Lecture 6
Greedy Algorithms
- Minimum Spanning Tree
 - Kruskal’s, Prim’s
 - Reverse-Delete
- Clustering
- Huffman Codes

Sofya Raskhodnikova
Review Question

• Is Dijkstra’s algorithm correct with negative edge weights?
Minimum Spanning Tree
Cut property. Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be a cycle, and let f be the max weight edge in C. Then the MST does not contain f.
Review Questions

Let G be a connected undirected graph with distinct edge weights. Answer true or false:

- Let e be the cheapest edge in G. The MST of G contains e.

- Let e be the most expensive edge in G. The MST of G does not contain e.

Let G be a connected undirected graph with distinct edge weights. Answer true or false:

- Let e be the cheapest edge in G. The MST of G contains e.

 (Answer: True, by the Cut Property)

- Let e be the most expensive edge in G. The MST of G does not contain e.

 (Answer: False. Counterexample: if G is a tree, all its edges are in the MST.)
Greedy Algorithms for MST

• **Kruskal's:** Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.

• **Reverse-Delete:** Start with $T = E$. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.

• **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in T.
Prim's Algorithm: Correctness

• Prim's algorithm. [Jarník 1930, Prim 1959]
 – Apply cut property to T.
 – When edge weights are distinct, every edge that is added must be in the MST.
 – Thus, Prim’s algorithm outputs the MST.
Correctness of Kruskal

- [Kruskal, 1956]: Consider edges in ascending order of weight.
 - **Case 1**: If adding e to T creates a cycle, discard e according to cycle property.
 - **Case 2**: Otherwise, insert $e = (u, v)$ into T according to cut property where $S = \text{set of nodes in } u's\ connected\ component$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

L6.9
Lexicographic Tiebreaking

- To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties.

- **Impact.** Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.

- **Implementation.** Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

```java
boolean less(i, j) {
    if (cost(e_i) < cost(e_j)) return true
    else if (cost(e_i) > cost(e_j)) return false
    else if (i < j) return true
    else return false
}
```

e.g., if all edge costs are integers, perturbing cost of edge e_i by i / n^2
Implementing MST algorithms

- **Prim**: similar to Dijkstra

- **Kruskal**:
 - Requires efficient data structure to keep track of “islands”: Union-Find data structure
Implementation of Prim(G, w)

IDEA: Maintain $V - S$ as a priority queue Q (as in Dijkstra). Key each vertex in Q with the weight of the least-weight edge connecting it to a vertex in S.

$Q \leftarrow V$

$key[v] \leftarrow \infty$ for all $v \in V$

$key[s] \leftarrow 0$ for some arbitrary $s \in V$

while $Q \neq \emptyset$

\[
\text{do } u \leftarrow \text{EXTRACT-MIN}(Q)
\]

\[
\text{for each } v \in \text{Adjacency-list}[u]
\]

\[
\text{do if } v \in Q \text{ and } w(u, v) < key[v]
\]

\[
\text{then } key[v] \leftarrow w(u, v) \quad \triangleright \quad \text{DECREASE-KEY}
\]

\[
\pi[v] \leftarrow u
\]

At the end, $\{(v, \pi[v])\}$ forms the MST.
Analysis of Prim

\(Q \leftarrow V \)
\(key[v] \leftarrow \infty \) for all \(v \in V \)
\(key[s] \leftarrow 0 \) for some arbitrary \(s \in V \)

while \(Q \neq \emptyset \)
do \(u \leftarrow \text{EXTRACT-MIN}(Q) \)
for each \(v \in \text{Adj}[u] \)
do if \(v \in Q \) and \(w(u, v) < key[v] \)
then \(key[v] \leftarrow w(u, v) \)
\(\pi[v] \leftarrow u \)

\(\Theta(n) \) total
\(n \) times
\(\Theta(m) \) implicit DECREASE-KEY’s.

Time: as in Dijkstra
Greedy Algorithms for MST

• **Kruskal's**: Start with \(T = \emptyset \). Consider edges in ascending order of weights. Insert edge \(e \) in \(T \) unless doing so would create a cycle.

• **Reverse-Delete**: Start with \(T = E \). Consider edges in descending order of weights. Delete edge \(e \) from \(T \) unless doing so would disconnect \(T \).

• **Prim's**: Start with some root node \(s \). Grow a tree \(T \) from \(s \) outward. At each step, add to \(T \) the cheapest edge \(e \) with exactly one endpoint in \(T \).
Implementation of Kruskal

- Use the **Union-Find** data structure.
 - Build set T of edges in the MST.
 - Maintain a set for each connected component.

```plaintext
Kruskal(G, w) {
    Sort edges weights so that $w_1 \leq w_2 \leq \ldots \leq w_m$.
    $T \leftarrow \emptyset$
    foreach ($u \in V$) make a set containing singleton $u$
    foreach edge $(u,v)$
        //go through edges in sorted order
        if ($u$ and $v$ are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing $u$ and $v$
        }  \text{merge two components}
    return $T$
}
```

S.Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
The Union-Find Data Structure

- **Operations:**

 MAKE-UNION-FIND(S): creates the data structure; puts all elements in S into separate sets.

 \[O(n) \text{ time where } n=|S| \]

 FIND(u): returns the representative of the set containing u.

 \[O(\log n) \text{ time} \]

 UNION(A,B): merge sets A,B into a single set.

 \[O(1) \text{ time} \]
Forest Representation

• Each element is a node.
• Each tree represents one set (store its size).
• The root is the representative.
• MAKE-UNION-FIND: create roots
 – $O(1)$ time per element
• UNION(A,B): point the root of the smaller tree to the root of the larger tree
 – $O(1)$ time
FIND operation

• FIND(x): follow the links to the root.

Theorem. FIND takes $O(\log n)$ time.

Proof: Time to evaluate FIND(x)

= number of predecessors of x
= number of times x changes representatives.

• Every time x changes representatives, the size of its set at least doubles. It can happen $\leq \log_2 n$ times. •
An Improvement to FIND

• **Path Compression:** update every pointer on the way to the root.

![Diagram showing path compression]

• **Theorem.** n FIND operations take $O(n \alpha(n))$ time, where $\alpha(n)$ is inverse Ackerman function.
Implementation of Kruskal

• Build set T of edges in the MST.
• Maintain a set for each connected component.

Kruskal(G, w) {
 Sort edges weights so that $w_1 \leq w_2 \leq \ldots \leq w_m$.
 T ← φ
 MAKE-UNION-FIND(V)
 foreach edge (u,v) //go through edges in sorted order
 if (FIND(u) ≠ FIND(v)) {
 T ← T ∪ {e_i}
 UNION(FIND(u), FIND(v))
 }
 return T
}

• Sorting: $O(m \log m) = O(m \log (n^2)) = O(m \log n)$
• Union-Find operations: $O(m \log n)$

$O(m \log n)$ time

S.Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
MST Algorithms in 2011

• **Deterministic** comparison-based algorithms.
 – $O(m \log n)$ [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 – $O(m \alpha (m, n))$. [Chazelle 2000]

• **Holy grail:** $O(m)$.

• **Related.**
 – $O(m)$ **randomized.** [Karger-Klein-Tarjan 1995]
 – $O(m)$ **verification.** [Dixon-Rauch-Tarjan 1992]
Clustering
Clustering

Given a set U of n objects (e.g., photos, documents, microorganisms) labeled p_1, \ldots, p_n, classify them into coherent groups.

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, University of Virginia
Clustering

Distance function: for each pair of objects specifies how “close” they are.

Fundamental problem: Divide into clusters so that objects in different clusters are far apart.

- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.
Clustering of Maximum Spacing

• **k-clustering:** Divide objects into k non-empty groups.

• Distance function satisfies:
 - \(d(p_i, p_j) = 0 \) iff \(p_i = p_j \) (identity of indiscernibles)
 - \(d(p_i, p_j) \geq 0 \) (nonnegativity)
 - \(d(p_i, p_j) = d(p_j, p_i) \) (symmetry)

• **Spacing:** Minimum distance between any pair of points in different clusters.

• **Goal:** Given an integer k, find a k-clustering of maximum spacing.
Greedy Clustering Algorithm

• Single-link k-clustering algorithm.
 – Form a graph on the vertex set U, corresponding to n clusters.
 – Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
 – Repeat $n-k$ times until there are exactly k clusters.

• Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

• Remark. Equivalent to finding an MST and deleting the $k-1$ most expensive edges.
Analysis of Greedy Clustering

Theorem. Let C^* be the clustering C^*_{1}, \ldots, C^*_{k} formed by deleting $k-1$ most expensive edges of a MST. C^* is a k-clustering of max spacing.

Proof: Let C be some other clustering C_1, \ldots, C_k.

- The spacing of C^* is the length d^* of $(k-1)^{st}$ most expensive edge.
- Let p_i, p_j be in the same cluster in C^*, say C^*_{r}, but different clusters in C, say C_s and C_t.
- Some edge (p, q) on p_i-p_j path in C^*_{r} spans two different clusters in C.
- All edges on p_i-p_j path have length $\leq d^*$ since Kruskal chose them.
- Spacing of C is $\leq d^*$ since p and q are in different clusters. \blacksquare
Huffman codes
Prefix-free codes

• **Binary code** maps characters in an alphabet (say \{A,\ldots,Z\}) to binary strings

• **Prefix-free code**: no codeword is a prefix of any other
 – ASCII: prefix-free (all symbols have the same length)
 – Not prefix-free:
 • a → 0
 • b → 1
 • c → 00
 • d → 01
 • ...

• Why is prefix-free good?
A prefix-free code for a few letters

A tree for "this is an example of a huffman tree"

- e.g. e → 00, p → 10011

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
How good is a prefix-free code?

• Given a text, let $f[i] = \# \text{ occurrences of letter } i$
• Total number of symbols needed

$$\sum_{i} f[i] \cdot \text{depth}(i)$$

• How do we pick the best prefix-free code?
Huffman’s Algorithm (1952)

- Given individual letter frequencies $f[1, .., n]$:
 - Find the two least frequent letters i,j
 - Merge them into symbol with frequency $f[i]+f[j]$
 - Repeat

- e.g.
 - a: 6
 - b: 6
 - c: 4
 - d: 3
 - e: 2

Theorem: Huffman algorithm finds an optimal prefix-free code.
Warming up

- **Lemma 0**: Every optimal prefix-free code corresponds to a **full** binary tree.
 - (Full = every node has 0 or 2 children)

- **Lemma 1**: Let x and y be two least frequent characters. There is an optimal code in which x and y are siblings.
 - Proof using an exchange argument (on board).

9/7/2011

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Huffman codes are optimal

Proof by induction

• Base case: two symbols; only one full tree.

• Induction step:
 – Suppose $f[1], f[2]$ are smallest in $f[1,\ldots,n]$
 – T is an optimal code for $\{1,\ldots,n\}$
 – Lemma 1 \Rightarrow can choose T where 1,2 are siblings.
 – T' = code obtained by merging 1,2 into $n+1$
Cost of T in terms of T':

$$cost(T) = \sum_{i=1}^{n} f[i] \cdot depth(i)$$

$$= \sum_{i=3}^{n+1} f[i] \cdot depth(i) + f[1] \cdot depth(1) + f[2] \cdot depth(2) - f[n+1] \cdot depth(n+1)$$

$$= cost(T') + f[1] \cdot depth(1) + f[2] \cdot depth(2) - f[n+1] \cdot depth(n+1)$$

$$= cost(T') + (f[1] + f[2]) \cdot depth(T) - f[n+1] \cdot (depth(T) - 1)$$

$$= cost(T') + f[1] + f[2]$$

- Minimizing $cost(T)$ is the same as minimizing $cost(T')$.
- By induction hypothesis T' is optimal.
- So, T is optimal, too.
• See Jeff Erickson’s lecture notes on greedy algorithms:
 – http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/
 – efficient implementation using min-heap
Data Compression for real?

• Generally, we don’t use letter-by-letter encoding
• Instead, find frequently repeated substrings
 – Lempel-Ziv algorithm extremely common
 – also has deep connections to entropy