with $f(u, v) = 1$
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired
Network connectivity problem. Given a digraph $G = (V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if each s-t paths uses at least one edge in F. (That is, removing F would make t unreachable from s.)
Edge-Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤
- Suppose the removal of $F \subseteq E$ disconnects t from s, and $|F| = k$.
- All s-t paths use at least one edge of F. Hence, the number of edge-disjoint paths is at most k. ▪
Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut ⇒ cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s. •